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Abstract

Stathmin1 (STMN1) is a candidate oncoprotein and prognosis marker in several kinds of cancers. This study was aimed to
analyze its expression and biological functions in gastric cancer. The expression of STMN1 was evaluated by qRT-PCR,
western blot and immunohistochemistry. The biological function of STMN1 was determined by MTT proliferation assays,
monolayer colony formation and cell invasion assays using small interference RNA technique in gastric cancer cell lines. We
also explored the regulation of STMN1 expression by microRNA-223. STMN1 was upregulated in gastric cancer cell lines and
primary gastric adenocarcinomas. STMN1-positive tumors were more likely to be found in old age group and associated
with p53 nuclear expression. In diffuse type gastric adenocarcinomas, STMN1 expression was correlated with age (p = 0.043),
T stage (p = 0.004) and lymph node metastasis (p = 0.046). Expression of STMN1 in diffuse type gastric adenocarcinoma was
associated with poor disease specific survival by univariate analysis (p = 0.01). STMN1 knockdown in AGS and MKN7 cell lines
suppressed proliferation (p,0.001), reduced monolayer colony formation (p,0.001), inhibited cell invasion and migration
ability (p,0.001) and induced G1 phase arrest. siSTMN1 could also suppress cell growth in vivo (p,0. 01). We finally
confirmed that STMN1 is a putative downstream target of miR-223 in gastric cancer. Our findings supported an oncogenic
role of STMN1 in gastric cancer. STMN1 might serve as a prognostic marker and a potential therapeutic target for gastric
cancer.
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Introduction

Gastric cancer is one of the most common malignancies and the

second most frequent cause of cancer-related death worldwide. It

has the highest incidence in China, Japan, Korea and eastern Asia.

The overall prognosis is poor with a 5-year survival rate below

30% in most countries [1]. Several potential risk factors include

high salt diet, smoking, low intake of fruits and vegetables, chronic

gastritis with glandularatrophy and intestinal metaplasia, and

Helicobacter pylori (H. pylori) infection. The clinical outcome of H.

pylori infection has been shown to be influenced by various genetic

factors, particularly H. pylori-virulence associated genes such as

cagA, vacA, iceA and babA [2]. H. pylori infection is also known to

induce the expression of pro-inflammatory cyclooxygenase

enzyme (COX-2) which shows upregulated expression in gastric

cancer [3]. Previous studies have documented the importance of

genetic and epigenetic alterations of oncogenes, tumor suppressor

genes and mismatch repair genes in the development of gastric

cancer. Protocadherin 10 [4], death-associated protein kinase [5],

secreted frizzled-related protein [6] and peroxisome proliferator

activated receptor gamma [7] have been shown to have reduced

expression and tumor suppressor function in gastric carcinogen-

esis. On the other hand, retinoic acid-regulated nuclear matrix-

associated protein [8] and yes-associated protein 1 [9] were both

upregulated and exert oncogenic function in tumor development.

Stathmin1 (STMN1), also known as oncoprotein 18, is an

important cytosolic microtubule-destabilizing protein which plays

critical role in the process of mitosis through regulation of

microtubule dynamics, and a variety of other biological processes

[10]. High level of STMN1 expression is associated with poor

prognosis in various malignancies including breast cancer [11,12],

prostate cancer [13], malignant mesothelioma [14], cervical

cancer [15], and esophageal squamous cell carcinoma [16]. In

2010, Jeon et al. first reported that STMN1 over-expression was

positively correlated with lymph node metastasis and advanced

staging and vascular invasion, and negatively with recurrence-free

survival in diffuse type gastric carcinoma [17]. The same group

demonstrated the oncogenic role of STMN1 in gastric cancer by in

vitro inhibition of proliferation, migration and invasion in gastric

cell lines by knocking STMN1 down using siRNA, and in vivo

inhibition of xenograft tumor growth in nude mice by siRNA

transfection.

Regulation of STMN1 expression by miR-223 has been

demonstrated in hepatocellular carcinoma by our previous study
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[18]. Micro-RNAs are a class of single-stranded RNA molecules of

21–23 base pair in length and regulate target genes expression

through specific base-pairing interactions between miRNA and

untranslated regions of targeted mRNAs [19]. MiRNAs would

function as oncogenes or tumor suppressors in human cancers and

are potentially used as novel diagnostic and prognostic biomarkers,

and therapeutic targets. In gastric cancer, several miRNAs

including miR-143 and -145 [20], miR-141 [21], miR-31 [22]

and miR-106a [23] are downregulated, whereas some oncogenetic

miRNAs such as miR-21 and miR-27a [24] are upregulated.

This study is aimed to investigate the functional role of STMN1

in gastric cancer development and mechanisms of regulation of

STMN1 in gastric cancer.

Results

Up-regulation of STMN1 in gastric cancer cell lines and
primary gastric cancer samples

The expression of STMN1 mRNA was higher in all 9 gastric

cancer cell lines than the normal gastric tissue as shown in Fig. 1A.

Western blot analysis confirmed the up-regulation of STMN1

protein in 11 gastric cancer cell lines (Fig. 1B). Up-regulated

STMN1 protein expression was observed in 4 out of 5 primary

gastric adenocarcinomas comparing with the corresponding non-

tumorous gastric mucosa (Fig. 1C). QRT-PCR was conducted to

investigate the STMN1 mRNA expression level. In primary

gastric adenocarcinoma, 28 of 50 cases (56%) showed more than

1.5-fold up-regulation of STMN1 mRNA expression in tumor

tissue compared with the corresponding non-tumorous mucosa.

The mean level of STMN1 mRNA expression was significantly

higher in tumor samples than that in the non-cancerous

counterparts (p = 0.040, Fig. 1D).

STMN1 expression correlates with poor prognosis in
diffuse type gastric cancer

Immunohistochemistry was performed to assess the STMN1

protein expression in 111 primary gastric adenocarcinoma

samples. The STMN1 protein expression was mainly localized

in the cytoplasm of the tumor cells (Fig. 2A). Positive immuno-

reactivity was observed in 96 gastric adenocarcinomas (86.5%).

Among those STMN1-positive tumors, 40 showed strong (3+), 37

showed intermediate (2+) and 19 showed weak (1+) STMN1

staining. Previous study has demonstrated that the STMN1

expression was negatively regulated by tumor suppressor gene

TP53 [25]. We therefore assessed the expression of p53 protein by

immunohistochemistry and explored its correlation with STMN1

expression level. Aberrant nuclear p53 expression was found in 51

(45.9%) of gastric adenocarcinomas and more frequently in

STMN1-positive tumor (50.0%) than STMN1-negative tumor

(20.0%) (p = 0.03). The clinicopathologic characteristics of 111

patients with gastric adenocarcinoma and the association with

STMN1 expression were shown in Table 1. STMN1-positive

tumors were more likely to be found in old age group (p = 0.07)

and associated with p53 nuclear expression (p = 0.03), Univariate

analysis indicated that old age (p,0.036), histology with diffuse

component (p = 0.012), stage (p,0.0001), T stage (p = 0.012), N

stage (p,0.0001), M stage (p,0.0001) and the presence of lymph

node metastasis (p,0.0001) correlated with poor disease-specific

survival. By multivariate Cox proportional hazards regression

analysis, only age (p,0.0001) and stage (p,0.0001) were

independently associated with disease-specific survival (Table 2).

In diffuse type gastric adenocarcinoma, STMN1 expression was

associated with old age (p = 0.043), T stage (p = 0.004) and the

presence of lymph node metastasis (p = 0.046). Expression of

STMN1 in diffuse type gastric adenocarcinoma was associated

with poorer disease-specific survival by univariate analysis

(p = 0.01, Fig. 2B).

Silencing of STMN1 inhibits the aggressive phenotype in
vitro

Frequent upregulation of STMN1 mRNA and protein in gastric

tumors suggested a potential oncogenic role of this gene.

Knockdown of STMN1 by small RNA interference (siRNA)

markedly lowered mRNA and protein level (Fig. 3A) and

Figure 1. STMN1 upregulation in gastric cancer cell lines and primary gastric tumors. (A) STMN1 mRNA expression in gastric cancer cell
lines compared with normal gastric mRNA commercially available from Ambion (AM7996). (B) STMN1 protein expression was assessed by Western
blot in gastric cancer cell lines and normal gastric mucosa from patients underwent weight reduction gastric surgery. (C) Western blot of STMN1 in
paired gastric cancer (T) and adjacent non-tumorous mucosal tissues (N). (D) STMN1 mRNA expression in 50 pairs of gastric adenocarcinoma and
adjacent non-tumorous mucosa (p = 0.040).
doi:10.1371/journal.pone.0033919.g001
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significantly reduced cell proliferation in AGS and MKN7 cells as

demonstrated by MTT assays (p,0.001, Fig. 3B). STMN1 siRNA-

mediated growth suppressive effect was further confirmed by

anchorage-dependent monolayer colony formation assay. A

significant reduction of colony numbers was observed in cells

transfected with STMN1 siRNA, compared with scramble

controls in monolayer culture (reduced to 49.2% and 68.4% of

scramble controls in AGS and MKN7 respectively; p,0.001,

Fig. 3C).

In cell motility assays, a significant reduction in the invasive

phenotype through the Matrigel-coated Boyden chamber

(p,0.001, Fig. 3D) was demonstrated in STMN1 siRNA-

transfected AGS and MKN7 cells (reduced to 51.6% and 46.8%

of scramble controls in AGS and MKN7 respectively). In cell

migration assays using Transwell Permeable Supports, a signifi-

cant decrease in the number of cells migrating through the

microporous membrane (p,0.001, Figure S1) was found in

STMN1 siRNA transfected AGS and MKN7 cells (reduced to

Figure 2. Clinical significance of STMN1 overexpression in gastric adenocarcinoma. (A) Representative photos of STMN1
immunohistochemistry in gastric cancer, case 37, intestinal type and case 112, diffuse type (original magnification 6100, insertion 6400). (B)
Kaplan-Meier plot of disease-specific survival according to STMN1 expression status in diffuse type gastric adenocarcinoma.
doi:10.1371/journal.pone.0033919.g002
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65.9% and 42.7% of the scramble controls in AGS and MKN7,

respectively), suggesting siSTMN1 could inhibit the migration

ability of gastric cancer cells.

Since a growth inhibitory effect was observed in siSTMN1

transfected cells, we analyzed the transfectants for cell cycle

parameters using flow cytometry. Twenty-four hours after

transfection, accumulation of G1 cells was observed in siSTMN1

transfectants compared with the scramble siRNA controls

(Fig. 4A). Cells in the G1 phase were increased from 47.5% to

53.7% in AGS, 38.0% to 43.4% in MKN7, and 30.1% to 40.1%

in SGC7901 cells. And this was accompanied with a decrease of S

phase cells. In keeping with the cell cycle arrest found in flow

cytometric analysis, we observed a significant reduction of

phospho-Rb (S807/811) in siSTMN1 transfectants (Fig. 4B).

Furthermore, siSTMN1 could induce late apoptosis in four gastric

cancer cell lines tested, AGS, MKN1, BGC823 and SGC7901,

which was represented by an increase of cleaved-PARP (Fig. 4B).

However, no significant difference was found in the level of p-

AKT (S473) and p-Stat3 (T705) between siSTMN1 and negative

control transfected.

siSTMN1 inhibits the growth of gastric tumor in vivo
To further investigate the effect of STMN1 on in vivo growth of

gastric tumor, siSTMN1 and scramble-transfected gastric cancer

cells were injected subcutaneously to the right and left dorsal flank

of nude mice, respectively. Since AGS and MKN7 cells do not

form xenografts in nude mice, we used SGC7901 cells for in vivo

study. siSTMN1-transfectant formed smaller tumors on the right

dorsal flank than scramble controls on the left dorsal flank 3 weeks

after injection (p,0.01, Fig. 4C).

STMN1 is a downstream target of miR-223 in gastric
cancer

As predicted by Targetscan, potential miR-223 binding site was

found in the STMN1 39UTR (position 12–18 of STMN1 39UTR).

Expression of miR-223 was downregulated in 9 gastric cancer cell

Table 1. Correlation of STMN1 expression with other clinicopathologic features.

All cases (n = 111) Diffuse type (n = 54)

STMN1 expression STMN1 expression

Negative Positive p-Value Negative Positive p-Value

Sex M 10 67 4 34

F 5 29 NS 3 13 NS

Age , = 60 10 40 6 21

.60 5 56 0.07 1 26 0.043

Type Intestinal 8 48

Diffuse 7 47 NS

Grade 1 0 2

2 7 32

3 8 61 NS 7 47 NA

Stage I 4 29 3 6

II 1 9 0 2

III 3 30 0 20

IV 7 27 NS 4 19 NS

Stage (T) 1 4 19 3 2

2 3 32 1 17

3 6 43 3 28

4 2 1 NS 0 0 0.004

Stage (N) 0 4 26 3 6

1 6 22 2 8

2 2 29 0 20

3 3 18 NS 2 13 NS

Stage (M) 0 11 82 4 38

1 4 13 NS 3 9 NS

Lymph Node 0 4 26 3 6

1 11 69 NS 4 41 0.046

H. pylori Absence 8 58 4 31

Presence 7 37 NS 3 16 NS

p53 0 12 48 5 22

1 3 48 0.03 2 25 NS

(NS, not significant; NA, not available).
doi:10.1371/journal.pone.0033919.t001
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lines compared with normal gastric epithelium tissue (Fig. 5A).

Expression of miR-223 was negatively correlated with STMN1

protein expression (p = 0.05). We further assessed the STMN1

protein expression by immunohistochemistry and the level of miR-

223 by qRT-PCR in 31 primary gastric cancer samples. Tumors

with higher STMN1 immunoreactivity (score 2+ and 3+) showed a

non-significant trend towards a lower miR-223 expression level

(p = 0.137, Fig. 5B).

To demonstrate the potential suppressive effect of miR-223 on

STMN1 expression, we transfected miR-223 to gastric cancer cell

lines AGS and MKN7. MiR-223 suppressed STMN1 mRNA and

protein expression in both cell lines (p,0.001, Fig. 5C). Adding

miR-223 blocker rescued the STMN1 protein expression in

MKN7 cells, suggesting the suppressive effect was specifically

induced by miR-223 (Fig. 5D). Dual luciferase reporter assays

were performed to study the interaction between miR-223 and

STMN1 39UTR (Fig. 5E). The reporter constructs containing

predicted or mutated binding sites were co-transfected with miR-

223 mimic to MKN28 cells, a gastric cancer cell line with

relatively low endogenous STMN1 expression. MiR-223 exerted

strong inhibitory effect on STMN1 39UTR (49.7%, p,0.001).

The inhibitory effect was eliminated when the seed region was

deleted (Mutant 1), or alleviated when 4 nucleotides on the seed

region were mutated (67.6%, p,0.001, Mutant 2).

Discussion

In this study, we demonstrated the up-regulation of STMN1

expression in both mRNA and protein levels in gastric

adenocarcinomas compared with normal gastric epithelium. The

result suggested that STMN1 might have oncogenic function in

gastric tumorigenesis. STMN1 has been reported to be a

prognostic biomarker in several cancers including colorectal

cancer [26], esophageal squamous cell carcinoma [16], hepato-

cellular carcinoma [27,28,29,30] and oral squamous-cell carcino-

ma [31]. We demonstrated that STMN1 expression associated

with old age group, advanced T stage, the presence of lymph node

metastasis, and a shorter disease-specific survival time in diffuse

type gastric adenocarcinoma. In keeping with this finding, Jeon et

al. reported that STMN1 could predict poor prognosis in the

diffuse type of gastric cancer and correlate with vascular invasion

[17].

STMN1 regulates microtubule dynamics by promoting depo-

lymerization of microtubules and preventing polymerization of

tubulin heterodimers. Inhibition of STMN1 expression leads to

accumulation of cells in the G2/M phases and is associated with

severe mitotic spindle abnormalities and difficulty in the exit from

mitosis [10]. STMN1 also mediates the effects of p27(Kip1) on cell

motility [32]. In sarcoma cells [33] and non-small cell lung cancer

[34], STMN1 stimulated cell motility in and through the

extracellular matrix in vitro and increased the metastatic potential

in vivo. In poorly differentiated gastric cancer cell lines SNU638

and SNU16, siRNA-induced STMN1 repression could suppress

cell proliferation in vitro and in vivo [17]. In this study, we showed

that siRNA knockdown of STMN1 inhibited cell proliferation and

anchorage-dependent colony formation, impaired invasion and

migration ability, induced G1 arrest and late apoptosis in gastric

cancer cell lines. We further demonstrated that siSTMN1

inhibited in vivo growth of gastric cancer cell line SGC7901.

Functional inhibition of STMN1 readily decreased cell prolifer-

ation and invasive phenotype, suggesting a protumorigenic role of

STMN1 in gastric cancer.

MiR-223 is an evolutionarily conserved miRNA which was

initially reported in granulopoiesis and myeloid differentiation

[35]. The expression of miR-233 might be driven by the myeloid

transcription factors, PU.1 and C/EBPs [36]. It could regulate

several target genes such as Mef2c [37], a transcriptive factor that

promotes myeloid progenitor proliferation. It also plays an

essential role during osteoclast differentiation [38], and could be

served as a potential biomarker for recurrent ovarian cancer [39]

and sepsis [40]. We reported previously that STMN1 is a putative

downstream target of miR-223 in hepatocellular carcinoma [18].

In this study, we observed a low miR-223 expression level in

gastric cancer cell lines and an inverse relationship between miR-

223 and STMN1 protein expression. By luciferase reporter assays,

we confirmed the specific interaction between miR-223 and

STMN1 39UTR in gastric cancer cells. The negative modulation

effect by miR-223 was further substantiated by a significantly

reduced STMN1 protein level in gastric cancer cell lines after

miR-223 re-expression. The results supported that STMN1 is a

putative target of miR-223 in gastric cancer cells. Intriguingly,

overexpression of miR-223 did not alter cell proliferation and

apoptosis (Figure S2A & 2B) but significantly induced cell motility

in gastric cancer cells (Figure S2C). In keeping with this finding, a

recent study demonstrated that miR-223 promoted cell motility

through post-transcriptional downregulation of tumor suppressor

EPB41L3 in gastric cancer cells [41]. While a single miRNA can

target multiple genes, multiple miRNA can regulate a single gene.

The exact molecular mechanistic identification of how a given

miRNA contributes to the phenotypic changes remains elusive.

Inactivation of tumor suppressor gene TP53 is the most

common and most frequently studied molecular events in human

cancer. It has been reported that p53 mediated the repression of

STMN1 promoter activity, resulting in negative regulation of

STMN1 expression and G2/M arrest in the cell cycle [25,42]. It

has been generally accepted that wild type p53 protein is not

detectable by immunohistochemistry because it is unstable and has

a relatively shorter half-life. Mutant p53 protein accumulated in

the nucleus is relatively stable and has a longer half-life, which

makes it detectable by immunohistochemistry. Therefore, a strong

and diffuse immunoreactivity is generally indicative of mutant p53

[43]. We assessed the p53 status in gastric adenocarcinoma by

immunohistochemistry and found that aberrant p53 immunore-

activity associated with higher STMN1 expression. It is therefore

Table 2. P-value of univariate and multivariate analysis of the
association between clinicopathologic features and disease
specific survival in patients with gastric adenocarcinoma.

All cases (n = 111) Diffuse type (n = 54)

Univariate Multivariate Univariate Multivariate

Sex 0.077 NS NS NS

Age 0.036 ,0.0001 0.004 0.003

Type 0.012 NS NA NA

Grade 0.356 NS NA NA

Stage ,0.0001 ,0.0001 0.039 0.008

Stage (T) 0.012 NS 0.238 NS

Stage (N) ,0.0001 NS 0.052 NS

Stage (M) ,0.0001 NS 0.147 NS

H. pylori 0.124 NS 0.683 NS

Lymph Node ,0.0001 NS 0.026 NS

STMN1 0.091 NS 0.01 NS

(NS, not significant; NA, not available).
doi:10.1371/journal.pone.0033919.t002
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plausible that overexpression of STMN1 might in part due to

inactivation of tumor suppressor gene p53 in gastric cancers.

In conclusion, we demonstrated the up-regulation of STMN1 in

gastric adenocarcinoma and the expression was correlated with

poor disease-specific survival in diffuse type gastric cancer. The

oncogenic property of STMN1 in gastric tumorigenesis was

confirmed by functional studies. We further demonstrated that the

expression of STMN1 was negatively regulated by miR-223 in

gastric cancer cells. Our finding suggested that STMN1 might

serve as a prognostic marker and a potential therapeutic target for

diffuse type gastric adenocarcinoma.

Materials and Methods

Cell line and cell culture
Eleven gastric cancer cell lines, MKN28, KATO-III, MKN45,

SNU16, SNU1, MKN7, MKN1, NCI-N87, AGS, BGC823,

SGC7901, were obtained from either the American Type Culture

Collection (Rockville, MD, USA), RIKEN Cell Bank (Tsukuba,

Japan) or as a gift from Institute Digestive Disease (IDD) of Prince

Wales Hospital. These cell lines are grown in RPMI 1640

(GIBCO) supplemented with 10% fetal bovine serum (FBS, EU

GIBCO), 100 U/ml penicillin and 10 mg/ml streptomycin in a

humidified atmosphere of 5% CO2 at 37uC.

Clinical gastric adenocarcinoma samples
A total of 111 gastric adenocarcinoma samples were retrieved

from the tissue bank of Anatomical and Cellular Pathology, Prince

of Wales Hospital, Shatin, Hong Kong. Another 5 pairs of primary

tumors and adjacent non-tumorous tissues were collected during

surgery from patients without any neoadjuvant therapy. The

specimens were frozen immediately in 280uC for further

molecular analysis. Biopsy specimens from 50 pairs of gastric

cancer and the corresponding non-cancerous mucosa were kindly

provided by IDD of Prince Wales Hospital. The study is approved

by Joint Chinese University of Hong Kong–New Territories East

Cluster Clinical Research Ethics Committee, Hong Kong (CREC

Figure 3. Knockdown of STMN1 by siRNA in gastric cancer cell lines AGS and MKN7. (A) Transfection of STMN1 siRNA successfully reduced
STMN1 mRNA and protein expression in AGS and MKN7 cells (**, p,0.001). (B) MTT assays suggested knockdown STMN1 significantly suppressed
proliferation in AGS and MKN7 (**, p,0.001). (C) Monolayer colony formation assays suggested transfection with siSTMN1 could reduce anchorage-
dependent colony formation in AGS and MKN7 cell (**, p,0.001). All the experiments were performed in triplicate and the error bars represent
standard deviations. (D) Representative images of cells invaded through the Matrigel-coated membrane to the underside of the micropores are
shown. Significant reduction in the invasive ability was shown on STMN1 knockdown (**, p,0.001). The cell number was counted in 5 random view
fields and the error bars represented standard deviations.
doi:10.1371/journal.pone.0033919.g003
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Ref. No. 2009.521) and all participants provided written informed

consent for the collection of samples and subsequent analysis.

RNA extraction, qRT-PCR and microRNA qRT-PCR
Total RNA extraction was performed using Trizol reagent

(Invitrogen) according to manufacturer’s instruction. RNA con-

centration was measured by NanoDrop 1000 (Thermo Fisher

Scientific). High-Capacity cDNA Reverse Transcription Kits

(Applied Biosystems) were used for cDNA synthesis. For

quantitative RT-PCR (qRT-PCR), Taqman Universal PCR

Master Mix (Applied Biosystems) was applied for STMN1 (Sense:

GAGGTCACGTGCCTCTGTTTG; Antisense: CTGACCA-

CACTCTGAGCACCAA; Probe: Applied Biosystems,

185528556-1, FAM-CGCTTTTGTGCGCGC). The relative

expression level was normalized with glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) and calculated using the 2‘ (-Delta

Delta Ct) method. Taqman miRNA assays (Applied Biosystems)

were used to quantify the expression levels of mature miR-223.

Total RNA was reversed transcribed by MultiScribe (Applied

Biosystems) in reaction mixture containing miR-specific stem-loop

reverse transcriptive primer. All the reactions were performed in

triplicates and water blanks were included as negative controls.

Western blot and immunohistochemistry
Protein was extracted from gastric cancer cell lines and paired

primary tissues using RIPA lysis buffer with proteinase inhibitor.

Protein concentration was measured by the method of Bradford

(Bod-Rad) and 20 mg of protein mixed with 26SDS loading buffer

was loaded per lane, separated by 12% SDS-polyacrylamide gel

electrophoresis. STMN1 protein was detected with a polyclonal

anti-STMN1 antibody (Cell Signaling, #3352, 1:1000). Other

antibodies are from Cell Signaling commercially, cleaved PARP

(Asp214) (#9541, 1:1000), phospho-Rb (Ser807/811) (#9308,

1:1000), phospho-AKT (S473) (#9271, 1:1000) and phospho-

Stat3 (T705) (#9145, 1:2000).

Immunohistochemistry was performed in 4 mm-thick sections

from formalin-fixed and paraffin-embedded specimens. After de-

waxing in xylene and graded ethanol, sections were incubated in

3% H2O2 solution for 25 minutes to block endogenous peroxidase

activities and subsequently underwent microwaving in citrate

buffer for antigen retrieval. The primary antibodies (1:25 for

STMN1 from Cell Signaling and 1:100 for p53 from DAKO) were

incubated at 4uC overnight and chromagen development was

performed using the EnVision system (DAKO). The cytoplasmic

expression of STMN1 was assessed by assigning a proportion score

and an intensity score. The proportion score was according to

Figure 4. siSTMN1 induces G1 phase arrest in gastric cancer cells and inhibits cell growth in vivo. (A) Flow cytometric analysis revealed
the accumulation of cells in G1 phase 24 hours after siSTMN1 treatment. Representative data from two independent experiments was shown. (B)
Western blot analysis showed p-Rb (S807/811) reduction and increase of cleaved-PARP after STMN1 knockdown. p-AKT (S473) and p-Stat3 (T705)
showed no difference. (C) siSTMN1-SGC7901 formed smaller xenograft tumors than siScramble-SGC7901 3 weeks after injection (p,0.01).
doi:10.1371/journal.pone.0033919.g004
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proportion of tumor cells with positive cytoplasmic staining (0,

none; 1, , = 10%; 2, 10 to , = 25%; 3, .25 to 50%; 4, .50%).

The intensity score was assigned for the average intensity of

positive tumor cells (0, none; 1, weak; 2, intermediate; 3, strong).

The cytoplasmic score of STMN1 was the product of proportion

and intensity scores, ranging from 0 to 12. The cytoplasmic

expression was categorized into negative (score 0), 1+ (score 1 to 3),

2+ (score 4–6), and 3+ (score 7–12). Nuclear p53 expression in

.10% of tumor cells was scored as aberrant overexpression.

STMN1 functional assays
Transfection of STMN1 siRNA and scramble control (QIA-

GEN) was performed using Lipofectamine 2000 Transfection

Reagent (Invitrogen). Cell proliferation was assessed using

CellTiter 96 Non-Radioactive Cell Proliferation Assay (Promega)

according to manufacturer’s instruction. For colony formation

assays in monolayer cultures, cells transfected with STMN1

siRNA or scramble control were cultured for 10 days. Cells were

fixed with 70% ethanol for 15 minutes and stained with 2% crystal

violet. Colonies with more than 50 cells per colony were counted.

The experiments were repeated in triplicate.

The cell invasion assays were performed using BD Biocoat

Matrigel Invasion Chambers (BD Biosciences). Transfected cells

were seeded on the top chamber in culture medium containing 1%

FBS, with complete medium (containing 10% FBS) added to the

bottom chamber. After 24 hours incubation at 37uC, cells that

Figure 5. STMN1 is a putative downstream target of miR-223 in gastric cancer. (A) MiR-223 expression level in 9 gastric cancer cell lines as
determined by qRT-PCR. A borderline correlation was observed between STMN1 protein level and reduced miR-223 expression (p = 0.05). (B) MiR-223
expression in 31 primary gastric adenocarcinomas stratified by STMN1 protein level. (C) MiR-223 down-regulated endogenous STMN1 mRNA and
protein expression (**, p,0.001) in AGS and MKN7 cells. (D) Down-regulation of STMN1 protein expression by miR-223 was alleviated by miR-223
blocker in MKN7. (E) Luciferase reporter assays suggested STMN1 was a putative target of miR-223 (**, p,0.001). Wildtype: Luciferase construct
containing wild type STMN1 39UTR seed sequence; Mutant 1: the seed sequence was deleted; Mutant 2: 4-nucleotide mutations were introduced to
the seed sequence.
doi:10.1371/journal.pone.0033919.g005
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invaded through the matrigel membrane were fixed with 100%

methanol for 2 minutes and stained with 1% Toluidine blue for

another 2 minutes. For statistics analysis, cells on the underside of

the membrane were counted from 5 random microscopic fields

(original magnification6400). Each experiment was carried out in

triplicate, and the mean value was expressed from 2 independent

experiments.

The cell migration assays were performed using Transwell

Permeable Supports (Corning, NY). Cells were harvested from

culture dishes 24 hours after transfection, washed three times with

culture medium and resuspended. Then 300 ul of the cell

suspension (56104 cells) was added into the transwells, with

500 ul of culture medium containing 10% FBS in the lower

chamber. After 24 hours incubation at 37uC, cells that could

migrate through the microporous membrane were fixed with

100% methanol for 2 minutes and stained with 1% Toluidine blue

for another 2 minutes. For statistics analysis, we counted the

attached cell number in 3 view fields of each chamber randomly

and took the average cell number of each field.

Flow cytometry analysis for cell cycle arrest
For cell cycle analysis, AGS, MKN7 and SGC7901 cells were

collecting at the time 24 hours after transfection in 6 cm plates.

Before transfection, the cells underwent starvation for 12 hours for

synchronization. Cells were harvested using cold PBS and fixed in

70% cold ethanol for overnight in 4uC and treated with 1 ng/ml

RNase A for 10 minutes at 37uC. Cellular DNA was stained with

15 ng/ml propidium iodide (PI) for 30 minutes at 37uC in the

dark. The cells then were sorted by FACS Calibur Flow

Cytometer (Becton Dickinson, CA) and cell-cycle profiles were

determined using the ModFitLT software (Becton Dickinson, San

Diego, CA). The experiments were repeated for two separate

times.

In vivo tumorigenicity study
SGC7901 cells (26106cells suspended in 0.1 ml PBS) transiently

transfected with siScramble and siSTMN1 were injected subcu-

taneously into the dorsal flank of nine 4-week-old male Balb/c

nude mice (siSTMN1 on the right side and the negative control

cells on the left). The xenografts were taken out and tumor

diameter was measured and documented at the end of week 3.

Tumor volume (mm3) was estimated by measuring the longest and

shortest diameter of the tumor and calculating as follows:

volume = (shortest diameter)26(longest diameter)60.5. The ani-

mal handling and all experimental procedures were approved by

the Animal Ethics Committee of the Chinese University of Hong

Kong.

Luciferase reporter assays and miR-223 transfection
The putative miR-223 binding site at the 39 untranslated region

(39UTR) of STMN1 was cloned into pMIR-REPORT vector

(Ambion Inc.). Two mutant constructs were generated by either

deletion or mutations of the complementary seed sequence to the

miR-223 binding region, as described previously [18]. The firefly

luciferase construct was co-transfected with Renilla luciferase

vector control into MKN28 cells in the presence of either synthetic

miR-223 molecules or scramble miRNA control. Dual luciferase

reporter assays (Promega) were performed 36 hours after trans-

fection. Lipofectamine 2000 was used for the transfection of miR-

223 into AGS and MKN7 cells.

Statistical analysis
The Student T test was used to compare the difference in

biological behavior between STMN1 knockdown cells and

scramble siRNA-transfected cells, and between miR-223-trans-

fected and scramble miRNA transfected cells. Correlation between

STMN1 expression and clinicopathologic parameters were

assessed by nonparametric Spearman’s rho rank test. The

Kaplan-Meier method was used to estimate the survival rates for

each variable. The equivalences of the survival curves were tested

by log-rank statistics. For those variables being statistically

significant found in the univariate survival analysis (p,0.05), the

Cox proportional hazards model with the likelihood ratio statistics

was employed to further evaluate them for multivariate survival

analysis. All statistical analysis was performed by SPSS software

(version 16.0; SPSS Inc). A two-tailed p-value of less than 0.05 was

considered statistically significant and the p-value less than 0.001

was considered highly significant.

Supporting Information

Figure S1 siSTMN1 inhibits cell migration in gastric
cancer. Representative pictures of AGS and MKN7 cells, which

were transfected with siSTMN1 and siScramble then migrated

through a microporous membrane (**, p,0.001).

(TIF)

Figure S2 The functional study of miR-223 in gastric
cancer cell lines. (A) MTT proliferative assays of AGS, MKN7

and SGC7901 after miR-223 transfection (4 days after transfec-

tion). (B) Western blot analysis of cleaved-PARP in AGS and

MKN7 cells on 24 hours after miR-223 transfection. (C)

Representative Matrigel invasion images of AGS, MKN7 and

SGC7901 are shown. miR-223 enhanced the cell invasion ability

of gastric cancer cells (*, p,0.01; **, p,0.001). The cell number

was counted in 3 random view fields and the error bars

represented standard deviations.

(TIF)
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