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S1 Terminologies in Fluorescence Microscopy

Fluorescent protein: A fluorescent protein refers to a protein that exhibits bright fluorescence when ex-
posed to light under a particular ultraviolet range.

Fluorescence microscope: A fluorescence microscope is an optical microscope that uses fluorescence and
phosphorescence instead of, or in addition to, reflection and absorption to study properties of organic or
inorganic substances.

Fluorophore: A fluorophore (or fluorescent probe) is a fluorescent protein that can re-emit light upon light
excitation. Therefore, the terminology of “fluorophore” is equivalent to “fluorescent protein”.

PSF: The point spread function (PSF) describes the response of an imaging system to a point source or
point object.

FWHM: Full width at half maximum (FWHM) is an expression of the extent of a function given by the dif-
ference between the two extreme values of the independent variable at which the dependent variable is equal
to half of its maximum value. Fig. S1 shows the relationship between a Gaussian presented PSF and FWHM.

Figure S1: The relationship between a Gaussian presented PSF and FWHM.

HMM: A hidden Markov Model (HMM) is a statistical Markov model in which the system being modeled
is assumed to be a Markov process with unobserved (i.e. hidden) states.

S2 Implementation Details of Deep Neural Networks

S2.1 Detailed generator network

Fig. S2 shows the detailed generator network. As discussed in the main text, the generator network is
composed of two major components, the residual network and the multiscale upsampling component. The
core of the residual network, the residual network building block, is shown in the snapshot of Fig. S2. Instead
of using the convolutional layer to directly fit the transformation between the input feature map and the
output feature map, the residual block tries to fit the residue of the output deduced by the input. This
architecture is proved to be more effective than the traditional convolutional layer, eliminating the model
degradation problem and gradient explosion or vanish problem (He et al., 2016; Lim et al., 2017). The batch
normalization layer (Ioffe and Szegedy, 2015), which is proved to be able to deal with the “internal covariate
shift” problem and has become a standard configuration of a deep learning model, is also adopted in our
model. The multiscale upsampling component, which is the core idea of model to eliminate the fake details,
is composed of several pixel shuffle layers and convolutional layers. Using those layers, our model is able to
output 2X, 4X, and 8X super-resolution images, which means we have multiple interfaces for calculating the
training error and performing error backprobagation. Tuning the model carefully using the above techniques,
we can obtain a well-trained model, which can capture the hidden structures while not introducing too much
fake detail.



Figure S2: The generator network. According to the inputs’ physical meaning, the filter size of the first convolutional layer
is set to be 7 by 7, which is larger than the common filters and whose output is fed to the Monte Carlo dropout layer. The
output of the Monte Carlo dropout layer would go two directions. The first one is the residual network. The second one is the
denoise shortcut. The outputs of these two components are added together elementwisely. (a) The residual network consists
of 16 residual blocks in total. The architecture of the residual block is shown in the snapshot. Here, k3n256s1 means that the
kernel size is 3 by 3 and the output channel is 256, with the stride step as 1; BN with RELU means that the input would go
through a batch normalization layer, followed by the ReLU activation. (b) PSX2 in the above figure means the pixel shuffle
layer whose scaling factor is 2, which is used to perform the upscaling of the figure dimensionality. We used a convolutional
layer, whose kernel size is 1 by 1 and the output channel number is 1 with the stride step as 1, to convert the feature maps
into the final output images. Those output layers provide the training interface for doing error back propagation. So during
training, we can tune the model gradually and prevent the 8X image from incorporating too much fake detailed information,
which does not exist in the original image.

S2.2 Detailed discriminator network

The detailed discriminator network is shown in Fig. S3. We adopted the commonly used convolution neural
network architecture. However, since our goal is to train a generator which can produce super-resolution
images that are very similar to the ground-truth high-resolution images, if the discriminator does not have
enough detection ability or, in the other extreme case, has too strong detection ability, the generator would
ether become too lazy or never converge. To empower the discriminator a reasonable level of detection
ability, we added one residual block after those convolutional layers.

Figure S3: The discriminator network. Each convolutional block contains a convolutional layer, whose hyperparameters are
defined by k, n and s, a batch normalization layer and a ReLU activation layer. The meanings of those annotations are the
same as those in Fig. S2. The residual block can also be referred to Fig. S2. This network is trained to distinguish the
super-resolution images from the real high-resolution images, which can force the generator network, whose task is to perplex
the discriminator network, to learn to reconstruct super-resolution images with details.

S3 Implementation Details of Bayesian Inference

The Bayesian inference module takes both the time-series low-resolution images and the primitive super-
resolution image produced by the deep learning module as inputs, and generates a set of optimized fluorophore



locations, which are further interpreted as a high-confident super-resolution image. Here, the original time-
series low-resolution images are considered as the observations and the primitive super-resolution image
produced by the deep learning is given as an initial estimation of the fluorophore positions.

S3.1 Basic concepts

In our Bayesian inference, the emitting fluorophores are modeled as spots with a Gaussian shape. For
each activated fluorophore, its property is defined by the following three variables: the positions (x, y), the
Gaussian radius and the brightness (radius r and intensity I). As explained in Section 2.1, a log-normal
distribution (Cox et al., 2012; Zhu et al., 2012) is used to approximate the experimentally measured single
fluorophore photon number distribution.

The switching procedure of fluorophores is modeled by Bayesian inference, i.e., given an observed region
R, deciding whether there is a fluorophore (F ) or not (N) by

P (F |R)

P (N |R)
=

P (R|F )P (F )

P (R|N)P (N)
. (1)

Here, P (F ) and P (N) are constants which are based on experimental prior, P (R|F ) is the probability of
the observed data region R given the certain position of the fluorophore, P (R|N) is the probability of the
observed data region R if there is no fluorophore.

If there is one fluorophore, the positive probability can be calculated employing the integration of all the
probability of observing pixels:

P (R|F ) =

∫
a∈R4

∫
b∈ZN

3

P (R, a, b|F ) dbda, (2)

where a represents the variable containing the positions (x, y), the radius r and the intensity I, b represents
the hidden Markov state, and N is the number of image frames. As the switching procedure is modeled by
a hidden Markov model (HMM), the integration over b can be solved by the forward algorithm (Rabiner,
1989), while the optimization of a can be performed by MAP (maximum a posteriori) estimation.

If there are multiple fluorophores, for example, M fluorophores, the procedure will be evolved to factorial
hidden Markov model, and the calculation of positive probability is extended as:

P (R|FM ) =

∫
a∈R4M

∫
b∈ZMN

3

P (R, a, b|FM ) dbda, (3)

where a = {a1, a2, ..., aM} and b = {b1, b2, ..., bM}, representing the assemble of each ith fluorophore’s
variables. Exact integration over state sequences rapidly becomes intractable with increasing M so we
perform integration using MCMC (Markov Chain Monte Carlo) sampling. The discrete states are sampled
using Gibbs sampling (Geman and Geman, 1984) since we can sample from Markov chains efficiently using
forward filtering backwards sampling (Godsill et al., 2004).

Compared with the 3B analysis, we proposed a limited forward algorithm instead of the classic forward
algorithm to accelerate the computation without loss of accuracy, and used an integration expansion sampling
strategy, which is based on already known localization spots to get neighboring spots to assist the solving of
a.

S3.2 Detailed modeling

With a large number of fluorophores transferring among different states, the independent behavior of each
fluorophore will generate the high-density fluorescent image sequences, which can be modeled as FHMM.
The parameters of FHMM are estimated by the expectation-maximization (EM) algorithm:

Q (φnew|φ) = E {logP ({Ft, Dt} |φnew) |φ, {Dt}} , (4)

where the observation is a T -frame data {Dt}, with t = 1, ..., T . The hidden data is {Ft}, where each
fluorophore has three possible states in the model. Q is a function of the fluorophore parameters φnew, given



Figure S4: Schematic diagram of the Bayesian inference in DLBI. The Bayesian inference in DLBI mainly includes three steps:
1) structure extraction by deep learning, 2) model selection, and 3) model optimization. In step 1, structure information is
extracted by the deep learning module described in Section 2.2, which composes a good initial estimation of the fluorophore
positions. Then, by re-sampling the fluorophore distribution from the deep learning output with a random punishment, a
large number of candidate fluorophore positions are generated, which will be used as the initial model in the next step. In
step 2, the initial model is determined by a set of randomly selected candidate fluorescent spots. When candidate spots are
selected, they will be removed afterwards to guarantee no duplicate counting. In step 3, we optimize the initial model using
hybrid MCMC, limited forward algorithm and modified conjugate gradient method. Based on the initial model, it will search 4
neighboring spots and further extend the search-space around the structure. Repeating this process, a super-resolution image
will be generated.

the current parameter estimation and the observation sequence {Dt}. The procedure iterates between a step
that fixes the current parameters and computes posterior probabilities over the hidden states (the E-step)
and a step that uses these probabilities to maximize the expected log likelihood of the observations as a
function of the parameters (the M-step).

The structure extracted from the deep learning module contains abundant information, which composes a
good initial estimation of the fluorophore positions. However, our Bayesian inference will not instantaneously
consider all positional data. Instead, candidate positions are randomly selected to build the initial model.
In the subsequent cycle, new candidate spots are selected from the remaining fluorophores. This method is
equivalent to a “model pool” wherein newly obtained fluorophores are added to the pool to expand the size
of the pool, further extending the neighbor search-space around the structure. By this way, the abundant
detailed structure from deep learning is recalibrated and the effect of artifacts is suppressed.

Several key techniques are adapted to accelerate the speed and improve the optimization:
Limited forward algorithm: In the 3B analysis, the fluorophores are assumed to be occurred anywhere

in the region with equal probability. A hybrid Markov chain Monte Carlo (MCMC) algorithm and the
forward algorithm are used to optimize the parameters of a candidate fluorophore (Cox et al., 2012). For
each fluorophore with considerable observing probability, the entire image region will be calculated in the
3B analysis, and the workload of the 3B analysis scales with the product of the number of fluorophores and
the number of pixels, which results in a high computational-cost. In our implementation, instead of uniform
sampling, the structure extracted by deep learning is served as prior knowledge. For a fluorophore candidate
in our workflow, only the information of its nearby area is considered, which is defined by several factors
of the radius of PSF. Considering the fast decay of PSF (3σ rule of Gaussian shape) and the principle of



linear optical system, our forward algorithm is a close approximation to the original one with dramatically
decrease of computational workload.

Expansion sampling: In the E-step (sampling), the hybrid MCMC and the limited forward algorithm
are used to sample the initial model from the deep learning output. When a new fluorophore is determined,
the forward filtering and backward sampling algorithm (Godsill et al., 2004) are used to take samples of this
fluorophore. These new samples will be added to the sampling of the initial model. By this way, the initial
model for each turn’s optimization is expanded and the chance to catch “missed” and “real” structures is
increased.

Modified conjugate gradient: In the M-step (maximizing the expected log likelihood of the system),
it is very possible that two very close initial fluorophores jump into the same local optimal positions, which
may result in artificially “bright” areas. A further effect is the enforcement of the gradient near the local
optimal minimum which leads to a local optimal trap. Here, similar to the stochastic gradient descent, we
introduce a random re-weighting of conjugate gradient’s direction to overcome local optimal without loss of
efficiency.

Fig. S4 shows the overall workflow of our Bayesian inference.

S3.3 Parameter initialization

Each fluorophore is modeled as a Markov model, which transfers among three states, i.e., emitting, not
emitting and bleached (Fig. 3 in the main text). To solve the inverse HMM problem, two probabilities are
needed: the initial probability of each fluorophore’s state and the transition probability between different
states. Here, we set the initial probability of the three states for each single fluorophore bi as pi = [0.5, 0.5, 0].
The transition probability is given by the photo-convertible fluorescent protein (PCFP) mEos3.2 (Zhang
et al., 2012) in real experimental conditions, whose transition matrix is defined as

A =

 0.21 0.79 0
0.305 0.685 0.01

0 0 1

 (5)

where the labeling of each row and column is {1 = emitting, 2 = not emitting, 3 = bleached}. Because
the imaging environment and fluorescent protein characteristics are quite stable, the transition matrix A is
considered as constant during optimization.

For a variable vector ai, the statistical intensity I and the shape of a fluorophore are considered following
log-normal distribution. For intensity I, where ln(I) ∼ N (µ, σ2), we generally initialize I.µ to 2 and I.σ to
1, similar to the 3B analysis.

The shape parameter is depended on FWHM and the pixel size in imaging. Assuming we have the
FWHM in nm and the pixel size in nm, the radius r can be calculated by the following equation:

r.µ = ln

(
FWHM/(pixel per nm)

2
√

2 ∗ ln 2

)
+ (r.σ)2, (6)

where we always use r.σ = 0.1 as initialization.

S4 Real-world Data Preparation

S4.1 Cell culture, transfection and fixation

The two actin datasets are from two different U2OS cells in McCoy’s 5A Medium Modified (MCMM) (Life
Technologies) and the Endoplasmic reticulum dataset is from the COS7 cells in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with glucose (Life Technologies) and 10% fetal bovine serum (Life Tech-
nologies) and penicillin/streptomycin (Hyclone) were grown at 37 �with 5% CO2. For transient expression,
cells cultured in 12-well plates (Nunc) at 80% confluence were transfected with 1 µg lifeact-mEos3.2 (Zhang
et al., 2012) plasmid using Lipofectamine 2000 (Life Technologies) following the manufacturer’s protocol.
Five hours post transfection, cells were trypsinized and plated on clean coverslips (Fisher Scientific) coated
with 10 mg/ml fibronection (Millipore, FC010) to induce spreading for an additional 24 h. Fixations were



performed with PBS buffer (pH 7.4) containing 4% paraformaldehyde and 0.2% glutaraldehyde for 15 min
at 37�just before imaging. In sample preparation of ER structure, approximately 48 h after plating, COS7
cells were rinsed with DMEM with glucose and no phenol red (Life Technologies). Then, the cells were
incubated in staining solution containing 10 µM ER-Tracker Red (Invitrogen) for 4 min. Imaging buffer
was prepared with DMEM supplemented with 2% glucose, 6.7% of 1 M HEPES (pH 7.4), and an oxygen
scavenging system (0.5 mgMmL glucose oxidase and 40 µg/mL catalase).

S4.2 Imaging system and acquisition

A homemade TIRF microscopy system with an Olympus IX71 body (Olympus) and high-NA oil objectives
was used for imaging acquisition. For actin imaging, a 100×, 1.49 NA oil objective (Olympus PLAN APO)
was used with image pixel size of 160nm. For ER structures, a 100×, 1.7 NA objective and 1.6X intermediate
magnifications were used with image pixel size of 100nm. The fluorescence signals were acquired using an
electron-multiplying charge coupled device (EMCCD) camera (Andor iXon DV-897 BV).

S5 Experimental Results

S5.1 Simulated datasets

(A) MT0.N1.HD (B) Tubulin ConjAL647

Figure S5: The whole-scale images of the simulated datasets.

Limited by space, we did not show the entire simulated datasets in our manuscript. Fig. S5 shows
the ground-truth high-resolution images of MT0.N1.HD and Tubulin ConjAL6471. For the convenience of
computation, both MT0.N1.HD and Tubulin ConjAL647 were cropped into four subareas and each subarea
generated a time-series of simulated low-resolution fluorescent images. For MT0.N1.HD, because the right
bottom area is almost blank, the subareas used in the simulation were cropped from ROI: (40,0,480,480),
(480,0,480,480), (0,480,480,480), and (260,120,480,480), respectively. For Tubulin ConjAL647, the subar-
eas used in the simulation were cropped from ROI: (40,0,480,480), (480,0,480,480), (0,480,480,480), and
(480,480,480,480), respectively.

Fig. S6 shows the results on the fourth subarea that are not shown in the main text.

S5.2 Real-world datasets

The three raw real-world datasets were included as movies and available at https://drive.google.com/

file/d/1DOMv2Fo9WbIyz7-biWEyVybqknJ65lid/view?usp=sharing. Due to the large size of reconstructed
super-resolution images, we only showed the compressed whole-scale super-resolution images in the manuscript,
and included the original versions in the package. Here is the list of main data files included in the package:

1Downloaded from http://bigwww.epfl.ch/smlm/datasets/; and the fluorophore positions are binned into 960× 960 images
to serve as the ground-truth.



(A) (B) (C) (D)

(E) (F) (G) (H)

Figure S6: Reconstruction performance on the fourth subarea of the two simulated datasets. The images in the first row are
the ground-truth, the first frame of simulated low-resolution fluorescence images, the 3B analysis reconstruction, and the DLBI
reconstruction on the fourth subarea of the MT0.N1.HD dataset. The images in the second row are the ground-truth, the first
frame of simulated fluorescence images, the 3B analysis reconstruction, and the DLBI reconstruction on the fourth subarea of
the Tubulin ConjAL647 dataset.

� real1.avi: Movie of the first real-world dataset (Actin1).

� real2.avi: Movie of the second real-world dataset (Actin2).

� real3.avi: Movie of the third real-world dataset (ER).

� real1.png: Large-field reconstruction of the yellow area from the first real-world dataset (Actin1).

� real2.png: Large-field reconstruction of the yellow area from the second real-world dataset (Actin2).

� real3.png: Large-field reconstruction of the yellow area from the third real-world dataset (ER).

� CC.png: Overlap of the reconstruction images by DLBI (in red) and PALM (in green) (Actin1).

S5.3 Reconstruction quality assessment by SQUIRREL

We further assessed the reconstruction quality of the 3B analysis and DLBI by SQUIRREL (super-resolution
quantitative image rating and reporting of error locations), the most recent super-resolution (SR) quality
assessment method (Culley et al., 2018). SQUIRREL compares the diffraction-limited image (the reference
image) and the corresponding SR equivalents to generate a quantitative map, in which two scores are
generated: the resolution-scaled Pearson coefficient (RSP) and the resolution-scaled error (RSE). The higher
RSP and lower RSE value outputs, the higher the image quality is. By using the ImageJ plugin of SQUIRREL
and operating according to the workflow introduced in Culley et al. (2018), we obtained the following
quantitative mapping results for the simulated datasets MT0.N1.HD and Tubulin ConjAL647, and the local
patches of the real-world datasets Actin1, Actin2 and ER. The corresponding quantitative mapping results
are demonstrated in Fig. S7 to Fig. S9.

To apply SQUIRREL, a reference low-resolution image is needed. Here, we built the reference image by
summing all the 200 frames of the input low-resolution images and scaling from 60 pixels to 480 pixels based
on bi-cubic interpolation. The reference images are illustrated in the first column in Fig. S7, Fig. S8, and
Fig. S9. The second and third columns of the figures are the reconstruction results of the 3B analysis and
DLBI, respectively. The fourth and fifth columns are the quantitative maps of errors between the reference
and the reconstructed images of the 3B analysis and DLBI, respectively. in which the blue color indicates
small errors and the yellow color indicates large errors, as described in Culley et al. (2018). It can be seen
that on both simulated data and real data, the quantitative maps of DLBI always have higher RSP and
lower RSE values, which indicate better performance than the 3B analysis. The details of the quantitative
maps also support our conclusion, in which the corresponding maps of DLBI have much more blue areas and
much less yellow areas.



Figure S7: Quantitative mapping results for simulation data MT0.N1.HD.

Figure S8: Quantitative mapping results for simulation data Tubulin ConjAL647.



Figure S9: Quantitative mapping results for real data.
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