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Abstract

Background: Natural food products have been used for combating human diseases for thousands of years.
Naturally occurring flavonoids including flavones, flavonols, flavanones, flavonols, isoflavones and anthocyanidins
have been proposed as effective supplements for management and prevention of diabetes and its long-term
complications based on in vitro and animal models.

Aim: To summarize the roles of dietary flavonoids in diabetes management and their molecular mechanisms.

Findings: Tremendous studies have found that flavonoids originated from foods could improve glucose
metabolism, lipid profile, regulating the hormones and enzymes in human body, further protecting human being
from diseases like obesity, diabetes and their complications.

Conclusion: In the current review, we summarize recent progress in understanding the biological action,
mechanism and therapeutic potential of the dietary flavonoids and its subsequent clinical outcomes in the field of
drug discovery in management of diabetes mellitus.
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Background
Type 2 diabetes mellitus (DM) is characterized by im-
paired insulin secretion, and increased insulin resistance
(or resistance to insulin mediated glucose disposal). DM
is possibly one of the world’s fast growing diseases [1]
and disabling micro and macrovascular complications
[2]. It has been estimated that nearly 592 million adults
become diabetic patients by the year 2035 due to aging,
high population growth size, increased urbanization,
high prevalence of obesity, rise in living standards and
the spread of calorie rich, fatty and fast foods [3]. Al-
though many drugs are commercially available for treat-
ing the diseases, many of them are out of reach for a
significant proportion of the population and are beset
with some adverse effects [4]. The use of medicinal
plants and their phytochemicals for treating diabetes is
not just a search for safer alternatives to pharmaceuti-
cals, which transiently lower the blood glucose, prevent-
ing heart disease and high blood pressure, and also
enhancing the antioxidant system, insulin action and

secretion [5]. Phyto-constituents have always guided the
search for clinical trials, drug discovery and develop-
ment. Hence, there is search for dietary constituents as
well as natural antioxidants that can regulate blood glu-
cose levels.
In the present review the connection between flavo-

noids and DM is focused on the basis of recent studies.
The anti-diabetic activities of the flavonoids found in
dietary plants, fruits, and summarize the underlying mo-
lecular signaling of the dietary flavonoids using in vitro
and in vivo models to clarify their anti-diabetic effects.

Molecular mechanisms of insulin resistance
The molecular levels, the mechanisms underlying insulin
resistance are being explored. Several mechanisms includ-
ing abnormal insulin production, mutations in insulin re-
ceptor (IR) and its substrates, and insulin antagonists have
been proposed, but it is now clearly known that defects in
post-receptor signaling are the major cause of insulin re-
sistance in target tissues [6]. Reduced expression, dimin-
ished tyrosine phosphorylation, or increased degradation
of early insulin signaling molecules have been implicated.
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Serine/threonine phosphorylation of IRS proteins can
inhibit their activity and block downstream signaling.
Various kinases including stress - activated protein
kinase, c-Jun N-terminal kinase (JNK), inhibitor of nu-
clear factor kappa B (NF-κB) kinase (IκB), and protein
kinase C (PKC) can phosphorylate IRS-1 and 2 at spe-
cific serine and threonine residues, leading to inhibition
of insulin signaling [7]. Another underlying mechanism
is the induction of inhibitory factors such as suppressors
of cytokine signaling (SOCS-1 and 3). SOCS proteins
block insulin signaling via competition with IRS-1 for
association with the IR and by augmentation of proteo-
somal degradation of IRS-1 [8].
Increased activity of phosphatases which dephosphory-

late intermediate signaling molecules can also inhibit the
insulin signal pathway [9]. Several phosphatases have
been implicated as inhibitors of insulin action. Protein
tyrosine phosphatases (eg PTP1B) have negative effects
on insulin signaling and are suggested to be major regula-
tors of insulin signaling [10]. Other phosphatases such as
phosphatase and tensin homologue (PTEN) which inacti-
vates PI3-K and SH2-containing inositol 5′ phosphatase-2
[SHIP 2] have been shown to have a negative role on insu-
lin signaling [11, 12].

Regulation of lipogenesis in adipocytes
Adipocyte transcription factors such as peroxisome
proliferator-activated receptor gamma (PPARγ), sterol
regulatory element-binding protein (SREBP-1c), adipo-
kines like resistin, play crucial roles in adipocyte differ-
entiation, adipogenesis, and accumulation of cellular
lipid droplets.
PPARγ, a nuclear hormone receptor, is mainly expressed

in adipose tissue and to a lesser extent in colon, immune
cells and retina [13]. It plays a critical role in peripheral
glucose homeostasis and energy metabolism and it also
has been implicated in modulating adipogenesis and insu-
lin sensitivity in vivo. PPARγ, induces glucose and fatty
acid uptake by directly or indirectly enhancing the tran-
scription of genes encoding proteins such as, fatty acid
binding proteins (aP2), GLUT4 [14], fatty acid transport
proteins, and acyl-CoA synthetase. Recent studies indicate
that partial PPARγ antagonism by various flavonoids
may be beneficial in improving insulin sensitivity and
may also inhibit adipocyte differentiation and lipid ac-
cumulation [15].
Adiponectin is supposed to improve primarily glucose

and lipid metabolism. Adiponectin also inhibits the ex-
pression of several pro-inflammatory cytokines [16], in-
cluding tumor necrosis factor. Among other factors
released within adipose tissue, tumor necrosis factor
alpha (TNFα) promotes lipolysis and increases (free fatty
acids) FFAs; both TNFα and interleukin 6 (IL-6) are re-
lated to mitochondrial dysfunction. Increased expression

of TNFα and relatively low levels of adiponectin pro-
mote lipolysis and FFA release.
Leptin is an adipocyte-secreted hormone whose

absence leads to dramatic metabolic derangements.
Leptin regulates food intake at the level of hypothal-
amus and stimulates FFA oxidation in peripheral tis-
sues to avoid lipid deposition. Insulin resistance in
animal results in hyperleptinemia induces leptin re-
sistance and causes lipotoxicity [17]. Leptin resistance
causes a rise in FFA release to circulation followed
by triglycerides (TG) synthesis (fatty liver) and de-
creased FFA oxidation in liver [18].

Flavonoids and their effects on diabetes
Flavonoids represent a large class of at least 6000 phen-
olic compounds found in fruits, vegetables, nuts, grain
seeds, cocoa, chocolate, tea, soy, red wine, herbs and
beverage products. Structurally, flavonoids consist of
two aromatic rings (A and B rings) linked by a 3-carbon
chain that forms an oxygenated heterocyclic ring (C
ring). There are six subclasses of flavonoids including
flavones, flavonols, flavanones, flavonols, isoflavones and
anthocyanidins based on differences in generic structure
of the C ring, functional groups on the rings and the
position at which the B ring is attached to the C ring.
Within each subclass, individual compounds are charac-
terized by specific hydroxylation and conjugation pat-
terns. Flavonoids that have the ability to scavenge free
radicals and chelate metals [19]. Given the hypothesized
relation between diabetes and inflammation [20, 21] and
the potential for flavonoids to protect the body against
free radicals and other pro-oxidative compounds [22, 23],
it is biologically plausible that consumption of flavonoids
or flavonoid-rich foods may reduce the risk of diabetes
[24, 25]. New concepts have appeared with this trend,
such as nutraceuticals, nutritional therapy, phytonutrients
and phytotherapy. This functional foods and phytomedi-
cines play positive roles in maintaining blood glucose
levels, glucose uptake and insulin secretion and modulat-
ing immune function to prevent specific DM [26, 27]. In
current years various approaches have been made to
utilize the flavonoids in vitro and in vivo models by in-
corporating few novel methods to improve its antidiabetic
activity. They are categorized in Table 1.

Diosmin
Diosmin was first isolated in 1925 from Scrophularia
nodosa L. Diosmin is a naturally occurring flavonoid
glycoside that can be isolated from various plant sources
or derived by dehydrogenation of the corresponding fla-
vanone glycoside hesperidin that is abundant in the peri-
carp of various citrus fruits [28]. Diosmin has been
shown to improve factors associated with diabetic com-
plications. Blood parameters of glycation and oxidative
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Table 1 Important anti-diabetic potential and the underlying mechanism of dietary flavonoids

Structure of flavonoid (s) Plants/Dietary source Specific mechanism of
action

Model References

Diosmin Scrophularia nodosa L.,
and citrus fruits

Stimulating the insulin
production from the
existing β-cells of
pancreas.

STZ-nicotinamide-
induced diabetic
rats.

Srinivasan and
Pari 2010, 2012,
2013 [30, 31, 33]

↓ Lipids profile, improving
lipid metabolizing enzymes,
antioxidant and
↓ lipid peroxidation.

↓ Blood glucose, lipid
peroxides, NO and ↑ body
weight.

STZ-induced
diabetic
neuropathy rats

Jain 2014 [32]

↓ Glycation. STZ-diabetic rats Vertommen 1994
[34]

Fisetin Strawberries, onion
and persimmon

Improved glucose
homeostasis.

STZ-diabetic rats Prasath 2014 [38]

↑ Glycolysis,
↓ gluconeogenesis.

STZ-diabetic rats Prasath and
Subramanian
2011, 2013
[39, 45]↓ Blood glucose, HbA1c,

NF-κB p65, IL-1β and nitric
oxide.

Suppress HATs,
particularly p300, leading
to deacetylation of the p65
subunit of NF-κB.

THP-1 cell line Kim 2012 [40]

Reduced cataract
formation.

STZ-diabetic
cataract in mice

Kan 2015 [41]

↑ HDL, ↓ LDL and VLDL. STZ-diabetic rats Prasath and
Subramanian
2014 [42]

Stimulate the NF-κB
pathway, downregulated
of adhesion molecules,
inhibition of monocyte-
endothelial adhesion.

Human umbilical
vein endothelial
cells and C57BL/6
mice

Kwak 2014 [43]

Improved glycemic and
antioxidant status.

STZ-diabetic rats. Prasath and
Subramanian
2013 [44]

↑ Mitochondrial function.

↓ Level methylglyoxal-
dependent protein
glycation.

C57BL/6-Ins2
Akita mice

Maher 2011 [46]

Morin Prunus dulcis (Mill.) D.A.
Webb., Chlorophora
tinctoria (L.) Gaud.,
Psidium guajava L., fruits
and wine

↑ Insulin sensitivity and
↓ oxidative stress.

HFD-STZ-induced
diabetic rats

Sendrayaperumal
2014 [49]

Inhibition of PTP1B, which
behaves as an activator
and sensitizer of the insulin
receptor stimulating the
metabolic pathways.

HepG2 cell line Paoli 2013 [52]

Preventing the destruction
of β-cells of the islets of
Langerhans.

STZ induced
diabetic rats

Vanitha 2014 [53]

Inhibition in ROS
generation, translocation
of apoptotic proteins,
up-regulation of
antioxidantgenes and
Bcl-2 gene expression.

Hepatocytes
cell line

Kapoor 2012 [54]
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Table 1 Important anti-diabetic potential and the underlying mechanism of dietary flavonoids (Continued)

Eriodictyol Eriodictyon californicum
(Hook. & Arn.) Torr,
Millettia duchesnei De
Wild., Eupatorium
arnottianum Griseb
and lemon

↑ Glucose uptake and
improve insulin resistance

HepG2 cell line Zhang 2012 [56]

↓ TNFα, ICAM-1, VEGF,
and eNOS.

STZ-induced
diabetic rats

Bucolo 2012 [57]

Hesperidin Orange citrus aurantium Down-regulates generation
of free radical, release
of cytokines (TNF- α and
IL-1β).

Neuropathy rats Visnagri 2014 [60]

Anti-angiogenic, anti-
inflammatory effects.

STZ-induced
diabetic rats.

Shi 2012 [62]

↓ Blood glucose by altering
the activity of glucose-
regulating enzymes.

STZ-induced type
1 diabetic rats

Akiyama
2010 [63]

Reduced oxidative stress,
apoptosis and improving
cardiac function via the
PPAR-γ pathway.

STZ-isoproternol
induced diabetic
rats

Yo 2014 [64]

↓ Inflammatory cytokies HFD-STZ-induced
type 2 diabetic
rats.

Mahmoud
2012 [65]

↓ HbA1c, glucose, CES LDL,
TC, TG levels, systolic and
diastolic blood pressure.

STZ-nicotinamide
induced
myocardial
infarction in
diabetes in rats

Kakadiya
2010 [66]

Regulation of glucose and
lipid metabolism.

Goto-Kakizaki
type 2 diabetes
rats

Akiyama 2009
[67]

Regulation of glycolysis,
gluconeogenesis, hepatic
glycogen stores.

C57BL/KsJ-db/db
mice

Jung 2014 [68]

↓ Lipid peroxidation, ↑
GSH, GR and GST

STZ-induced
diabetes rats

Ashafaq 2014 [69]

Naringenin Cochlospermum
vitifolium (Willd.) Spreng.,
grapefruits, oranges and
tomatoes

Inhibition of intestinal
α-glucosidase activity.

High HFD-STZ
induced diabetic
rats.

Priscilla 2014 [73]

Reduced oxidative damage STZ-induced
diabetes rats

Fallahi 2012 [75]

↓ Cholesterol and
cholesterol ester synthesis.

High-fat induced
diabetic mice

Mulvihill
2009 [80]

Improved overall insulin
sensitivity and glucose
tolerance.

Suppressed monocyte
chemoattractant protein-1
and inhibition of c-Jun
NH2-terminal kinase
pathway.

HFD-induced
obesity

Yoshida 2014 [82]

↓ Hyperglycemia and ↑
antioxidant enzyme (SOD).

STZ-induced
hyperalgesia and
allodynia in rats

Hasanein
2014 [83]
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Table 1 Important anti-diabetic potential and the underlying mechanism of dietary flavonoids (Continued)

Stimulated insulin secretion INS-1E cells Bhattacharya
2014 [84]

Decreased fasting
glucose and inflammatory
cytokines.

HFD-fed mice Yoshida 2013 [85]

↓ Oxidative stress. STZ-induced
diabetes rats

Rahigude
2012 [86]

Apigenin Hypericum perforatum L.,
Matricaria chamomilla L.,
parsley, onions, oranges,
tea, chamomile and
wheat sprouts.

↓ Glucose and G-6-Pase
activity and ↑ antioxidant
enzymes.

Alloxan-induced
diabetic mice

Panda and Kar
2007 [88]

↓ Apoptosis, ↑ antioxidant
and mitochondrial
protection.

HIT-T15
pancreatic β-cells

Suh 2012 [90]

Inhibition TNF-α and IL-1β-
induced activation of NF-
κB.

Human THP-1
monotypic cells

Zhang 2014 [92]

Inhibition the expression of
VCAM1, IKKα and
IKKepsilon/IKKi.

Human
endothelial cells

Yamagata
2010 [93]

Insulin-secretagogue. Male Wistar rats Cazarolli
2009 [94]

Baicalein Scutellaria baicalensis
Georgi and Scutellaria
lateriflora L.

Improved glucose
tolerance, and islet β-cell
survival and mass.

HFD-induced
obese mice.

Fu 2014 [97]

Suppressed the activation
of NF-κB, ↓ iNOS, TGF-β1,
ALP, SGOT and SGPT.

HFD-STZ-induced
type 2 diabetic
Wistar rats

Ahad 2014 [99]

Reduced AGEs and TNF-α
level, decreased NF-κB
activation.

STZ-induced
diabetic rats

El-Bassossy
2014 [100]

Improvement of insulin
resistance, protective by
phosphorylating AMPKα
AND INS-1.

HFD-induced
mice

Pu 2012 [101]

Restored the impairment
of PI3K/Akt pathway and ↓
GSK3β.

STZ-induced
diabetic Wistar
rats

Qi 2015 [102]

Chrysin Honey, Passiflora caerulea
(L.), Pelargonium peltatum
(L.), Tilia tomentosa
Moench, Pelargonium
quercifolium (L.f.) L’Hér.
and Pelargonium crispum
(Berg.) L’Her

Inhibition of TNF-α
pathway, leads to the
decreased secretion of pro-
inflammatory cytokines.

HFD-STZ-induced
type 2 diabetic
Wistar albino rats

Ahad 2014 [107]

Downregulated the
increased expression of
TGF-β, fibronectin and
collagen-IV proteins.

↓ Blood glucose, oxidative
stress, improved learning
and memory function.

STZ-induced
diabetic rats

Li 2014 [108]

Luteolin Celery, parsley, broccoli,
onion leaves, carrots,
peppers, cabbages and
apple skins.

inhibition of the NF-κB
pathway.

HFD-induced in
obesity mice

Liu 2014 [116]

Increased HO-1 expression
and elevated antioxidants.

STZ-Induced
Diabetic Rats.

Wang 2011 [117]

Decreased activity of NF-κB
was implicated in inhibition
by luteolin of increased
iNOS.

Min6 insulin
secreting cell
line

Ding 2014 [119]

Reduced CREB-binding
protein/p300 gene
expression.

Human
monocytic
(THP-1) cell line

Kim 2014 [120]
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Table 1 Important anti-diabetic potential and the underlying mechanism of dietary flavonoids (Continued)

Suppression of hepatic
lipogenesis and increased
in uptake of FFAs.

HFD-induced
C57BL/6 J mice

Kwon 2015 [121]

Up-regulated the
myocardial eNOS pathway
and downstream effects
include the enhancement
of MnSOD and inhibition
of mPTP.

STZ/L-NAME-
induced diabetes
rats

Yang 2015 [122]

Reduced mast cell and
macrophage infiltrations
and inflammatory cytokine
levels.

Diet-induced
obesity

Xu 2014 [123]

Tangeretin Citrus fruit rinds,
mandarin orange
and Poncirus trifoliate
(L.) Raf.

Stimulated AMPK activation
may be associated with
anti-inflammatory.

HFD-induced
obese mice

Kim 2012 [124]

↑ Insulin, glycogen. STZ-induced
diabetic rats

Sundaram
2014 [125]

Wogonin Scutellaria baicalensis
Gerogi

Inhibition of p38 MAPK
by its specific inhibitor
SB203580 increasing PPARα
activity and decreasing
OPN expression.

STZ induced type
1 diabetes

Zhang 2015 [130]

Anti-adipogenic effect by
acting as a PPARα agonist,
which could prevent
weight gain.

C57BLKS/J-
Leprdb/Leprdb
mice and 3 T3-L1
cells

Bak 2014 [128]

Isorhamnetin Hippophae rhamnoides
L., Oenanthe javanica
(Blume) DC, Ginkgo
biloba L., and Opuntia
ficus-indica (L.) Mill.

Insulin secretion, associated
with increased GLUT2 and
PPARγ.

HFD-induced
C57BL/6 mice

Rodríguez-
Rodríguez
2015 [133]

Inhibition adipogenesis
through downregulation
of PPARγ and C/EBPα.

3 T3-L1 cells Lee 2009 [134]

Kaempferol Tea, cruciferous
vegetables, grapefruit,
Gingko biloba L., and
some edible berrie.

Inhibited cellular apoptosis,
and reduced caspase-3
activity in beta-cells.

INS-1E β-cells Zhang 2011 [139]

↑ Antioxidant and ↓
decreased of lipid
peroxidation markers.

STZ-induced
diabetic rats

Al-Numair
2015 [141]

↓ PPAR-γ and SREBP-1c
expression.

HFD-obese mice Zang 2015 [143]

Restore deranged activity
of membrane-bound
ATPases.

STZ-induced
diabetes

Al-Numair
2015 [144]

Enhancing β-cell survival,
improved cAMP signaling.

INS-1E cells. Zhang 2013 [145]

↑ GLUT 4, AMPK HFD-induced
diabetic mice

Alkhalidy
2015 [146]
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Table 1 Important anti-diabetic potential and the underlying mechanism of dietary flavonoids (Continued)

Rutin Buckwheat, oranges,
grapes, lemons, limes,
peaches and berries

Inhibited inflammatory
cytokines, improving
antioxidant and lipid
profiles.

HFD-STZ-induced
type 2 diabetic
model

Niture 2014 [154]

↓ Glucose, TBARS, caspase-
3 and ↑ insulin, Bcl-2
protein.

STZ-induced
diabetic rat retina

Ola 2015 [156]

Protected pancreatic beta-
cell by decreasing oxidative
stress.

STZ induced
diabetic rats

Kamalakkannan
and Prince
2006 [157]

↓ MDA levels and ↑ SOD
and CAT.

STZ-induced type
1 diabetic rats

Butchi 2011 [158]

Quercetin Chokeberries, black
currants, apples and
cherries

Increased the activity of
glycogen synthase, the
rate-limiting enzyme of
glycogen synthesis.

Murine H4IIE and
human HepG2
cells.

Eid 2015 [164]

Inhibition of the two
transcriptional factors and
the activation of mTORC1/
p70S6K.

HK-2 and
NRK-52E cells

Lu 2015 [167]

Inhibitory effects on NF-kB
and caspase-3 expression.

STZ-induced
diabetic rats

Kumar 2014 [168]

Ameliorated hyperglycemia
and oxidative stress.

Alloxan induced
type 2 diabetic
mice.

Alam 2014 [169]

Prevented β-cell death via
the mitochondrial pathway
and NF-κB signaling.

RINm5F β-cells. Dai 2013 [170]

Reduced expression of
inducible iNOS and
inhibited translocation
of NF-κB.

Reduced TBARS levels, TC
and elevated activities of
SOD, CAT, and GSH-Px
and HDL-cholesterol.

Diet-C57BL/KsJ-
db/db mice

Jeong 2012 [171]

Improved renal function in
rats with diabetic
nephropathy by inhibiting
the overexpressions of
TGF-β1 and CTGF.

STZ-induced
diabetic rats

Lai 2012 [172]

↓ Glucose and blood
HbA1c.

STZ-induced
diabetic rats

Kim 2011 [173]

Genistein Fava bean, soybeans
and kudzu.

↑ cAMP signalling ↑ PKA
activation.

HG-induced
diabetic mice

Babu 2012 [176]

↑ Insulin-positive β-cell. HFD-induced
C57BL/6 mice

Fu 2012 [179]

Activation of ERα seems
to stimulate muscular
GLUT4 functionality,
activation of ERβ.

Zucker diabetic
fatty rats

Weigt 2015 [182]

↓ Glucose, HbA1c, C-
reactive protein, TNFα and
TGFβ1 protein expressions.

STZ-induced
diabetes rats

Gupta 2015 [183]

↓ Inflammatory markers
and improved oxidative
stress.

Alloxan-induced
diabetic mice

Kim and Lim
2013 [184]

Improved wound
angiogenesis.

STZ-induced type
1 diabetic mice

Tie 2013 [185]

Vinayagam and Xu Nutrition & Metabolism  (2015) 12:60 Page 7 of 20



stress was measured in type I diabetic patients before
and after intervention with a diosmin. A decrease in gly-
cated hemoglobin (HbA1c) was accompanied by an in-
crease in glutathione peroxidase (GPx) [29]. In studies
with rats, orally treatment of diosmin for 45 days signifi-
cantly lowered plasma glucose level, increased the activ-
ities of hepatic key enzymes such as hexokinase and
glucose-6- phosphate dehydrogenase (G6PD) in addition
to decreasing glucose-6-phosphatase (G6Pase) and
fructose-1,6-bisphosphatase (FDPase) in streptozotocin
(STZ)-nicotinamide treated rats exhibiting its anti-
hypeglycemic activities [30]. Studies from the same author
claimed that, diosmin lowered plasma glucose and in-
creased plasma insulin levels in diabetic rats by ameliorat-
ing the oxidative stress induced by STZ-nicotinamide and
the activities of antioxidant enzymes such as superoxide
dismutase (SOD), catalase (CAT), GPx, and reduced gluta-
thione (GST), vitamin C, vitamin E and reduced glutathi-
one were increased while lipid peroxidation was reduced
in liver and kidney of diabetic rats upon treatment with
diosmin [31]. In recent study, treatment with diosmin at
doses of 50 and 100 mg/kg bw for 1 month ameliorated
hyperglycemia and oxidative stress [32].

Fisetin
Fisetin is a flavonoid, also a dietary ingredient found
strawberry, apple, persimmon, grape, onion, cucumber
and Cotinus coggygria Scop. [35, 36]. The results of
Constantin et al. [37] showed that the fisetin inhibition
of pyruvate transport into the mitochondria and the re-
duction of the cytosolic NADH-NAD (+) potential redox
could be the causes of the gluconeogenesis inhibition.
Fisetin could also prevent hyperglycemia by decreasing
glycogen breakdown or blocking the glycogenolytic ac-
tion of hormones. Fisetin was also reported that at a
dose of 10 mg/kg bw to diabetic rats for 30 days, dis-
played reductions in blood glucose, HbA1c levels, in-
creased plasma insulin and decreased mRNA and
protein expression levels of gluconeogenicgenes, such as
phosphoenol pyruvate carboxykinase and G6PD in liver
[38]. There is evidence based in vivo animal studies
showed that fisetin treatment significantly decreased the
levels of blood glucose, HbA1c, NF-κB p65 unit and
interleukin-1 beta (IL-1β), serum nitric oxide (NO) with
an improved in plasma insulin antioxidant status [39].
Moreover, fisetin inhibits high glucose (HG)-induced
cytokine production in monocytes, through epigenetic

Table 1 Important anti-diabetic potential and the underlying mechanism of dietary flavonoids (Continued)

Reduced hyperglycemia
via minimization of islet
cell loss.

Alloxan-induced
Sprague–Dawley
rats

Yang 2011 [186]

Reduced glucose tolerance
and improved insulin
levels.

STZ-induced
diabetic mice

Fu 2010 [187]

Inhibition the secretion of
ECM components and the
expression of TGF-beta.

HG-cultured rat
mesangial cells

Yuan 2012 [188]

Suppressed the expression
of CCAAT/enhancer
binding protein alpha
(C/EBPalpha).

3 T3-L1 cells Zhang 2009 [189]

↓ TGF-β2, αB-crystallin,
and fibronectin.

Human lens
epithelial
(HLE-B3) cells

Kim 2008 [190]

↓ G6Pase, PEPCK and ↑
lipogenic enzymes
activities.

Non-obese
diabetic mice

Choi 2008 [191]

Daidzein Soy milk, soybeans and
nuts

Potent α-glucosidase
inhibitor and suppress
the postprandial
hyperglycemia.

STZ-induced
diabetic mice

Park 2013 [194]

↓ Blood glucose and
urinary glucose excretion.

HFD-induced
type 2 diabetes

Cheong
2014 [196]

Improved the endothelial
dysfunction.

STZ-induced
diabetic rats.

Roghani
2013 [197]

↑ IRS-1, GLUT4 and en
hanced insulin stimulated
glucose uptake.

3 T3-L1and
C3H10T1/2 cells

Cho 2010 [198]

Vinayagam and Xu Nutrition & Metabolism  (2015) 12:60 Page 8 of 20



changes involving NF-κB. Thus, fisetin supplementation
could be considered for diabetes prevention [40].

Morin
Morin, a natural flavonoid, and a major component of
traditional medicinal herbs were Prunus dulcis (Mill.)
D.A. Webb, Chlorophora tinctoria (L.) Gaud., Psidium
guajava L., fruits and wine [47, 48]. In animal models,
oral administration of morin for 30 days significantly im-
proved hyperglycemia, glucose intolerance, and insulin
resistance. The elevated levels of lipid peroxides were
declined and the antioxidant competence was found to
be improved in diabetic rats treated with the morin. The
status of the lipid and lipoprotein profile in the serum
was normalized upon treatment. Levels of TNFα de-
creased upon treatment with morin [49]. A study carried
out by Abuohashish et al., [50] demonstrated that morin
(30 mg/kg bw) was effective in reducing the elevated in-
flammatory cytokines IL-1β, IL-6 and TNF-α in diabetic
animals, which support its anti-inflammatory property
and also its possible beneficial effects in diseases where
inflammation. Morin was found to ameliorate high
fructose-induced hepatic SphK1/S1P signaling pathway
impairment, resulting in the reduction of hepatic NF-κB
activation with IL-1b, IL-6 and TNF levels in rat liver
and BRL3A cells. Subsequently, morin recovered hepatic
insulin and leptin sensitivity, then reduced hyperlipid-
emia and liver lipid accumulation in animal and cell line
models [51]. Paoli et al. [52] reported that dietary morin
inhibitor of PTP1B, which behaves as an activator and
sensitizer of the insulin receptor stimulating the metabolic
pathways. However, in this context Vanitha et al. [53]
showed that morin treatment significantly reduced the
blood glucose, G6Pase and FDPase and increased the in-
sulin levels, hexokinase and G6PD activities. Thus, morin,
through these metabolic effects, may exert several benefi-
cial effects in the prevention of diabetes.

Eriodictyol
Eriodictyol is present in lemon fruit. It has been demon-
strated [55] that supplementation of lemon flavonoids,
such as eriocitrin and hesperidin, significantly sup-
pressed the oxidative stress in diabetic rats. Eriodictyol
treatment was associated with up-regulated the mRNA
expression of PPARγ2 and adipocyte-specific fatty acid-
binding protein as well as the protein levels of PPARγ2
in differentiated 3 T3-L1 adipocytes. Furthermore, it
reactivated Akt in HepG2 cells with HG-induced insulin
resistance [56]. Eriodictyol has been reported to signifi-
cantly lower retinal TNFα, intercellular adhesion mol-
ecule 1 (ICAM-1), vascular endothelial growth factor
(VEGF), and endothelial NOS (eNOS). Further, treat-
ment with eriodictyol significantly suppressed diabetes-
related lipid peroxidation [57].

Hesperidin
Hesperidin is an abundant and inexpensive by product
of Citrus cultivation and isolated from the ordinary or-
ange Citrus aurantium L., and other species of the genus
Citrus (family: Rutaceae) contain large amounts of hes-
peridin [58, 59]. Hesperidin not only attenuated the dia-
betic condition but also reversed neuropathic pain via
control over hyperglycemia as well as hyperlipidemia to
down-regulate generation of free radical, release of pro-
inflammatory cytokines [60]. Reduced oxidative stress by
hesperidin was also noted in this studies [61, 62]. Treat-
ment of hesperidin (10 g/kg diet) decreased blood glu-
cose by altering the activity of glucose regulating
enzymes, and normalized the lipids and adiponectin
levels [63]. In a recent study, Yo et al. [64] found that
hesperidin treatment significantly improved mean arter-
ial pressure, reduced left ventricular end-diastolic pres-
sure, and improved both inotropic and lusitropic
function of the heart. Furthermore, hesperidin treatment
significantly decreased the level of thiobarbituric acid re-
active substances (TBARS) and increased the activity of
lactate dehydrogenase (LDH).

Naringenin
Naringenin is abundantly found in citrus fruits such as
grapefruits, oranges and tomatoes that has been reported
to have antioxidant potential [70]. In vitro studies have
shown that naringenin had an insulin-mimic effect to
decrease poliprotein B secretion in hepatocytes [71]. In
vivo studies of Cochlospermum vitifolium (Willd.) Spreng
which contains naringenin decreased blood glucose levels
in healthy male Wistar rats [72]. Oral treatment of narin-
genin (25 mg/kg bw) exerts significant inhibition of intes-
tinal α-glucosidase activity in vivo thereby delaying the
absorption of carbohydrates in diabetic rats, thus resulting
in significant lowering of postprandial blood glucose
levels. Both in vitro and in vivo results were compared to
the commercially available α-glucosidase inhibitor acar-
bose [73]. Naringenin was found to inhibit the glucose up-
take in everted rat intestinal sleeves by the inhibition of
intestinal sodium-glucose co-transporters [74]. Naringenin
was also found to prevent the functional changes in vascu-
lar reactivity in diabetic rats through nitric oxide and
not prostagland in dependent pathway [75]. Naringin
is effective in protecting against the development of
metabolic syndrome through changing the expression
of hepatic genes involved in lipid metabolism and
gluconeogenesis via upregulation of both PPAR and
5' adenosine monophosphate-activated protein kinase
(AMPK), involving the activation of multiple types of
intracellular signaling in mice exposed to a HFD [76]. The
research findings of Zygmunt et al. [77] provide support
for the stimulation of muscle glucose uptake by narin-
genin in a dose-dependent manner and independent of
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insulin. The in vivo anti-diabetic effects of naringenin may
be AMPK-mediated. Activation of AMPK increases glu-
cose tolerance, insulin sensitivity. Furthermore, naringenin
administration decreased plasma glucose levels in STZ-
induced diabetic rats [78], improved insulin sensitivity in
fructose-fed insulin resistant rats [79], and reduced insulin
resistance in HFD mice [80]. A recent study stated that
naringenin (25 mg/kg bw) treatment to diabetic rats for
45 days markedly reduced hyperglycemia and hyperinsuli-
nemia, restored lipid profile changes, decreased mem-
brane lipid peroxidation; enhanced the activities of
antioxidants and improved hepatic function markers [81].

Apigenin
Apigenin is a member of the flavone family and is found
in many fruits, vegetables, nuts, onion, orange and tea
[87]. Alloxan-induced elevation in serum cholesterol,
hepatic lipid peroxidation and a decrease in the activity
of cellular antioxidants, such as CAT, SOD and GSH
content were observed, administration of apigenin to
diabetic mice ameliorated hyperglycemic and improved
antioxidants [88]. Apigenin reduced parathyroid hor-
mone related protein stimulated increases in the human
pancreatic stellate cells messenger RNA expression
levels of extracellular matrix proteins collagen 1A1 and
fibronectin, proliferating cell nuclear antigen, TGF-β,
and IL-6 [89]. Suh et al. [90] suggest that apigenin atten-
uates dRib induced cell damage in pancreatic β-cells via
oxidative stress-related signaling. Apigenin preserves the
cellular architecture of vital tissues towards normal in
STZ-induced diabetic rats. Furthermore, enhanced
GLUT4 translocation upon apigenin treatment suggests
more glucose lowering as well as β-cell preserving effi-
cacy [91].

Baicalein
Baicalein, a flavonoid originally isolated from the roots
of Scutellaria baicalensis Georgi and fruits of Oroxylum
indicum (L.) Benth has been shown to exhibit strong
free radical scavenging [95, 96]. Fu et al. [97] induced
diabetes mice by HFD feeding and low doses of STZ and
they the administered HF diet containing 0.25 or 0.5 g
baicalein/kg diet. They observed that diabetic mice
treated with baicalein displayed significantly improved
hyperglycemia, glucose tolerance, and insulin levels.
They provide the rationale for screening and preclinical
studies of hydroxyflavones, especially those with an im-
proved pharmacological profile, as potential therapeutics
for diabetic ant its complications [98]. Baicalein treat-
ment significantly lowered food intake, body weight and
levels of fasting blood glucose, HbA1c in diabetic rats.
Baicalein also suppressed the activation of NF-κB, de-
creased expression of iNOS and TGF-β1, and amelio-
rated the structural changes in renal tissues [99].

Previous findings also reported that treatment with bai-
calein reduced the advanced glycation end-product
(AGEs) and TNF level, decreased NF-κB activation and
inhibited histopathological changes [100]. Mechanism of
its action was up-regulation of AMPK and its related
signal pathway. AMPK is not only a major cellular en-
ergy sensor, but also a master regulator of metabolic
homeostasis involving inflammation and oxidative stress.
Activated AMPK could abolish inflammation through
the MAPKs signaling pathway; activated AMPK could
attenuate insulin resistance by phosphorylating IRS-1,
AKT and dephosphorylate ERK, JNK and NF-κB; it also
suppresses fatty acid synthesis, gluconeogenesis and in-
creases mitochondrial β-oxidation [101].

Chrysin
Chrysin, found in honey, bee pollen, propolis, fruits,
vegetables, beverages and medicinal plants such as
Passiflora caerulea (L.), Pelargonium peltatum (L.), Tilia
tomentosa Moench, Pelargonium quercifolium (L.f.)
L’Hér and Pelargonium crispum (Berg.) L’Her [103–106].
Chrysin is the main component of Oroxylum indicum
(L.) Benth. ex Kurz, which is one of the most common
herbal medicines used in China and other East Asian
countries. Ahad et al. [107] in a recent study mentioned
that chrysin treatment improved renal pathology and
suppressed TGF-β, fibronectin and collagen-IV protein
expressions in renal tissues. Chrysin also significantly re-
duced the serum levels of pro-inflammatory cytokines, IL-
1β and IL-6. Therefore, chrysin prevents the development
of diabetic neuropathy (DN) in HFD/STZ-induced dia-
betic rats through anti-inflammatory effects in the kidney
by specifically targeting the TNF-α pathway. Li et al., [108]
investigation revealed that chrysin significantly and dose-
dependently inhibited the oxidative stress, together with
improved cognition in diabetic rats. In addition, treatment
chrysin was shown to reduce glucose and lipid peroxida-
tion level and improve insulin levels in diabetic rats [109],
suggesting that this chrysin may exert anti-hypertensive
and vascular complication associated with anti-diabetic ef-
fects [110].

Luteolin
Vegetables and fruits such as celery, parsley, broccoli,
onion leaves, carrots, peppers, cabbages, apple skins, and
chrysanthemum flowers are rich in luteolin [111–114].
That luteolin potentiates insulin action, increases ex-
pression and transcriptional activation of PPARγ and ex-
pression of the PPARγ target genes adiponectin, leptin
and GLUT4 in 3T3-L1 adipocytes, as well as in primary
mouse adipose cells, and that PPARγ antagonist inhibits
this induction [115]. It has also been reported that luteo-
lin up-regulated the expression of the synaptic proteins,
and alleviated the HFD-induced cognitive deficits. It is
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possible that the decrease in circulating levels of inflam-
matory molecules MCP-1, resistin and the elevation of
adiponectin levels in obese mice by luteolin may, in turn,
mediate beneficial effects on metabolic pathways impli-
cated in insulin resistance and DM pathophysiology
[116]. The mechanism of the renoprotective effect of
luteolin may be related to increasing HO-1 expression
and elevating antioxidant in diabetic nephropathy [117].
It has been reported that luteolin ameliorated inflamma-
tion related endothelial insulin resistance in an IKKb/
IRS-1/Akt/eNOS-dependent pathway [118]. Luteolin,
also improved insulin secretion in uric acid damaged
pancreatic β-cells by suppressing the decrease of MafA
mainly through the NF-κB, iNOS-NO signaling pathway
[119]. In addition, it has been reported that luteolin was
significantly reduced cAMP-response element binding
protein (CREB)-binding protein/p300 gene expression,
as well as the levels of acetylation and histone acetyl
transferase activity of the CBP/p300 protein, which is a
known NF-κB coactivator [120].

Tangeretin
Tangeretin, abundant in the citrus fruit rinds, including
mandarin orange, Poncirus trifoliate Raf. (Rutaceae), and
Yuja, found in Korea. Administration of HFD plus
200 mg/kg bw of tangeretin exhibited reduction in body
weight, total cholesterol (TG), blood glucose and de-
creased adipocytokinese such as adiponectin, leptin,
resistin, IL-6, and MCP-1 [124]. Oral administration of
tangeretin (100 mg/kg bw) to diabetic rats for 30 days
resulted in a significant reduction in the levels of plasma
glucose, HbA1c and increased in the levels of insulin
and hemoglobin. Tangeretin enhances the glycolytic
enzymes and controls the glucose metabolism in the
hepatic tissues of diabetic rats by stimulating insulin
production from existing β-cells of pancreas by its
antioxidant potential [125]. Tangeretin 3T3-L1 preadi-
pocytes into adipocytes possessing less intracellular
triglyceride as compared to vehicle-treated differentiated
3T3-L1 adipocytes. Tangeretin increased the secretion of
an insulin-sensitizing factor, adiponectin, but concomi-
tantly decreased the secretion of an insulin-resistance fac-
tor, monocyte chemotactic protein-1 (MCP-1), in 3T3-L1
adipocytes [126].

Wogonin
Wogonin extracted from the root of Scutellaria baicalensis
Gerogi (Scutellariae radix) has long been used as a trad-
itional medicine in East Asian countries [127]. Wogonin
has beneficial effects on blood glucose level, insulin sensi-
tivity, and lipid metabolism via selective PPARα and
AMPK activation without the adverse side-effects of weight
gain and fatty liver [128]. High glucose (HG)-induced
markedly increased vascular permeability, monocyte

adhesion, expressions of cell adhesion molecules, forma-
tion of ROS and activation of NF-κB. Remarkably, all of
the above mentioned vascular inflammatory effects of HG
were attenuated by pretreatment with wogonin [129].

Isorhamnetin
Isorhamnetin is a bioactive compound found in medicinal
plants, such as Hippophae rhamnoides L., Oenanthe java-
nica (Blume) DC., and Ginkgo biloba L. In a STZ-induced
model of diabetes, oral administration of isorhamnetin
(10, 20 mg/kg BW) for 10 days ameliorated hyperglycemia
and oxidative stress [131]. In another study, administered
orally at 25 mg/kg in STZ-induced diabetic rats caused
not only a significant inhibition of serum glucose concen-
tration but also sorbitol accumulation in the lenses, red
blood cells, and sciatic nerves [132]. In recent year, there
is experimental evidence suggesting that isorhamnetin gly-
cosides may possess the antidiabetic effect and their influ-
ence on lipid content, endoplasmic reticulum stress
markers and the expression of enzymes regulating lipid
metabolism [133].

Kaempferol
Kaempferol is a flavonol that is relatively abundant in
Ginkgo biloba L., cruciferous vegetables, grapefruit, tea
and some edible berries [135–137]. Also, kaempferol is
isolated from Bauhinia forficata leaves, is able to diminish
the increased serum glucose level and increase glucose up-
take in the rat soleus muscle as efficiently as insulin [138].
The in vitro results demonstrated that kaempferol treat-
ment (10 μM) promoted viability, inhibited cellular apop-
tosis, and reduced caspase-3 activity in β-cells and human
islets chronically exposed to hyperglycemic condition.
These protective effects are associated with improved
cAMP signaling, anti-apoptotic Akt and Bcl-2 protein ex-
pression, and insulin secretion and synthesis in β-cells
[139]. The author suggests that kaempferol stimulates glu-
cose uptake in the rat soleus muscle via the PI3K and
PKC pathways and, at least in part, independently of MEK
pathways and the synthesis of new glucose transporters
[140]. Administration of kaempferol to diabetic rats was
shown back to near normal levels in plasma glucose, insu-
lin, lipid peroxidation products, enzymatic, and non-
enzymatic antioxidants [141]. Published data showed that
kaempferol reduced IL-1β, TNF-α, lipid peroxidation and
nitrite, concomitant with the improvement of antioxidant
defense and body weight gain [142]. Orally administrated
kaempferol was significantly decreased fasting blood glu-
cose, serum HbA1c levels and improved insulin resistance.
Gene expression analysis of the liver showed that kaemp-
ferol decreased PPAR-γ and SREBP-1c expression. Anti-
obese and anti-diabetic effects of kaempferol are mediated
by SREBP-1c and PPAR-γ regulation through AMPK acti-
vation [143].

Vinayagam and Xu Nutrition & Metabolism  (2015) 12:60 Page 11 of 20



Rutin
Rutin can be broadly extracted from natural sources
such as buckwheat, oranges, grapes, lemons, limes, pea-
ches and berries [147, 148]. Specifically, diabetic mice
fed rutin at 100 mg/kg diet displayed significant lower of
plasma glucose and increase in insulin levels were ob-
served along with the restoration of glycogen content
and the activities of carbohydrate metabolic enzymes
[149]. Fernandes et al. [150] showed that rutin could im-
prove the metabolic status of rats with experimentally-
induced diabetes. Rutin is involved in the activation of
liver enzymes associated with gluconeogenic, and lipid
metabolic processes [151] and also decreased the levels
of fasting blood glucose, creatinine, blood urea nitrogen,
urine protein, the intensity of oxidative stress and p-
Smad 7 significantly. The expression of AGEs, collagen
IV and laminin, TGF-β1, p-Smad 2/3 and connective tis-
sue growth factor was inhibited by rutin significantly
[152]. Rutin have been shown to stimulate glucose up-
take in the rat soleus muscle via the PI3K, a typical pro-
tein kinase C and mitogen-activated protein kinase
pathways [153].
Rutin has been reported to significantly improved

body weight, reduced plasma glucose and HbA1c, pro-
inflammatory cytokines (IL-6 and TNF-alpha), and re-
stored the depleted liver antioxidant status and serum
lipid profile in HFD/STZ induced diabetic rats [154].
Notably, rutin was shown to protect and improve myo-
cardial dysfunction, oxidative stress, apoptosis and in-
flammation in the hearts of the diabetic rats [155].
A recent study showed that rutin supplementation en-

hanced the reduced levels of brain-derived neurotrophic
factor, nerve growth factor, and GSH, and reduced the
level of TBARS. In addition, rutin treatment showed anti-
apoptotic activity by decreasing the level of caspase-3 and
increasing the level of Bcl-2 in the diabetic retina [156].

Quercetin
Numerous studies have focused on quercetin to develop
it as antidiabetic drug to prevent and manage DM.
Quercetin is one of the most widely used flavonols in
human dietary nutrition [159]. It is widely distributed in
different types of fruits, tea, lovage, pepper, coriander,
fennel, radish, dill, berries, onions, apples and wine
[160]. Several studies have reported quercetin mechan-
ism of action in diabetes, such as decreases in lipid
peroxidation, increases in antioxidant enzymes (like
SOD, GPX, and CAT) activities, inhibition of insulin-
dependent activation of PI3K, and reduction in intestinal
glucose absorption by inhibiting GLUT2 [161, 162]. The
study performed by Kwon et al. [163] evaluated the ef-
fect of quercetin on Caco-2E intestinal cells, the study
documented that the transport of fructose and glucose
by GLUT2 was strongly inhibited by quercetin. Blockage

of tyrosine kinase is another mechanism by which quer-
cetin is reported to have effects against diabetes. Eid et
al. [164] reported that quercetin stimulates GLUT4
translocation and expression in skeletal muscle, by
mechanisms associated with the activation of AMPK ra-
ther than insulin-dependent pathways such as Akt. The
study performed in rats indicated that quercetin amelio-
rated the expression of markers of oxidative stress and
inflammation, such as Nrf2, heme oxygenase-1, and NF-
κB, suggesting that quercetin anti-inflammatory effects
on adipose tissue can be associated with the reduction of
body weight [165]. Likewise, Kobori et al. [166] reported
that quercetin in the diet led to the recovery of cell pro-
liferation in diabetic mice.

Isoflavones
Isoflavonoids are another subclass of the phenolic phyto-
nutrients. Soybeans are an unusually concentrated
source of isoflavones, including genistein and daidzein,
and soy is the major source of dietary isoflavones, is re-
ported to have numerous health benefits attributed to
multiple biological functions. Over the past 10 years, nu-
merous studies have demonstrated that isolavones has
anti-diabetic effects, in particular, direct effects on β-cell
proliferation, glucose-stimulated insulin secretion.

Genistein
Genistein, a naturally occurring soy isoflavone, is a fla-
vonoid presented in legumes and Chinese plants Genista
tinctoria Linn and Sophora subprostrala Chun et T Chen
[174]. Molecular mechanisms underlying the modulatory
effect of genistein on diabetes, that specifically focus on
neutrophils, are needed to understand contributions of es-
trogenic and enzyme inhibitory activities (tyrosine kinase
inhibition) to dysregulat glucose homeostasis [175]. Genis-
tein has also been reported to improve hyperglycemia
caused human vascular endothelial inflammation ex vivo,
which is at least partially mediated through promoting the
cAMP/PKA signaling pathway [176]. Palanisamy et al.
[177], focused on the protective role of genistein on renal
malfunction in rats fed a fructose rich diet, through the
modulation of insulin resistance induced pathological
pathways. Another study has shown that genistein injec-
tions (10 mg/kg) reduced urinary TBARs excretion and
renal gp91phox expression, as well as decreased produc-
tion of inflammatory markers, including p-ERK, ICAM-1,
and MCP-1, in DN mice [178]. In this study, dietary intake
of genistein (250 mg/kg bw) improved hyperglycemia, glu-
cose tolerance, and blood insulin level in obese diabetic
mice, whereas it did not affect body weight gain, food in-
take, fat deposit, plasma lipid profile, and peripheral insu-
lin sensitivity [179]. Furthermore, genistein has been
shown to protect against oxidative stress and inflamma-
tion, neuropathic pain, and neurotrophic and vasculature
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deficits in the diabetic mouse model [180]. Indeed, recent
findings indicated that genistein administration signifi-
cantly decreased β-cells loss and improved glucose and in-
sulin levels [181].
Daidzein belongs to the isoflavone subclass of flavonoids

and is found in fruits, nuts, soybeans, and soy-based prod-
ucts [192]. An earlier study suggested that daidzein exerts

anti-diabetic effects by improves glucose and lipid metab-
olism [193, 194]. Cederroth et al. [195] demonstrated that
the dietary soy including genistein improve insulin sensi-
tivity by increasing glucose uptake in skeletal muscle in
mice. Treatment of daidzein proved to be effective in re-
ducing blood glucose; TC levels and improved the AMPK
phosphorylation in gastrocnemius muscle [196].

Table 2 The in vitro and in vivo effect on anti-diabetic and underlying mechanism of anthocyanins

Strcture of anthocyanins Plants/dietary source Specific mechanism of
action

Model References

Cyanidin Grapes, bilberry, blackberry,
blueberry, cherry, cranberry,
elderberry, hawthorn, logan
berry, acai berry and raspberry.

↑ pAMPK, pACC signaling
and improve insulin
signaling (pAkt, pFOXO-1).

HFD-induced
obesity rats

Park
2015 [206]

↑ PGC-1α, SIRT1 and UCP-3
genes.

3 T3-Ll cells Matsukawa
2015 [207]

Lowered fasting glucose
and improved insulin
sensitivity.

C57BL/6 J obese
mice

Guo
2012 [205]

Decreased c-Jun N-terminal
kinase activation and
FoXO1.

Upregulated the GLUT4
and down-regulation
of the inflammatory
adipocytokines.

HFD-KK-A(y) mice Sasaki
2007 [208]

Suppressed the mRNA
levels of enzymes involved
in FA and TG synthesis and
lowered the SREBP-1 level.

High fat-induced
diabetic mice

Tsuda
2003 [209]

↓ Glucose, mitochondrial
(ROS)

INS-1 cells and
STZ-induced
diabetic mice

Sun
2012 [210]

Delphinidin Berries, dark grapes and
vegetables such as eggplant,
tomato, carrot, purple sweet
potato, red cabbage and red
onion

↓ Albumin and HbA1c
glycation.

Diabetic rats Gharib
2013 [212]

Cyclooxygenase inhibitor
restored the relaxant
responses to Ach and SNP.

Diabetic
microangiopathy.

Bertuglia
1995 [211]

Pelargonidin Ficus bengalensis Linn and
billberry

↓ Glucose, TBARS and ↑ SOD STZ-injected
diabetic rats

Mirshekar
2010 [215]

Improved retention and
recall capability.

STZ-diabetic rats Mirshekar
2011 [217]
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Anthocyanins
Anthocyanins are flavonoids in flowers and fruits (red,
blue and purple tints in apples, berries, red grapes, egg-
plant, red cabbage and radishes). Dietary consumption
of anthocyanins is high compared to other flavonoids,
owing to their wide distribution in plant materials. Based
upon many cell-line studies and animal models, it has
been suggested that anthocyanins possess anti-diabetic
activities (Table 2).

Cyanidin
Cyanidin and its glycosides belong to anthocyanins, and
are widely distributed in various human diets through
crops, vegetables, fruits, and red wine suggesting that we
daily ingest significant amounts of these compounds from
plant-based diets. Cyanidin has been demonstrated to in-
hibit intestinal α-glucosidase and pancreatic α-amylase,
which is one of the therapeutic approaches for treatment
of DM [199]. Anthocyanin was also found to reverse
degenerative changes in β-cells in STZ-induced diabetic
rats by activating insulin receptor phosphorylation

and preventing pancreatic apoptosis [200]. Nasri
et al. [201] performed in vivo chronic treatment of
diabetic rats with cyanidin-3-glucoside (C3G) could
prevent the functional changes in vascular reactivity
observed in diabetic rats through endothelium
dependent pathways and via attenuation of aortic
lipid peroxidation. C3G, one of the most prevalent
anthocyanins existing in our diet, can protect hepa-
tocytes against HG-induced damage by improving
antioxidant status and inhibiting the mitochondria-
mediated apoptotic pathway through activation of Akt
and inactivation of JNK [202, 203] and another author re-
ported that anthocyanins exert a hepatoprotective effect
against hyperglycemia-accelerated steatohepatitis in
NAFLD [204]. Moreover Guo et al. [205] showed that
C3G significantly reduced macrophage infiltration and the
mRNA levels of MCP-1, TNF-α and IL-6 in adipose tissue
and phosphorylation of FoxO1 via the Akt-dependent
pathway, and the extent of phosphorylation represents the
FoxO1 transcriptional activity in liver and adipose tissues
of HFD and db/db mice.

Fig. 1 Schematic of the proposed role of flavonoids on management of blood glucose in diabetes. AKT; v-akt murine thymoma viral oncogene
homolog, IRS; Insulin receptor substrate, HB; hemoglobin, HbA1c; Glycated hemoglobin, HMG-CoA :3-hydroxy-3-methylglutaryl-coenzyme A, IL-1β;
Interleukin-1 beta, PI3K; Phosphatidylinositol-3-kinase, SREBP-1c; Sterol regulatory element-binding protein, TG; Triglycerides, VLDL; Very low density
lipoprotein, (↑ Increase, ↓ Decrease)
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Delphinidin
Delphinidin present in pigmented fruits such as pom-
egranate, berries, dark grapes and vegetables such as egg-
plant, tomato, carrot, purple sweet potato, red cabbage
and red onion and it possesses strong antioxidant activ-
ities. Delphinidin was observed in vivo at the microcircu-
latory level prevent the injury to endothelial cell function
associated with diabetes and/or oxidative stress [211].
Moreover, administration of 100 mg/kg delphinidin
chloride-loaded liposomes to diabetic mice at 8 weeks
could decrease the rate of albumin and HbA1c glycation
[212].

Pelargonidin
Pelargonidin can be found in berries such as ripe rasp-
berries, blueberries, blackberries, cranberries and saska-
toon berries [213] Pelargonidin treatment counteracts
hyperglycemia and relieves the oxidative stress including
hemoglobin (Hb) induced iron mediated oxidative reac-
tions by lowering the glycation level and free iron of Hb
[214]. Pelargonidin was also demonstrated to reduce
TBARS formation and non-significantly reversed eleva-
tion of nitrite level and reduction of antioxidant defen-
sive enzyme superoxide dismutase in diabetic rats [215].
Pelargonidin-3-galactoside and its aglycone stimulate in-
sulin secretion in rodent pancreatic β-cells in vitro in
presence of glucose [216].

Conclusions
The actual antidiabetic prospective associated with flavo-
noids are usually large as a result of their modulatory ef-
fects on blood sugar transporter by enhancing insulin
secretion, reducing apoptosis and promoting proliferation
of pancreatic β-cells, reducing insulin resistance, inflam-
mation and oxidative stress in muscle and promoting
translocation of GLUT4 via PI3K/AKT and AMPK path-
ways (Fig. 1). The molecular mechanisms underlying the
glucose and lipid metabolism in diabetes would provide
new insights in the field of drug development, continue to
fuel excitement in this area of research and buoys the
hope that future discoveries may one day yield therapeutic
benefits. With the rapidly increasing incidence of diabetes
worldwide, there is a greater need for safe and effective
functional biomaterials with antidiabetic activity. Hence,
meticulously intended human studies are needed to fur-
ther measure the likely connected with a number of nutri-
tional flavonoids to treat diabetes and its complication.
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