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A B S T R A C T

UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It
is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI,
carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR,
susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first
10,000 imaged subjects has recently been released for general research access. To help convert this data into
useful summary information we have developed an automated processing and QC (Quality Control) pipeline that
is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief
overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative in-
vestigations carried out as part of the development of both the imaging protocol and the processing pipeline.
Introduction

Biobank project

UK Biobank is a prospective cohort study of over 500,000 individuals
from across the United Kingdom (Sudlow et al. (2015)). Voluntary par-
ticipants, aged between 40 and 69 when recruited in 2006–2010, were
invited to one of 22 centres across the UK. Blood, urine and saliva sam-
ples were collected, samples for genetic analysis and physical measure-
ments were taken, and each individual answered an extensive
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agro

ober 2017; Accepted 16 October 201

c. This is an open access article unde
questionnaire focused on aspects of health and lifestyle. This valuable
data resource will provide insight into how the health of the UK popu-
lation develops over many years and will enable researchers to improve
the diagnosis and treatment of common diseases which will inevitably
occur in sub-groups of the population.

In 2014, UK Biobank began the process of inviting back 100,000 of
the original volunteers for brain, heart and body imaging. Imaging data
for 10,000 volunteers has already been processed and made available for
further research (Biobank, 2016, 2017). Due to the wide scope (in pop-
ulation size and number of imaging modalities) of the brain imaging
7
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1 The raw and processed imaging data, IDPs and non-imaging measures in UK Biobank
are available to researchers worldwide following a data access application procedure.

2 http://www.fmrib.ox.ac.uk/datasets/ukbiobank/nnpaper/IDPinfo.txt.
3 A comprehensive list of possible artefacts and proposed qualitative quality recom-

mendations can be found in CBS (2016).
4 http://preprocessed-connectomes-project.org/quality-assessment-protocol/(Craddock

et al., 2016).
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acquisitions, UK Biobank will become an important resource for the
research community. The included modalities are T1 (Section T1 pipe-
line), T2 FLAIR (Section T2 FLAIR pipeline), swMRI (susceptibility-
weighted MRI, Section swMRI pipeline), dMRI (diffusion MRI, Section
dMRI pipeline), rfMRI (resting-state functional MRI, Section Resting
fMRI pipeline) and tfMRI (task fMRI, Section Task fMRI pipeline). It is
hoped that ASL (arterial spin labelling, a measure of blood flow in the
brain) can be added to the protocol in the near future. Section Acquisition
overview briefly describes the acquisition protocol and the acquired
modalities.

Other large-scale imaging projects include the Maastricht Study with
10,000 subjects (Schram et al. (2014)), the German National Cohort with
30,000 subjects (GNC (2014)) and the Rhineland Study with 30,000
subjects (Breteler et al., 2014).

The full potential of UK Biobank stems from its access to NHS (UK
National Health Service) records; participants have agreed for their
future health outcome information to be linked into the UK Biobank
database. Thanks to this, researchers can aim to find novel biomarkers for
early diagnosis of different diseases. As described in Sudlow et al. (2015),
1800 of the imaged participants are expected to develop Alzheimer's
disease by 2022, rising to 6000 by 2027 (diabetes: 8000 rising to 14,000;
stroke: 1800 to 4000; Parkinson's: 1200 to 2800).

Greater detail regarding the background to the UK Biobank brain
imaging study is given in Miller et al. (2016), a resource paper that also
provides an introduction to the types of biological information that can
be extracted from the different brain imaging modalities, as well as
example results from early analyses from the first 5000 subjects' data, and
detailed discussions of the challenges of analysing and interpreting such
datasets. In contrast, here we focus more specifically on the methodo-
logical advances and implementation details in the image processing and
QC pipeline that we have developed for UK Biobank; we describe here
version 1.0 of “FBP” (FMRIB's Biobank Pipeline), used to generate the
first 10,000 subjects' processed and released data, as of January 2017.We
also include several investigations relating to acquisition and analysis
pipeline decisions (such as B0 shimming approaches and registration
method for dMRI data), with analyses designed to evaluate relative
merits of different approaches.

Automated pipeline

Brain imaging data is not immediately usable for extracting
biologically-meaningful information in its raw form. It needs to be pro-
cessed using a wide variety of software tools, optimised and combined
together into a processing pipeline.

There are many excellent examples of processing pipelines in the
literature. Tools such as those described in Wei et al. (2002) (segmenta-
tion), Cook et al. (2006) (diffusion) or Song et al. (2011) (resting-state), are
specific solutions for the processing of specific imagemodalities. However,
for the UK Biobank we need a robust pipeline that can process and inte-
grate across many different functional and structural modalities. The
minimal preprocessing pipelines developed by the Human Connectome
Project (HCP) (Glasser et al., 2013) are good examples of pipelines opti-
mised for the specific needs of a project with very special characteristics.
Following the same philosophy, we have developed a fully automated
processing pipeline primarily based around FSL software (Jenkinson et al.,
2012). In section Automated processing pipelines we describe the pipeline
in detail, as well as the choices we have made in its development.

Imaging-derived phenotypes and Quality Control

A goal of UK Biobank is to identify new relationships between
different phenotypic features and human diseases, in the hope that they
may be used as biomarkers for early diagnosis. Therefore, in addition to
preprocessing the brain imaging data (e.g., aligning modalities and
removing artefacts), our pipeline also generates approximately 4350
“imaging-derived phenotypes” (IDPs). These IDPs include summary
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measures such as subcortical structure volumes, microstructural mea-
sures in major tracts (DTI and NODDI measures (Zhang et al., 2012)), and
structural/functional connectivity metrics. IDPs for the first 10,000
subjects have been publicly released1 and can be used in combination
with other non-imaging data from Biobank to identify disease risk factors
and biomarkers. Each IDP is presented as a separate data field within the
UK Biobank showcase (except for the rfMRI netmats and node ampli-
tudes, which are saved en masse within “bulk” variables in the database).
A detailed description of all IDPs is available in Section S3 of the sup-
plementary material, and the complete list is given online.2

Quality Control (QC) is a very important issue in brain imaging, as
poorly executed application (or lack thereof) can compromise the trust-
worthiness of a study (Bennett and Miller, 2010). This topic has been
explored in the literature, although very often research is mostly focused
on Quality Assurance (QA) rather than QC. QA is focused on avoiding the
occurrence of problems by improving a process while QC is focused on
finding possible problems in the output of that process. For example, the
Function Biomedical Informatics Research Network (FBIRN) set of rec-
ommendations (Glover et al., 2012) is solely focused on QA. In a similar
vein, Friedman and Glover (2006) explore an interesting set of quality
metrics, but they focus on stability, signal-to-noise ratio (SNR), drift, and
other hardware performance issues related to MR scanners, not specif-
ically on the type of artefacts3 that can be found in MR imaging even
when complying with the best QA policies.

The scale of a typical brain imaging study to date (up to 100 subjects)
allows researchers to largely performQCmanually, by visually inspecting
the data at each step in the processing pipeline. Even the HCP, while
having a relatively large number of subjects (1200), relies primarily upon
visual inspection for their T1 QC process (Marcus et al., 2013). However,
the sheer quantity of imaging data which will be produced by UK Bio-
bank (100,000 subjects) makes QC via visual inspection unfeasible. Thus,
the development of reliable QC metrics to detect artefacts specific to the
imaging acquisition and analysis process is essential.

Various imaging-related QC metrics have been proposed (e.g. Desh-
mukh and Bhosale (2010), Moorthy and Bovik (2010)) but, as they are not
specific to MR or brain imaging they do not fulfill the needs of our study.
More specific proposals can be found in other studies. Woodard and
Carley-Spencer (2006) suggests a metric based on Natural Scene Statistics
to detect noise in structural images. Following the same idea, Mortamet
et al. (2009) suggests two metrics to detect noise (based on investigating
the ratio of artefactual voxels relative to the background, or the noise
distribution in the background). Those proposals, although extremely
useful, refer to a very specific problem in structural images, and hence are
unlikely to detect artefacts due to other sources, or in other modalities.

Similarly, there have been proposed metrics for dMRI (Hasan, 2007;
Liu et al., 2010), fMRI (Greve et al., 2011; Power et al., 2012; Nichols,
2013; Afyouni and Nichols, 2017), and more recent multimodal ap-
proaches (Abe et al., 2015), but the extent to which these metrics may
capture the majority of artefacts that could arise is yet to be proven.

Finally, PCP QAP (Preprocessed Connectors Project Quality Assess-
ment Protocol)4 is a concerted effort to create a unified platform for
Quality Control that attempts to incorporate different QC pipelines and
their associated metrics. The QC tools to come out of our work are
designed to be easily integrated into MRIQC (Esteban et al., 2016, 2017),
a project affiliated to PCPQAP.

Due to the uncertainty about the suitability of the QC metrics dis-
cussed above to successfully assess image quality objectively and to
detect the majority of brain artefacts, we propose a machine learning
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Table 1
UK Biobank brain MRI protocol (31 min total scan time).

Modality Duration Voxel, Matrix Key Parameters #Volumes/
#Timepoints

T1 4:54 1� 1� 1 mm
208� 256� 256

3DMPRAGE, sagittal,
R ¼ 2, TI/TR ¼ 880/
2000 ms

1

T2
FLAIR

5:52 1:05� 1:0� 1:0
mm
192� 256� 256

FLAIR, 3D SPACE,
sagittal, R ¼ 2, PF 7/
8, fat sat, TI/
TR ¼ 1800/5000 ms,
elliptical

1

swMRI 2:34 0:8� 0:8� 3:0
mm
256� 288� 48

3D GRE, axial, R ¼ 2,
PF 7/8 TE1/TE2/
TR ¼ 9.4/20/27 ms

2

dMRI 7:08 2:0� 2:0� 2:0
mm
104� 104� 72

MB ¼ 3, R ¼ 1, TE/
TR¼ 92/3600 ms, PF
6/8, fat sat, b ¼ 0
s=mm2 (5x þ 3�
phase-encoding
reversed), b ¼ 1 000
s=mm2 (50�),
b ¼ 2000 s=mm2

(50�)

105 þ 6
(AP þ PA)

rfMRI 6:10 2:4� 2:4� 2:4
mm
88� 88� 64

TE/TR ¼ 39/735 ms,
MB ¼ 8, R ¼ 1, flip
angle 52�, fat sat

490

tfMRI 4:13 2:4� 2:4� 2:4
mm
88� 88� 64

Acquisition same as
rfMRI. Task is faces/
shapes “emotion”
task.

332

R ¼ in-plane acceleration factor, MB ¼ multiband factor, PF ¼ partial Fourier. All non-EPI
scans are pre-scan normalised (on-scanner bias-field corrected). Gradient distortion
correction is deselected on the scanner and applied in post-processing. SNR, tSNR and
motion plots are shown in Figs. S10 and S11 of the supplementary material.
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approach to automatically identify problematic images based on a wide
range of imaging derived metrics. For this study, the generated IDPs are
combined with a collection of additional QC-specific metrics (e.g.,
measures of asymmetry, normalised intensity per subcortical structure,
metrics to detect alignment that classifies images as usable or non-
usable). This has been developed for, and tested on, T1 images, and
will be further developed in future work so that it can be applied to all
modalities. Section Automated Quality Control further describes the QC-
specific metrics and the machine learning system. The main reason for
our heavy focus to date on QC for the T1 data is that the entire processing
pipeline (for all modalities) relies heavily on having a usable T1 struc-
tural image.

Data acquisition

Acquisition overview

UK Biobank brain imaging has been described as a resource in Miller
et al. (2016), where the reader can find a number of examples describing
how it can be accessed and used for research. The data is available online.5

Three dedicated imaging centres are equipped with identical scanners
(3T Siemens Skyra, software VD13) for brain imaging scanning using the
standard Siemens 32-channel receive head coil. As shown in multiple
studies (Focke et al., 2011; Chen et al., 2014), having the same scanner
and protocol is advantageous for a multi-site study.

The scanners operate 7 days per week, each scanning 18 subjects per
day. These acquisition rates demand an extremely time-efficient protocol
- each minute of scanning (added into the protocol) in effect costs £1
million, so scanning time has been a key criterion in the protocol
development. The total scanning time has been established as 31 min
(plus 5 min for subject adjustment, shimming, etc). The optimised order
of acquisition is: (1) T1, (2) resting fMRI, (3) task fMRI, (4) T2 FLAIR, (5)
dMRI, (6) swMRI (Biobank, 2014).

During the acquisition process, if a significant artefact is observed
while scanning, and there is enough time to restart the sequence, then the
acquisition may be repeated. The most common reason for these artefacts
is excessive head movement.

Likewise, as mentioned in Miller et al. (2016), in case of a possible
health-related incidental finding noted by the radiographer during the
imaging process, a formal radiologist review is undertaken and, if it is
confirmed as potentially serious, feedback is given to the participant and
their doctor.

To date, our processing pipeline has been applied to 10,129 UK
Biobank volunteers scanned from 2014 to 2016 at just the first imaging
centre. The main acquisition parameters for each modality are listed
in Table 1.

A usable T1-weighted image was obtained for 98% of these ~10,000
subjects (the same figure that was reported in Miller et al. (2016) for the
initial ~6000 subjects, confirming the stability of the acquisition process).
This is an important point, as a T1 image is a crucial part of the processing
pipeline, being essential for making full use of data from the other mo-
dalities. At this stage, an image was deemed unusable only after careful
manual quality checks across all modalities.6 A set of manual classification
categories, specific to each modality, were assigned to every image; these
categories are described in section QC categories. Data for all modalities
were acquired and usable in 8211 subjects (81.06%).

Throughout the development of the Biobank imaging procedures, the
imaging acquisition has been divided into different protocol phases, with
each phase corresponding to (generally minor early) adjustments in the
acquisition protocol. The original aim in the UK Biobank brain imaging
component was to maintain a fixed acquisition protocol during the 5–6
5 https://amsportal.ukbiobank.ac.uk/SitePages/Sign%20In.aspx.
6 Manual QC was possible because at that stage, we were dealing with the initial phase

(6% of final dataset size).
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years that the scanning will need or, at least, to have maximum
compatibility with eventual changes. There have been a number of
protocol optimisations, particularly during the very earliest scanning
periods (and hence covering a relatively small number of the earliest
participants). There also have been a number of minor software upgrades
(for obvious reasons the imaging study seeks to minimise any major
hardware or software changes). Detailed descriptions of every protocol
change, along with thorough investigations of the effects of these on the
resulting data, will be the subject of a future paper. In Section S1 of
supplementary material we describe one protocol change for which we
carried out specific custom analyses to help verify the protocol change
decision (relating to field shimming).
Acquired modalities overview

T1-weighted structural imaging (“T1”, Mugler and Brookeman
(1990)) provides information relating to volumes and morphology of
brain tissues and structures. It is also critical for calculations of
cross-subject and cross-modality alignments, needed in order to process
all other brain modalities. Acquisition details are: 1 mm isotropic reso-
lution using a 3D MPRAGE acquisition. The superior-inferior field-of--
view is large (256 mm), at little cost, in order to include reasonable
amounts of neck/mouth, as those areas hold interest for some
researchers.

T2-weighted FLAIR imaging (“T2 FLAIR”, Mugler (2014)) is a
structural technique with contrast dominated by signal decay from in-
teractions between water molecules (T2 relaxation times). T2 images
depict alterations to tissue properties typically associated with certain
pathology (e.g., white matter lesions). In this modality, signal from fluid
(CSF) is suppressed and hence it appears dark (unlike either PD or
T2w images).

After early piloting, a standard T2/PD-weighted acquisition was
dropped due to a combination of factors such as overall value and timing
practicalities. However the T2-weighted FLAIR image is still acquired,

https://amsportal.ukbiobank.ac.uk/SitePages/Sign%20In.aspx
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which is generally of good quality and which shows strong contrast for
white matter hyperintensities.

Susceptibility-weighted imaging (“swMRI”, Haacke et al. (2004);
Duyn (2013)) is a structural technique that is sensitive to “magnetic”
tissue constituents (magnetic susceptibility). Data from one scan
(including phase and magnitude images from two echo times) can be
processed in multiple ways to reflect venous vasculature, hemosiderin
microbleeds, quantitative susceptibility mapping or aspects of micro-
structure (e.g., iron, calcium and myelin). Voxel size for this modality is
0:8� 0:8� 3:0 mm. Anisotropic voxels enhance contrast in the signal
magnitude from sources of signal dephasing, such as iron in veins or
microbleeds, but are less ideal for other susceptibility-based processing.
Ultimately, however, the decision to acquire anisotropic voxels was
motivated by the desire for whole brain coverage in the face of very
limited scan time (2.5 min).

Diffusion-weighted imaging (“dMRI”, Sotiropoulos et al. (2013a);
Xu et al. (2013); Sotiropoulos et al. (2013b)) measures the ability of
water molecules to move within their local tissue environment. Water
diffusion is measured along a range of orientations, providing two types
of useful information. Local (voxel-wise) estimates of diffusion properties
reflect the integrity of microstructural tissue compartments (e.g., diffu-
sion tensor and NODDI measures). Long-range estimates based on tract-
tracing (tractography) reflect structural connectivity between pairs of
brain regions. For the two diffusion-weighted shells, 50 diffusion-
encoding directions were acquired (with all 100 directions being
distinct). Acquisition phase-encoding direction for the dMRI data is AP
(Anterior-to-Posterior). In order to generate appropriate fieldmaps to
carry out geometric distortion correction for EPI images (See Section
Fieldmap generation pipeline), a reverse (PA: Posterior-to-Anterior)
phase-encoding dMRI is also acquired.

Resting-state functional MRI (“rfMRI”)measures changes in blood
oxygenation associatedwith intrinsic brain activity (i.e., in the absence of
an explicit task or sensory stimulus). It can generate valuable estimations
of the apparent connectivity between pairs of brain regions, as reflected
in the presence of spontaneous co-fluctuations in signal. As implemented
in the CMRR multiband acquisition (Moeller et al., 2010), a separate
“single-band reference scan” (SBRef) is acquired. This has the same ge-
ometry (including EPI distortion) as the timeseries data, but is not part of
a low-TR timeseries, and hence, without the corresponding T1 saturation
effects, has higher between-tissue contrast; this is used as the reference
scan in head motion correction and alignment to other modalities. In
cases where the SBRef image is missing, the alignments use an average
image generated from the first 5 vol from the fMRI timeseries and
selecting the one that correlates most highly with the others (after
co-alignment). This procedure is similar to the selection of the best b ¼ 0
image described in section Fieldmap generation pipeline.

Task functional MRI (“tfMRI”) uses the same measurement tech-
nique as resting-state fMRI, while the subject performs a particular task or
experiences a sensory stimulus. The task used is the Hariri faces/shapes
“emotion” task (Hariri et al., 2002; Barch et al., 2013), as implemented in
the HCP, but with shorter overall duration and hence fewer total stimulus
block repeats. The participants are presented with blocks of trials and
asked to decide either which of two faces presented on the bottom of the
screen match the face at the top of the screen, or which of two shapes
presented at the bottom of the screen match the shape at the top of the
screen. The faces have either angry or fearful expressions. This task was
chosen to engage a range of sensory, motor and cognitive systems.

Automated processing pipelines

All processing was performed on a dedicated cluster composed of CPU
servers (typical speed 2.66 GHz per core, average RAM 10 GB per core) as
7 GPU processing is used for the FSL eddy and bedpostx tools, with further tools being
ported to GPU in the future.
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well as GPU servers for the GPU-optimised parts of the processing pipe-
line (NVidia Tesla K40/K80 GPUs for processing with Cuda 5.57).

Image reconstruction from k-space is performed on the scanner using
standard Siemens reconstructions, except for multiband EPI (recon-
structed using custom CMRR code). Partial bias field correction in
structural data is performed via the on-scanner “pre-scan normalise”
option. No on-scanner gradient distortion correction is applied. After
reconstruction and on-scanner preprocessing, image data is received (in
DICOM format) by the pipeline. An overview of the processing pipeline
can be seen in Fig. 2 (legend for the flowcharts can be see seen in Fig. 1).

The source code for the pipeline can be found online.8
Initial preprocessing steps

Data conversion: DICOM to NIFTI
All DICOM image files are converted to NIFTI format using dcm2niix

(Li et al., 2016). This tool also generates the diffusion-encoding b-value
and b-vector files, as well as a JSON file for each NIFTI image with
meta-information such as: acquisition date and time, echo time, repeti-
tion time, effective echo spacing, encoding direction, magnetic field
strength, flip angle and normalisation by scanner.

Image data is available from UK Biobank in both DICOM and (sepa-
rately) NIFTI formats. Both forms include the raw (non-processed) image-
space data, the only differences being that the NIFTI-version T1/T2
structural images are defaced for subject anonymity (as described
below), and the multi-coil (pre-combination) swMRI data is only avail-
able in the DICOM downloads. Researchers download individual zipfiles
corresponding to one modality from one subject for one data format
(DICOM or NIFTI).

The NIFTI versions are the recommended option, partly because for
each modality a small number of simply and consistently named images
are provided (e.g., “T1”, “rfMRI”), as opposed to thousands of separate
DICOM files (with complex naming and somewhat variable conventions
dictated by the scanner). Also, the NIFTI downloads, while overall only
being 40% larger than pure-raw DICOM downloads, include not just the
raw images, but also images output by the processing pipeline, for
example after gradient distortion correction (for all modalities), and
correction for eddy currents and head motion (dMRI data), and artefact
removal (rfMRI data).

Data organization
The directory tree structure of the processed data is available online.9

For each subject, the raw and processed imaging data files are auto-
matically organised into subfolders according to the different modalities,
with a uniform naming scheme for files and directories. To achieve this,
we need to check all the files that have been converted from DICOM to
NIFTI, find the ones that correspond to each modality (by matching a set
of naming patterns), sort out the possible problems with the number of
files found per modality (missing files or havingmore files than expected)
and finally, renaming the result according to the naming scheme. To
resolve problems regarding the number of found files, we developed the
logical rules defined in Algorithms 1 to 4 in Section S2 of the supple-
mentary material.

This file organisation can be converted to BIDS file-naming format
(Gorgolewski et al., 2016) with a conversion script included in
the pipeline.

After the main file organisation, a basic Quality Control (QC) tool is
used to check if every raw dataset in each modality has the correct di-
mensions. When raw data has the wrong dimensions, is corrupted,
missing or otherwise unusable, it is moved into a sub folder called “un-
usable” (inside the given modality's folder), and not processed any
further (apart from defacing applied to the raw T1 and T2 FLAIR).
8 https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1.
9 http://www.fmrib.ox.ac.uk/ukbiobank.
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Fig. 1. Flowcharts legend. All linear registrations shown in the pipeline are rigid body transformations (6 degrees of freedom) in intra-subject operations and affine transformations (12 degrees of freedom) when registering to MNI template.
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Fig. 2. General flowchart for the pipeline.
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This “unusable” data is included in the NIFTI packages in Biobank
database because some researchers may be interested in working with it,
for example, to developmethods for detecting or even possibly correcting
such data.

In the case of unusable T1 data, the raw imaging data for all other
modalities is deemed unusable (because the pipeline cannot function
without a usable T1). However, as with the T1 data, all such raw data is
still available for NIFTI download, but without any processing applied.
405
Image anonymisation
To protect study participant anonymity, the header data does not

contain sensitive information such as name and any other information
that could be used to identify the participant.

Furthermore, the high resolution structural images (T1 and T2) are
automatically “defaced” by masking out voxels in the face and ear re-
gions. This is accomplished by estimating a linear transformation be-
tween the original data and a standard co-ordinate system (an expanded
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MNI152 template space)10, and back-projecting a standard-space mask of
the face and ear regions into the native data. This process is depicted in
Fig. 3. To ensure that this process did not unduly remove within-brain
voxels, we calculated the overlap between non-defaced brain masks
and the defacing masks. Overlap was present in only 0.5% of the sub-
jects11 and, within these subjects, there was nearly no loss of brain voxels
(worst case having 68 overlap voxels out of 1,725,983 brain voxels).

This defacing procedure is similar to common practice such as in the
HCP. The raw, non-defaced DICOM T1 and T2 data is classified as
“sensitive” by UK Biobank; researchers requiring raw DICOM non-
defaced T1/T2 data should contact UK Biobank to discuss special ac-
cess requirements.

Gradient distortion correction
Full 3D gradient distortion correction (GDC) is not available on the

scanner for EPI data (gradient distortions are only corrected within-plane
for 2D EPI data), so GDC is entirely applied within the process-
ing pipeline.

GDC is a necessary step, as shown in Fig. 4. Tools developed by the
FreeSurfer and HCP teams are used for applying the correction, available
through the HCP GitHub account.12 Running these tools also requires a
proprietary Siemens data file that describes the gradient nonlinearities.13
T1 pipeline

T1 structural images are used as a reference for all other modalities.
Processing performed on these images should avoid any kind of unnec-
essary smoothing or interpolation. Therefore, all linear and non-linear
pipeline transformations are estimated, but not applied until as late as
possible in the processing pipeline when all transforms can be combined
and applied with a single interpolation.

As can be seen in Fig. 5, the pipeline runs a GDC, cuts down the field
of view (FOV), calculates a registration (linear and then non-linear) to the
standard atlas, applies brain extraction, performs defacing and finally
segments the brain into different tissues and subcortical structures.

In more detail: the pipeline first applies GDC for the original T1 image
as described above. The FOV is then cut down to reduce the amount of
non-brain tissue (primarily empty space above the head and tissue below
the brain) to improve robustness and accuracy of subsequent registra-
tions. Tools used to achieve this include BET (Brain Extraction Tool,
Smith (2002)) and FLIRT (FMRIB's Linear Image Registration Tool,
Jenkinson and Smith (2001); Jenkinson et al. (2002)),14 in conjunction
with the MNI152 “nonlinear 6th generation” standard-space T1 tem-
plate.15 This results in a reduced-FOV T1 head image.

The next step is a non-linear registration to MNI152 space using
FNIRT16 (FMRIB's Nonlinear Image Registration Tool Andersson et al.
(2007b, a)). This is a critical step in the pipeline, as many subsequent
processing steps depend on accurate registration to standard space. We
used the 1 mm resolution version of MNI152 template as the refer-
ence space.

A particular issue for the non-linear registration was the fact that T1
images in UK Biobank have brighter internal carotid arteries than those
the in MNI152 template. This affects the non-linear registration pro-
cedure, resulting in distortion in the temporal lobes. Hence, we created a
custom reference brain mask to exclude this part of the image when
estimating the transformation (see Fig. S8 of the supplemen-
tary material).
10 See section T1 pipeline.
11 33 out of 5822.
12 https://github.com/Washington-University/Pipelines.
13 More information about this file can be found in: https://github.com/Washington-
University/Pipelines/wiki/FAQ.
14 Default cost function: Correlation ratio.
15 http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6.
16 Configuration file for optimal registration is distributed with the pipeline code.
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All of the transformations estimated above (GDC, linear and non-
linear transformations to MNI152) are then combined into one single
non-linear transformation, which allows the original T1 to be trans-
formed into MNI152 space (or vice versa) in a single step.

Using the inverse of the MNI152 alignment warp, a standard-space
brain mask is transformed into the native T1 space and applied to the
T1 image to generate a brain-extracted T1; this brain extraction replaces
the earlier brain-extraction output created by BET (which was needed
just for the initial registration stages). Similarly, as discussed above, a
defacing mask (defined as a set of boxes removing eyes, nose, mouth and
ears) is transformed into T1 space using the linear transformation and
applied for anonymisation purposes. Only the linear transformation is
used for defacing, as non-linear registration is performed on brain-
extracted images, meaning that the warp field in out-of-brain regions is
poorly conditioned. This process is shown in Fig. 6.

Next, tissue-type segmentation is applied using FAST (FMRIB's
Automated Segmentation Tool Zhang et al. (2001)). This estimates
discrete and probabilistic segmentations for CSF (cerebrospinal fluid),
grey matter and white matter. As part of the segmentation, intensity bias
is estimated, and so this step is also used to generate a fully
bias-field-corrected version of the brain-extracted T1.

These data are then used to carry out a SIENAX17 analysis Smith et al.
(2002). The external surface of the skull is estimated from the T1, and
used to normalise brain tissue volumes for head size (compared with the
MNI152 template). Volumes of different tissue types and total brain
volume, both unnormalised and normalised for head size, are
then generated.

Subcortical structures (shapes and volumes) are modelled using
FIRST (FMRIB's Integrated Registration and Segmentation Tool Pate-
naude et al. (2011)). The shape and volume outputs for 15 subcortical
structures are generated and stored. A single summary image, with a
distinct value coding for each structure is also generated.

From the T1 structural image, several global volume measures from
SIENAX are reported as distinct IDPs, both normalised for overall head size
as well as not normalised: total brain (grey þ white matter) volume; total
white matter volume, total grey matter volume, ventricular (non-periph-
eral) CSF (cerebrospinal fluid) volume; peripheral cortical grey matter
volume. The overall volumetric head-size scaling factor is also recorded as
an IDP. Several subcortical structures’ volumes from FIRST segmentation
(not normalised for brain/head size, although that normalisation can be
easily done, as the total brain volume is an IDP) are also reported, in
general with separate IDPs for left and right, such as left thalamus and right
thalamus. Total volume of grey matter (using the grey matter partial vol-
ume estimates from FAST) within 139 GM ROIs18 and total volume of
white matter hyperintensities (WMHs) calculated with BIANCA (Griffanti
et al., 2016) (using both T1 and T2 FLAIR) are also included as IDPs.
T2 FLAIR pipeline

The T2 FLAIR processing pipeline is very similar to the T1 pipeline,
although we use the non-linear T1-to-MNI152 transformation to trans-
form T2 FLAIR to MNI152 space. For this reason and to assist other
combined analyses (e.g., white-matter hyperintensity segmentation), the
T2 FLAIR image is first transformed to T1 space as described below.

As shown in Fig. 7, the original T2 FLAIR image is first corrected for
gradient distortions (GDC) and then a rigid-body (6 degrees of freedom)
linear registration using FLIRT is applied to transform the corrected T2
FLAIR into corrected T1 space. After this step, the T1 brain and defacing
masks are applied to the T2 FLAIR image (see Fig. 8). Finally, anMNI152-
version of T2 FLAIR is also generated using the previously calculated
warp from T1 to MNI152.
17 Structural Image Evaluation using Normalisation of Atrophy: Cross-sectional.
18 The ROIs are defined by combination of parcellations from several atlases: Harvard-
Oxford cortical and subcortical atlases, and Diedrichsen cerebellar atlas.

https://github.com/Washington-University/Pipelines
https://github.com/Washington-University/Pipelines/wiki/FAQ
https://github.com/Washington-University/Pipelines/wiki/FAQ
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6


Fig. 3. Example of defacing. Left: Original T1 volume (non-Biobank subject). Center: Applying defacing masks. Right: Defaced T1 volume.

19 b ¼ 0 images (also called b0) have a b-value below 50.
20 Differences between b ¼ 0 images in each encoding direction can occur due to subject
movement.
21 All steps applied to images in the AP direction are also applied to images in the PA
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As a last step, we use the estimated bias field previously calculated by
FAST on the T1 image to correct the residual bias field inhomogeneities
in the T2 FLAIR image. This approach performs as well as estimating the
bias field directly from the T2 FLAIR that have not been removed by the
on-scanner ”pre-scan normalise” processing. To validate this approach,
we confirmed that the histograms for white matter intensity in 78
(randomly chosen) subjects improved, i.e., the distribution of WM in-
tensity (as measured by the Inter Quartile Range [IQR]) was tightened in
a similar way for T1 and T2 FLAIR after using on-scanner bias-field
correction and T1's FAST bias field correction. Fig. 9 (panels A and B)
shows the intensities for a typical subject, with similar improvement for
T1 and T2 FLAIR evident. Fig. 9C shows the different inter-quartile-
ranges for all 78 subjects, with the results further summarised in Table 2.

swMRI pipeline

The processing pipeline for this modality is shown in Fig. 10.
Combining phase images across coils requires care due to anomalous

phase transitions in regions of focal signal dropout for a given coil.
Currently, all coil channels are saved separately to enable combination of
phase images inpost-processing. Eachcoil channelphase image isfirst high-
passfiltered to remove low-frequency phase variations (including both coil
phase profiles and field distortion from bulk shape). A combined complex
image is generatedas the sumof the complexdata fromeachcoil (unfiltered
magnitude andfiltered phase), and thefinal phase image is the phase of the
summation of the second echo, since it has greater venous contrast. Careful
inspection of a small number of subjects found no anomalous phase tran-
sitions from individual channels in the final combined image.

Venograms were calculated using an established reconstruction
(Haacke et al., 2004), in which magnitude images are multiplied by a
further filtering of the phase data to enhance the appearance of veins.
The filtering consists of thresholding the phase image to set the phase to
zero in voxels indicating diamagnetic susceptibility, and to take the phase
to the fourth power in voxels indicating paramagnetic susceptibility. The
chosen power represents a trade-off between venous-tissue contrast and
noise in the phase data. This enhances image contrast around veins,
which are the source of strongest paramagnetic susceptibility.

Additionally, T2* values are calculated from the magnitude data.
First, the inverse of T2*, termed R2*, is calculated from the magnitude
images from the two echo times (TE1 and TE2). The log of the ratio of
these two echo time images is calculated, and scaled by the echo time
difference, to give the R2*.

T2* is calculated as the inverse of R2*. The T2* image is then spatially
filtered to reduce noise (3 � 3 � 1 median filtering followed by limited
dilation to fill small holes of missing data) and transformed into the space
of the T1 (via linear registration of the bias-field-normalised first-echo
magnitude image). The median (across ROI voxels) T2* value is then
estimated as a separate IDP for each of the subcortical structure ROIs (left
thalamus, right caudate, etc.) obtained from the T1.
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Fieldmap generation pipeline

Fieldmap images reflect variations in the static magnetic field. These
are needed to correct geometric distortions in the phase encoding di-
rection in EPI images (Jezzard and Balaban, 1995).

In the fieldmap generation pipeline (see Fig. 11) we estimate the
fieldmaps from the b¼ 0 images19 in the dMRIdata using the opposingAP -
PA phase-encoding acquisitions mentioned above. The reasons for doing
so, rather than measuring the field using a dual echo-time gradient echo
acquisition, are numerous. Firstly, “traditional” fieldmaps (based on dual
echo-time gradient-echo images) are not free of problems (Andersson and
Skare, 2010). The choice of echo-time difference represents a trade off
between wanting a large echo-time difference to get a large effect to
calculate the field from, and wanting a small echo-time difference which
results in fewer phase-wraps that may be hard to unwrap. Furthermore,
such afieldmapwill not automaticallybe in the same space (position) as the
images one wants to correct. Therefore the fieldmap needs to be registered
to those images and that is not a trivial task as they are differently distorted.
Also, as mentioned in Smith et al. (2013), fieldmaps estimated with
reversed encoding direction acquisitions produce an “equivalently good
distortion correctionaccuracy” to that achievedwith traditionalfieldmaps,
while being faster to acquire. This reduction in time, aside frommaking the
acquisition less susceptible to within-scan head motion, saves acquisition
time, which is a valuable resource in UK Biobank.

All b ¼ 0 dMRI images (interspersed with the high-b images) with
opposite phase-encoding direction (AP and PA) are analysed to identify
the most suitable pair of AP and PA images20. This is achieved by aligning
all AP images to each other with a rigid-body registration (6 degrees of
freedom) and then calculating the correlation of each b ¼ 0 image with
all others. The volume that best correlates with all others is selected21 as
the “target”, subject to the following additional criterion.

As the chosen b¼ 0 image determines the space for later processing we
want that space to be as close to the space of the first image with diffusion
encoding (b > 0) as possible. The movement estimation between the b¼ 0
image (no diffusion weighting) images and the two shells with diffusion
encoding is not carried out until the end of the eddy current correction, so
if the fieldmap is far away from that first dMRI, the movement estimation
process will be less optimal. Furthermore, dMRI images are acquired
shortly after the fMRI images, so the case for selecting an early b¼ 0 image
is stronger.22 Hence, we apply a selection bias towards the first b ¼ 0
image: if the first b¼ 0 image has sufficient quality (correlation of 0.98 or
higher to the other images) we would select it as the “best b ¼ 0 image”
(the same selection bias is applied to PA).
direction.
22 The fieldmaps will be used to correct both fMRI and dMRI data.



Fig. 4. One volunteer was scanned for testing purposes at different positions on the scanning table, depicting the effect of gradient distortion (note the warping in the neck). Correction for
gradient distortion (C and D) substantially improves alignment. i: Subject placed low in the scanner (Baseline). ii: Subject placed in the centre of the scanner. iii: Subject placed higher into
the scanner. A: ii (red outline) linearly registered to i (background) (Cross correlation: 0.90). B: iii (red outline) linearly registered to i (background) (Cross correlation: 0.83). C: ii (red
outline) linearly registered to i (background) after GDC (Cross correlation: 0.98). D: iii (red outline) linearly registered to i (background) after GDC (Cross correlation: 0.96). Regions
highlighting the largest effect (i.e. improved alignment of the ventricle) of the GDC have been zoomed to a 3:1 scale.
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Fig. 5. Flowchart for the T1 processing pipeline.
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This optimal AP/PA pair is then fed into topup23 (Andersson et al.
(2003)) in order to estimate the fieldmap and associated dMRI EPI
distortions.

The full generation method of the fieldmap magnitude is explained in
section S5 of the supplementary material. GDC is applied to this
magnitude image before registering it to the T1 (which has already been
gradient-distortion corrected). The result is linearly aligned to the T1
(using boundary-based-registration [BBR] as the cost function as
described in Greve and Fischl (2009)) for later use in unwarping the fMRI
data. The resulting transformation is applied to the fieldmap and also
inverted to get the dilated structural brain mask in fieldmap (dMRI)
space. Finally, the fieldmap image in structural space is brain-masked and
converted to radians per second for later use for fMRI unwarping.
23 After making sure that the number of slices in the Z direction is a multiple of topup's
sub-sampling level (See https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup/TopupUsersGuide/
#A–subsamp), defined in topup configuration file, by removing the appropriate number
of slices from the top of the image.

409
dMRI pipeline

As can be seen in Fig. 12, in the first step of this part of the pipeline the
dMRI data (AP encoding direction) is corrected for eddy currents and
head motion, and has outlier-slices (individual slices in the 4D data)
corrected using the eddy tool (Andersson and Sotiropoulos, 2015, 2016;
Andersson et al., 2016). This step requires knowing the “best” b ¼ 0
image in the AP direction as discussed above. The primary corrections
carried out by eddy need to be done in-plane, and applying the GDC
before eddy would move data out of plane. Therefore, GDC is applied
after eddy to produce a more accurate correction, as explained in Glasser
et al. (2013).

The output is fed into two complementary analyses, one based on
tract-skeleton (TBSS) processing, and the other based on probabilistic
tractography (bedpostx/probtrackx). Both analysis streams then report a
range of dMRI-derived measures within different tract regions: A) mea-
sures derived from diffusion-tensor modelling, and B) measures derived
from microstructural model fitting.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup/TopupUsersGuide/#A--subsamp
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup/TopupUsersGuide/#A--subsamp


Fig. 6. Flowchart for the defacing of the T1.

24 Model 2: Deconvolution with sticks and a range of diffusivities.
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Diffusion-tensor-image fitting and NODDI
The b ¼ 1000 shell (50 directions) is fed into the DTI fitting (Basser

et al., 1994) tool DTIFIT, creating outputs such as fractional anisotropy,
tensor mode and mean diffusivity.

In addition to the DTI fitting, the full two-shell dMRI data is fed into
NODDI (Neurite Orientation Dispersion and Density Imaging) (Zhang
et al., 2012) modelling, using the AMICO (Accelerated Microstructure
Imaging via Convex Optimization) tool (Daducci et al., 2015). This aims
to generate meaningful voxelwise microstructural parameters, including
ICVF (intra-cellular volume fraction - an index of white matter neurite
density), ISOVF (isotropic or free water volume fraction) and ODI
(orientation dispersion index, a measure of within-voxel tract
disorganisation).

WM tract skeleton analysis
The DTI Fractional Anisotropy (FA) image is fed into TBSS (Smith

et al., 2006), which aligns the FA image onto a standard-space white--
matter skeleton, with alignment improved over the original TBSS
skeleton-projection methodology through utilisation of a
high-dimensional FNIRT-based warping (de Groot et al., 2013). This
decision was re-validated along the lines of de Groot et al. (2013) after a
thorough comparison of 14 different alignment methods applied to UK
Biobank data (see Fig. 13). The resulting standard-space warp is applied
to all other DTI/NODDI output maps. For each of the DTI/NODDI maps,
the skeletonised images are averaged within a set of 48 standard-space
tract masks defined by the group of Susumu Mori at Johns Hopkins
University Mori et al. (2005) and Wakana et al. (2007), (similar to the
TBSS processing applied in the ENIGMA project Jahanshad et al. (2013)),
to generate a set of dMRI IDPs.
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Probabilistic-tractography-based analysis
In addition to the TBSS analyses, the preprocessed dMRI data is also

fed into a tractography-based analysis. This begins with within-voxel
modelling of multi-fibre tract orientation structure via the bedpostx
tool (Bayesian Estimation of Diffusion Parameters Obtained using Sam-
pling Techniques),24 which implements a model-based spherical decon-
volution and estimates up to 3 fibre orientations per voxel. This is
followed by probabilistic tractography (with crossing fibre modelling)
using probtrackx (Behrens et al., 2003, 2007; Jbabdi et al., 2012;
Hern�andez et al., 2013). The bedpostx outputs are suitable for running
tractography from any (voxel or region) seeding; the pipeline has already
automatically mapped a set of 27 major tracts using standard-space start/
stop ROI masks defined by AutoPtx de Groot et al. (2013). In order to
reduce the amount of processing time for those tracts, AutoPtx was
modified to reduce the number of seeds per voxel (the relationship be-
tween the number of seeds per voxel and processing time is linear) to 0.3
times the number of seeds specified in the original version of AutoPtx.
Fig. 14 illustrates the process we used to select this factor.

Although eddy and bedpostx outputs are in the space and resolution
of the (GDC-unwarped) native diffusion data, the nonlinear trans-
formation between this space and 1 mm MNI standard space (as esti-
mated by TBSS above) is used to create tractography results in 1 mm
standard space. For each tract, and for each DTI/NODDI output image
type, we compute the weighted-mean value of the DTI/NODDI parameter
within the tract (the weighting being determined by the tractography
probabilistic output) to generate a further set of dMRI IDPs.



Fig. 7. Flowchart for the T2 FLAIR processing pipeline.
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Resting fMRI pipeline

This section of the pipeline uses several outputs from the T1 pipeline
(T1, brain-extracted T1, linear and non-linear warp of T1 to MNI152
space and binary mask of the white matter in T1 space). See Fig. 15 for
the flowchart.

Using this information and a previously calculated GDC warp for the
rfMRI data, a configuration file is generated in a format suitable for use
by Melodic (Beckmann and Smith, 2004). Melodic is a complete pipeline
in itself which here performs EPI unwarping (utilising the fieldmaps as
described above), GDC unwarping, motion correction using MC-FLIRT
(Jenkinson et al., 2002), grand-mean intensity normalisation of the
entire 4D dataset by a single multiplicative factor, and highpass temporal
filtering (Gaussian-weighted least-squares straight line fitting, with
sigma ¼ 50.0s). To reduce interpolation artefacts, the EPI unwarping,
GDC transformation, and motion correction are combined and applied
simultaneously to the functional data. The combination of these warps
can be seen in Fig. 16.

Finally, structured artefacts are removed by ICA þ FIX processing
independent component analysis followed by FMRIB's ICA-based X-
noiseifier (Beckmann and Smith, 2004; Salimi-Khorshidi et al., 2014;
Griffanti et al., 2014). FIX was hand-trained on 40 Biobank rfMRI data-
sets following the methodology described in Griffanti et al. (2017), and
leave-one-out testing showed (mean/median values across subjects)
99.1/100.0% classification accuracy for non-artefact components and
98.1/98.3% accuracy for artefact components. At this point no lowpass
temporal or spatial filtering has been applied.

We evaluated the effect that FIX had on the relationship between 1/
411
tSNR and amount of head motion (summarised to a single average value
for each subject). Before FIX cleanup, the correlation was very high
(r ¼ 0.75), indicating strong corruption of data in general by head mo-
tion, even after standard (geometric) head motion correction. However,
after FIX cleanup, this correlation dropped dramatically (r ¼ 0.1, i.e.,
only 1% of variance explained by head motion), indicating high effec-
tiveness of FIX in removing residual motion artefacts.

The EPI unwarping is a combined step that includes GDC and align-
ment to the T1, though the unwarped data is stored in native (unwarped)
fMRI space (and the transform to T1 space stored separately). This T1
alignment is carried out by FLIRT, using BBR as the cost function. After
the fMRI GDC unwarping, a final FLIRT realignment to T1 space is
applied, to take into account any shifts resulting from the GDC
unwarping. The previously described transform from T1 space to stan-
dard MNI space is utilised when fMRI data is needed in standard space.

To be able to identify RSNs (Resting-State Networks) in individual
subjects, we first identify a set of RSNs which are common across the
entire group. Therefore, group-average RSN analysis was carried out
using 4100 datasets.

First, each subject's preprocessed (as above) timeseries dataset was
resampled into standard space, temporally demeaned and had variance
normalisation applied according to Beckmann and Smith (2004).
Group-PCA was then carried out by MIGP (MELODIC's Incremental
Group-PCA) from all subjects. This comprises the top 1200 weighted
spatial eigenvectors from a group-averaged PCA (a very close approxi-
mation to concatenating all subjects' timeseries and then applying PCA)
Smith et al. (2014). The MIGP output was fed into ICA using FSL's
MELODIC tool Hyv€arinen (1999); Beckmann and Smith (2004), applying



Fig. 8. Flowchart for the defacing of the T2 FLAIR.
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spatial-ICA at two different dimensionalities (25 and 10025). The
dimensionality determines the number of distinct ICA components; a
higher number means that distinct regions within the spatial component
maps are smaller. The group-ICA spatial maps are available online in the
UK Biobank showcase.26 The sets of ICA maps can be considered as
“parcellations” of (cortical and sub-cortical) grey matter, though they
lack some properties often assumed for parcellations - for example, ICA
maps are not binary masks but contain a continuous range of values; they
can overlap each other; and a given map can include multiple spatially
separated peaks/regions. Any group-ICA components that are clearly
identifiable as artefactual (i.e., not neuronally driven) are discarded for
the network modelling described below. A text file is supplied with the
publicly available group-ICA maps, listing the group-ICA components
kept in the final network modelling. From the 25-dimensional group-ICA,
21 components were kept as non-artefactual, and from the 100-dimen-
sional group ICA, 55 were kept.

For a given parcellation (group-ICA decomposition of D components),
the set of ICA spatial maps was mapped onto each subject's rfMRI
25 The reasoning behind these dimensionalities is:

� 25 results in large scale network decomposition which matches much of the canonical
RSN literature (Smith et al., 2009).

� 100 corresponds to a more finely detailed parcellation. We found empirically that it
was not useful to go even higher because, with volumetrically aligned data, raising the
number of components did not significantly raise the number of non-artefact group
level components as opposed to using surface based analysis where the number of well-
aligned small components can be much higher (Smith et al., 2013).

26 http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=9028.
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timeseries data to derive one representative timeseries per ICA compo-
nent (for these purposes each ICA component is considered as a network
“node”). For each subject, these D timeseries can then be used in network
analyses, described below. This is the first stage in a dual-regression
analysis Filippini et al. (2009).

The node timeseries are then used to estimate subject-specific
network-matrices (also referred to as “netmats” or “parcellated con-
nectomes”). For each subject, the D node-timeseries were fed into
network modelling after regressing the timeseries of the artefactual
nodes out of all others, and then discarding them, leaving Dg nodes. This
results in a Dg � Dg matrix of connectivity estimates. Network modelling
was carried out using the FSLNets toolbox.27 Network modelling is
applied in two ways:

� Using full normalised temporal correlation between every node time
series and every other. This is a common approach and is very simple,
but it has various practical and interpretational disadvantages
including an inability to differentiate between directly connected
nodes and nodes that are only connected via an intermediate node
(Smith, 2012), as well as being more corrupted (than partial corre-
lation) by residual shared/global artefacts.

� Using partial temporal correlation between nodes' timeseries. This
aims to estimate direct connection strengths better than achieved by
full correlation. To slightly improve the estimates of partial correla-
tion coefficients, L2 regularization is applied (setting rho ¼ 0.5 in the
Ridge Regression netmats option in FSLNets).
27 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets.

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=9028
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets


Fig. 9. Histogram of WM intensities for a typical subject, showing that use of the bias field estimated from the T1 image can be applied to the T2 FLAIR image with similar improvement in
IQR range to the one obtained in T1. Also, the histogram of this method is not very different to the one obtained by applying FAST directly to T2 FLAIR. A: T1. B: T2 FLAIR. C: Distribution
of WM intensity Inter Quartile Ranges (IQRs) using different normalization methods in 78 subjects.
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Table 2
Descriptive statistics of WM intensity Inter Quartile Ranges (IQRs) using 3 normalisation
methods (78 subjects).

Normalisation method IQR Typical
Subject

Mean
IQR

Median
IQR

Std
IQR

T1 not normalised 0.3274 0.3232 0.3191 0.0418
T1 normalised by scanner 0.0797 0.0893 0.0872 0.0086
T1 normalised by scanner þ FAST 0.0508 0.0550 0.0535 0.0058
T2 FLAIR not normalised 0.3106 0.3181 0.3163 0.0365
T2 FLAIR normalised by scanner 0.1429 0.1386 0.1356 0.0181
T2 FLAIR normalised by
scanner þ FAST from T1

0.1116 0.1162 0.1138 0.0136

T2 FLAIR normalised by
scanner þ FAST from T2 FLAIR

0.1154 0.1144 0.1123 0.0137
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Netmat values were transformed from Pearson correlation scores (r-
values) into z-statistics, including empirical correction for temporal
autocorrelation. Group-average netmats are also available online.

As the matrices are symmetric, only values above the diagonal are
kept, and unwrapped (taken column-wise) into a single row of Dg x (Dg-
1)/2 values per subject. This results in one “compound” IDP (containing
all network matrix values for a given subject) for each original dimen-
sionality (D ¼ 25 and 100) and for each network matrix estimation
method (full correlation and partial correlation).
Fig. 10. Flowchart for the swMRI processing pipeline.

28 Both mixed-effects and fixed-effects generate huge z-statistics with this many subjects,
so we are choosing here to simply work with the “average” activation given by using fixed-
Task fMRI pipeline

The same preprocessing and registration was applied as for the rfMRI
described above, except that spatial smoothing (using a Gaussian kernel
of FWHM 5 mm) was applied before the intensity normalisation, and no
ICA þ FIX artefact removal was performed, both decisions being largely
driven by the shorter timeseries in the tfMRI (than the rfMRI) and
because of the greater general reliance in tfMRI analysis on voxelwise
timeseries modelling (as opposed to multivariate spatiotemporal ana-
lyses common in resting-state fMRI).

Pre-processing and task-induced activation modelling was carried out
using FEAT (FMRI Expert Analysis Tool); time-series statistical analysis
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was carried out using FILM with local autocorrelation correction Wool-
rich et al. (2001). The timings of the blocks of the two task conditions
(shapes and faces) are defined in 2 text files. 5 activation contrasts were
defined (Shapes, Faces, Shapes þ Faces, Shapes-Faces, Faces-Shapes),
and an F-contrast also applied across Shapes and Faces.

The 3 contrasts of most interest are: 1 (Shapes), 2 (Faces) and 5
(Faces-Shapes), with the last of those being of particular interest with
respect to amygdala activation. Group-average activation maps were
derived from analysis across all subjects, and used to define ROIs for
generating tfMRI IDPs. Four ROIs were derived; 1 (Shapes group-level
fixed-effect z-statistic, thresholded at Z > 12028); 2 (Faces group-level
fixed-effect z-statistic, thresholded at Z > 120); 5 (Faces-Shapes group-
level fixed-effect z-statistic, thresholded at Z > 120); 5a (Faces-Shapes
group-level fixed-effect z-statistic, thresholded at Z > 120, and further
masked by an amygdala-specific mask). The group-average activation
maps and ROIs are available online in the UK Biobank showcase
mentioned above.

The Featquery tool was used to extract summary statistics for these 4
contrast/mask combinations, for both activation effect size (expressed as
a % signal change relative to the overall-image-mean baseline level) and
statistical effect size (z-statistic), with each of these summarised across
the relevant ROI in two ways - median across ROI voxels and 90th
percentile across ROI voxels.
Display of the task video and logging of participant responses is
carried out by ePrime software, which provides several response log files
from each subject. These are not used in the above analyses (as the
timings of the task blocks are fixed and already known, and the cor-
rectness of subject responses are not used in the above analyses), but are
available in the UK Biobank database.
effects.



Fig. 11. Flowchart for the fieldmap generation pipeline.
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Automated Quality Control

We have developed an automated Quality Control tool to identify
images with problems either in their acquisition or in later processing
steps. This uses machine learning methods with supervised learning. We
first categorise the different problems that we may find in the images and
manually classify many datasets accordingly. We then generate a set of
QC features aiming to characterise those images. Finally, we feed that
information into a supervised learning classifier. With this approach we
aim to have a classifier capable of detecting problematic images with
acceptable accuracy. To date we have concentrated just on automated QC
for the T1 images, as the entire processing pipeline depends on having a
usable T1.

QC categories

Table 3 shows the categories for QC that were developed to classify
issues that may be found in T1 images. This list was compiled as new
issues were identified (through manual inspection) in the data, and is not
intended to cover every possible problem in any MR image, but rather to
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cover all of the problems that we have observed to date in the Biobank
data set. For this study, we define a “problem” as any issue that makes
subsequent processing steps impossible or unreliable, while an “imper-
fection” is an issue which must be noted, but does not necessarily impede
further processing. Some issues (e.g., bad head motion) appear in both
categories (“problem” and the less serious “imperfection”), where the
distinction is to be made on the basis of the seriousness of the image
artefacts. Table S2 in the supplementary material shows a similar table
for all modalities. Fig. S9 in the supplementary material shows the dif-
ference in the IDPs between “problematic”, “imperfect” and “good”
datasets. Fig. S12 in the supplementary material shows some examples of
some datasets from these categories.

QC features

We developed a set of 190 features (for use in the trained machine
learning automated classifier) to find issues in T1 structural images. A
more detailed description can be found in Section S4 of the supplemen-
tary material. The features that were developed are focused on
characterizing:



Fig. 12. Flowchart for the dMRI processing pipeline.
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� Discrepancy between the T1 (after alignment into MNI standard
space) and the MNI template.

� Signal-to-noise ratio.
� Total brain volume and segmented tissue volumes.
� Subcortical structures, volumes.
� Asymmetry between the subcortical structures.
� Global brain asymmetry.
� Normalised intensity of the subcortical structures.
� Volume of grey matter (Using a different brain extraction method)
outside the brain mask.

� Amount of segmented tissue in the border of the brain mask.
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� “Volume” of the edges (derived using Canny filter and excluding
certain borders) of each segmented tissue.

� Comparison with different brain extraction tools.
� Intensity in the internal and external border of the brain mask.
� Volume of holes in grey and white matter.
� Magnitude of warp field from the non-linear registration to the MNI
template.

� Volume of White Matter Hyperintensities.
� Distance (per lobe) between the border of the brain mask and the
border of the MNI template.



Fig. 13. Comparison of 14 different alignment methods of FA to MNI space. We used the same methodology as de Groot et al. (2013). For each registration method, we used its estimated
warp field in autoPtx to transform 27 automatically defined tracts into standard space; as discussed in de Groot et al. (2013), judging cross-subject alignment through similarity of tracts can
be considered a test of alignment success that is reasonably independent of the images and cost functions used to drive the alignments. Each box plot shows the average cross-correlation
over the 27 tracts for the 4950 combinations of pairs of 100 subjects. Figs. S13–S16 the supplementary material show this same plot, at the tract level.
1: FA linearly aligned to T1 þ T1 non-linearly aligned to MNI.
2: FA linearly aligned to T1 þ T1’s WM non-linearly aligned to MNI’s WM.
3: FA linearly aligned to T1 þ T1’s GM non-linearly aligned to MNI’s GM.
4: Corrected b ¼ 0 linearly aligned (BBR) to T1 þ T1 non-linearly aligned to MNI.
5: Corrected b ¼ 0 linearly aligned (BBR) to T1 þ T1’s WM non-linearly aligned to MNI’s WM.
6: Corrected b ¼ 0 linearly aligned (BBR) to T1 þ T1’s GM non-linearly aligned to MNI’s GM.
7: FA non-linearly aligned to T1 þ T1 non-linearly aligned to MNI.
8: FA non-linearly aligned to T1 þ T1’s WM non-linearly aligned to MNI’s WM.
9: FA non-linearly aligned to T1 þ T1’s GM non-linearly aligned to MNI’s GM.
10: FA linearly aligned (BBR) to T1 þ T1 non-linearly aligned to MNI.
11: FA linearly aligned (BBR) to T1 þ T1’s WM non-linearly aligned to MNI’s WM.
12: FA linearly aligned (BBR) to T1 þ T1’s GM non-linearly aligned to MNI’s GM.
13: FA non-linearly aligned to FA FMRIB58 atlas via an FA study-specific template (created by aligning all the FAs to FA FMRIB58 and then averaging).
14: FA non-linearly aligned to FA FMRIB58 atlas using high-dimensional FNIRT-based warping.
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Automated QC tool

We used the Weka machine learning toolbox (Hall et al., 2009), with
3 separate classifiers' outputs fused together. The ensemble classifier
used for the fusion was a voting system that combines the a posteriori
probabilities of the different classifiers using the ‘Minimum Probability’
combination rule (Kuncheva, 2004; Kittler et al., 1998). This rule was
chosen29 among 5 different options based on our goal of reducing the
FNR (False Negative Rate: rate of missing “problems”) as much as
possible without increasing the FPR (False Positive Rate: rate of
29 By testing on a reduced version of the final training set.
30 As all the cases flagged as “problems” would need a posterior visual inspection.
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incorrectly flagging “good” cases as “problems”) to impractical levels30.
The three combined classifiers were:

� Bayes Network classifier (Bouckaert, 2008): This classifier first finds
the Bayesian network (as a directed acyclic causal graph) that best fits
the data by using the training dataset to create the network structure
(running conditional independence tests to find the causal structure
of the network, using local score metrics on quality of nodes/edges,
and performing global score metrics by estimating classification ac-
curacy) and then assigning probabilities to each node using the dis-
tribution of the same training dataset; the inference is later performed
by using the maximum a posteriori decision rule for the node of in-
terest (i.e., the variable being predicted) for a new instance (a vector
of features).



Fig. 14. Degree of correlation and similarity of tracts after reducing the number of seeds per voxel in probtrackx. A: Average over 27 tracts and 5 subjects of the correlation between 2
different runs of probtrackx; this is reduced when we reduce the number of seeds per voxel. X axis is the reduction in the number of seeds with respect to the original AutoPtx configuration.
Y axis is the average correlation of the pairs of tracts. When we reach 0.1� seeds per voxel, the median correlation drops below 0.999 for some tracts. Right plot is a zoom of left plot. B:
Worst instance (in terms of correlation) of probtrackx in the forceps major tract with a factor of 0.1� seeds per voxel. The results remain robust even using a reduced number of seeds per
voxel. Correlation between the maps for these two runs was 0.929. Tracts were binarised for visualization using a threshold of 10% of the 99th percentile. The overlap of the 2 runs is
shown in blue. The difference is shown in red. FMRIB58 FA atlas is shown in the background. C: Same tract (forceps major) from the same subject with a factor of 0.3� seeds per voxel. The
results improve by increasing the number of seeds per voxel. Correlation between the maps for these two runs was 0.985. FMRIB58 FA atlas is shown in the background. The final
decision was to use 0.3x.
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� Naive Bayes classifier (John and Langley, 1995): This classifier is a
simpler version of the above one in the sense that it assumes strong
(naive) independence between the features (in the sense that there is
no correlation between the different features) and therefore does not
need to generate a graph structure. The maximum a posteriori deci-
sion rule for the parent node is also used here for the inference.

� MetaCost classifier (Domingos, 1999): MetaCost is a meta-classifier
that allows the use of different costs for penalising (e.g.) FPR vs
FNR. for a certain base classifier. In our case, as the primary goal was
418
to try to minimise the False Negatives (subjects that are actually un-
usable but were classified as usable) we created a cost matrix that
penalised greatly this kind of misclassification. This cost matrix was
calculated using a grid search of different parameters and can be seen
in Table S1 of the supplementary material. The base classifier was
another Bayes Network classifier.

Combining classifiers usually tries to compensate for possible over-
fitting (or lack of fitting) of individual classifiers. The reason for choosing



Fig. 15. Flowchart for the fMRi processing pipeline.

31 Age, age2, sex, age � sex, age2 � sex, average head motion during tfMRI, average head
motion during rfMRI and head size.
32 The proportion of the classes to classify is maintained in the folds, which is important
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this combination of algorithms was that they allowed us to weigh the
importance of type I vs type II errors, besides exhibiting a satisfactory
accuracy in earlier stages of the classification (again, with a reduced
version of the current training set).

Results

UK Biobank as a resource

So far, the pipeline has been applied to 10,129 subjects. In November
2015, there was a public release of the imaging datasets and IDPs from
the first 5822 subjects (Miller et al., 2016); a new set of 4282 subjects has
recently been processed and publicly released in February 2017 (Bio-
bank, 2017). The number of datasets from every modality that were
deemed suitable for processing are listed in Table 4.

Expanding on the analyses made in Miller et al. (2016), we have run
~8 million univariate correlations between IDPs and non-brain-imaging
variables, to illustrate the statistical power of this resource. This analysis
(see Fig. 17A) not only shows results largely compatible with the ones
presented in Miller et al. (2016), but also that correlations with a P value
smaller than 10�100 are possible due to the large number of subjects.
Fig. 17B demonstrates more directly that the new set of 4282 subjects
show very similar characteristics to the first set of 5822 subjects.

Fig. 18A shows a very simple example of the biological relevance of
IDPs. In this case, the volume of White Matter Hyperintensities (WMHs)
can be used to explore the relationship between age and WMHs. Fig. 18B
shows an example of the WMH segmentation using BIANCA. This metric
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also correlates with known health biomarkers, such as systolic and dia-
stolic blood pressure. The positive correlation between total WMH vol-
ume and systolic blood pressure (after correcting for the usual
confounds31) has a Bonferroni-corrected significance of P<10�20,
r ¼ 0:13, while the correlation with diastolic blood pressure has a
Bonferroni-corrected significance of P<10�15, r ¼ 0:11. These signifi-
cant associations are consistent with the literature (Liao et al., 1996;
Gunstad et al., 2005).

Performance of the automated QC tool

In order to validate our QC system, image quality for 5816 subjects
was manually assessed. Problems were identified in 103 subjects. Table 5
shows the performance of the classifier in a stratified32 10-fold cross
validation.

The majority of problems found in the processing are related to non-
linear registration, which likely therefore also affect the brain extraction.
The 103 subjects were deemed unusable due to irreconcilable problems
with non-linear registration, in many cases caused by poor data quality
(for example, where the T1 is corrupted by bad subject head motion, as
can be seen in Fig. S12, panel 4 in the supplementary material). The QC
system we have developed aims to detect problems like this.
in unbalanced situations.



Fig. 16. Flowchart for the FEAT part of the pipeline.

Table 3
Classification of problems/imperfections for T1.

Problem code Imperfection code

0 ¼ No problem
1 ¼ Multiple/Unknown problems
2 ¼ Missing or incomplete modality
3 ¼ Bad FOV
4 ¼ Bad registration: Bad head motion/Noise
5 ¼ Bad registration: Structurally atypical:
Important lesions
6 ¼ Bad registration: Structurally atypical: Big
Ventricles
7 ¼ Bad registration: General Registration failure
8 ¼ Bad registration: Bad brain mask on the top
9 ¼ Bad registration: Bad brain mask on the
temporal lobe
10¼ Bad registration: Brain mask out of the brain

1 ¼ Multiple/Unknown
imperfections
2 ¼ Bad head movement
3 ¼ Movement-related ringing/
blurring
4 ¼ Bias field/contrast problem
5 ¼ Structurally atypical
6 ¼ Problem on top (brain mask)
7 ¼ Problem on temp. lobe
(brain mask)

Incomplete ¼ The expected number of images or any of the dimensions (including the
temporal dimension) is incorrect.
Structurally atypical: The subject is anatomically atypical. This may be due to a pathology
although there was no clinical assessment to confirm this. The problem may be so severe
that registration is strongly affected (and thus, the image is deemed unusable for the
automated processing pipeline).

Table 4
UK Biobank usable modalities in acquisition order. Total subjects: 10,129.

Modality Available Usable

T1 10,102 9933 (98.06%)
rfMRI 10,034 9558 (94.36%)
tfMRI 9620 9182 (90.65%)
T2 FLAIR 9756 9045 (89.30%)
dMRI 9566 8839 (87.26%)
swMRI 9396 9153 (90.36%)
All 8996 8211 (81.06%)

Very early improvements in the dMRI and T2 FLAIR protocols were found to be valuable,
resulting in large enough data improvements to outweigh the priority of keeping the
protocol fixed (and taking into account the relatively small numbers of datasets affected).
This change was made at the beginning of protocol.
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The number of false negatives (that is, subjects that are actually un-
usable but were classified as usable), is low (9 subjects, i.e. 0.15%),
though in future work we will aim to reduce this even further. Choosing
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parameters/thresholds to drive this number of false negatives so low
comes at the cost of a much higher false positive rate (912/5713¼ 16%).
Nevertheless, these results guarantee a considerable reduction in the
number of subjects in future data sets that will then require manual QC
assessment (i.e., manually checking 1006 subjects instead of 5816).

This automated QC tool was used on the second release of 4282
subjects, significantly reducing the manual checking to approximately
750 subjects, resulting in the detection of 71 unusable datasets.



Fig. 17. A: Manhattan plot summarising the significance of 8 million univariate association tests between IDPs and non-brain-imaging variables in the UK Biobank database from 10,000
subjects. For each non-imaging variable (i.e., each column in the plot), only the strongest association is plotted for each class of IDP, for clarity. Plotted p-values are not corrected for
multiple comparisons, but the thresholds for both false-discovery-rate and Bonferroni correction are shown as dotted lines. B: High reproducibility (r ¼ 0.62) of these associations in the
original vs. new groups of subjects; each point is a given IDP - non-brain-variable pairing. The small number of points along the y ¼ 0 axis relate to a non-imaging measure which (as a
result of investigating these points in this plot) was found to be badly drifting over time.
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Discussion and future work

The UK Biobank brain imaging data and IDPs can be used to create
models that describe the population, and in combination with the
healthcare outcomes (which will feed into UK Biobank over coming
years), be able to identify risk factors and biomarkers for early diagnosis
of many diseases. In this paper we provided the first detailed description
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of the core processing pipeline being developed to process the raw im-
aging data and generate the IDPs. We also described several in-
vestigations necessary to feed into decisions made during the
development of the acquisition protocol and the analysis pipeline.

The huge number of subjects makes the need for a completely auto-
mated tool evident, including the detection of inadequate datasets or
failures in processing. For this reason, the development of an adequate



Fig. 18. A: Relationship between age and total volume of white matter hyperintensities. Red cross shows the subject on the right. B: WMH segmentation using BIANCA on one example
dataset Age: 68.5 years. Total WMH volume: 5049 mm3.

Table 5
Automated QC tool performance for T1 images.

Positive Negative

Classified Positive TP: 94 FP: 912 P. Precision: 9%
Classified Negative FN: 9 TN: 4801 N. Precision: 99.8%

Sensitivity: 91% Specificity: 84%

Positive ¼ Unusable datasets.
Negative ¼ Usable datasets.
Datasets flagged for manual review: 1006/5816 (17.29%).
Unusable datasets missed: 9/5816 (0.15%).
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automated QC tool is an absolute necessity, and we have presented here
an approach for automated QC of T1 data.

The study of possible drifts in imaging data over time will be
important, and will be the subject of a future paper. We will investigate
the possible effects of minor scanner software upgrades and minor pro-
tocol changes, as well as inter-site imaging consistency. We will also
investigate the extent to which simple adjustment for such drifts may
be effective.

A long-term future challenges will be data analysis and population
modelling. The application of new unsupervised learning methods for
finding new data-driven IDPs or QC metrics is potentially interesting
(Duff et al., 2015). This could also evolve to consider health outcomes as
noisy/weak labels (Fr�enay and Verleysen, 2014) in such a way that the
learning process considers their uncertainty and reliability.

Future versions of the processing pipeline will incorporate new
functionalities from other sources into the pipeline (such as the HCP,
Glasser et al. (2013)). This will include surface generation via Freesurfer
(Dale et al., 1999), adding morphometric measures such as cortical
thickness or cortical surface area, mapping resting fMRI and dMRI onto
the cortical surface, and using Multimodal Surface Matching (Robinson
et al., 2014) for surface-based registration. As the resolution, quality and
quantity (e.g., number of fMRI timepoints) in UK Biobank data cannot
match that in the HCP (with its 4 h of scanning per subject) each of these
steps will involve careful evaluation and potential reworking in the
context of our data. For example, projection of the lower-resolution fMRI
data onto the cortical surface vertices, including the HCP approach of
removing “noise” voxels, will need careful optimisation.

Another new path to explore would be evaluating how using different
modalities for some processing steps may improve some results. These
operations may include: using T1 þ FLAIR versus T1 in Freesurfer; using
T1 þ FLAIR versus T1 in FAST; using T1 þ FLAIR þ dMRI versus
T1 þ FLAIR in BIANCA.
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The development of the QC tool allowed us to find problematic steps
in the processing pipeline (i.e., non-linear registration to the MNI tem-
plate). Even though the number of subjects with this problem is not large
(103/5816 ¼ 1.8%, compared to the 2–13% failure rate for the acqui-
sitions), and we can detect them fairly consistently, improving this step
will be a future line of work. Possible improvements may involve a
combination of the following:

� Generating a study-specific T1 template and registering subject im-
ages to it instead of to the MNI template.

� Improving brain extraction and using the resulting brain mask to
guide registration. Possibilities include running FNIRT with much
lower degrees of freedom to initialise brain extraction, and/or
developing a classifier that works directly on each voxel to classify
them as brain/non-brain. See the Appendix for more details on the
brain extraction method we have used to date.

� Combining T1þdMRI (and possibly more modalities) in the regis-
tration in a more integrated manner; for example, taking advantage of
the richer signal within white matter available from the diffusion
imaging.

A possible way to improve QC accuracy would be in the development
of better features to drive the classification. These new features may be
created by finding new heuristics that better describe the problems or by
using unsupervised machine learning techniques to model the data, e.g.,
using ICA-like techniques (Hyv€arinen, 1999; Beckmann and
Smith, 2004).

In addition, we need the development of metrics to describe the
discrepancy between the T1 image (for a given subject) and each of the
other modalities (for that same subject), after linear alignment of the
other modalities to the T1. Therefore, we are planning to extend the
automated QC system to reliably find problems in the acquisition and
processing steps for all modalities (not just T1). Again, ICA-like tech-
niques may be useful here, as well as methods based on the Hidden
Markov Model (Baker et al., 2014; Vidaurre et al., 2016) to interrogate
the network dynamics.

Having a fixed acquisition protocol and a core processing pipeline in
UK Biobank is a key feature of this project (Gronenschild et al., 2012;
Glatard et al., 2015). Providing a core pipeline that generates both pro-
cessed data (e.g., with images artefact-cleaned and aligned across mo-
dalities and subjects) as well as IDPs will hopefully be valuable to both
imaging researchers and non-imaging experts (healthcare researchers,
epidemiologists, etc.). Having said that, the intention is not to discourage
other imaging researchers from developing their own image processing
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and IDP generation approaches and software; indeed, UK Biobank en-
courages all researchers to feed quantitative research outputs back into
the central database. Considering the invaluable connection of the out-
puts from processing the brain imaging data with the rest of UK Biobank
resources and NHS records, the possibilities for future research
are massive.
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