
Serverification of Molecular Modeling Applications: The
Rosetta Online Server That Includes Everyone (ROSIE)
Sergey Lyskov1., Fang-Chieh Chou2., Shane Ó. Conchúir5,6, Bryan S. Der4, Kevin Drew7,

Daisuke Kuroda1, Jianqing Xu1, Brian D. Weitzner1, P. Douglas Renfrew7, Parin Sripakdeevong3,

Benjamin Borgo11, James J. Havranek11, Brian Kuhlman4, Tanja Kortemme5,6,12, Richard Bonneau7,8,

Jeffrey J. Gray1,9*, Rhiju Das2,10*

1 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Department of Biochemistry,

Stanford University School of Medicine, Stanford, California, United States of America, 3 Biophysics Program, Stanford University, Stanford, California, United States of

America, 4 Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 5 California

Institute for Quantitative Biomedical Research, University of California San Francisco, San Francisco, California, United States of America, 6 Department of Bioengineering

and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America, 7 Department of Biology, Center for Genomics and

Systems Biology, New York University, New York, New York, United States of America, 8 Computer Science Department, Courant Institute of Mathematical Sciences, New

York University, New York, New York, United States of America, 9 Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of

America, 10 Department of Physics, Stanford University, Stanford, California, United States of America, 11 Department of Genetics, Washington University in St. Louis, St.

Louis, Missouri, United States of America, 12 Graduate Group in Biophysics, University of California San Francisco, San Francisco, California, United States of America

Abstract

The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D
structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers.
Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined
to developers and their immediate collaborators due to the code’s difficulty of use, the requirement for large computational
resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework
for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user
interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c)
a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and
(d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE
server infrastructure, a step-by-step ‘serverification’ protocol for use by Rosetta developers, and the deployment of the first
nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance,
Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these
applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible
cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.
rosettacommons.org.

Citation: Lyskov S, Chou F-C, Conchúir SÓ, Der BS, Drew K, et al. (2013) Serverification of Molecular Modeling Applications: The Rosetta Online Server That
Includes Everyone (ROSIE). PLoS ONE 8(5): e63906. doi:10.1371/journal.pone.0063906

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Received January 28, 2013; Accepted April 4, 2013; Published May 22, 2013

Copyright: � 2013 Lyskov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge financial support from the United States National Institutes of Health (R01-GM073151 to B.K., J.J.G. and S.L.; R01-GM078221
to J.J.G., R21-GM102716 to R.D., R00-RR024107 to J.J.H., U54CA143907-01 and PN2 EY016586-06 to R.B. and P.D.R. and K.D., T32 GM 88118-2 to K.D.), a Burroughs-
Wellcome Career Award at Scientific Interface (R.D.), Governmental Scholarship for Study Abroad of Taiwan and Howard Hughes Medical and Institute
International Student Research Fellowship (F.-C.C.), and the DARPA Antibody Technology Program (HR-0011-10-1-0052) for J.X. and D.K. S.Ó.C and T.K. were
supported by grants from the National Science Foundation (MCB-CAREER 0744541, EF-0849400, EEC-0540879) and the UC Lab Research Program. R.B., P.D.R. and
K.D. were supported by United States National Science Foundation (CHE-1151554 and NSF IOS-1126971 to R.B. and P.D.R. and K.D.). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jgray@jhu.edu (JG); rhiju@stanford.edu (RD)

. These authors contributed equally to this work.

Introduction

The Rosetta molecular modeling suite provides tools for a wide

range of fundamental questions in structural biology, from the

engineering of novel protein enzymes to the prediction of large

non-coding RNA structures. The current codebase is rapidly

evolving due to the efforts of more than 250 active developers, ease

of integrating new functionality into a modular software architec-

ture [1], cross-fertilization between teams working on different

systems, and continuing improvements inspired by stringent

experimental tests and blind prediction contests [2].

Most of the 50+ applications in the Rosetta package require

familiarity with a Unix environment, access to a high-performance

computing cluster, and familiarity with tools to visualize and

interpret results. A growing number of tutorials, online documen-

tation pages, scripting [3,4] and interactive [3,5–7] interfaces, and

introductory papers [1,8] are being written to lower barriers to

Rosetta use and development. The most powerful simplification

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63906

for external users, however, has been in the form of servers.

Separate teams of Rosetta developers have created and added

functionality to free web interfaces to nine protocols (Table 1) [9–

15]. These servers are in high demand from the academic

community, with wait times of at least a day in most cases. In some

cases, the servers are down. These servers have relied on spare

computing resources and administration provided by individual

laboratories, rendering them difficult to maintain in the long term.

Furthermore, the vast majority of Rosetta applications are not

available on servers.

Creating and maintaining web servers – a process we denote

‘serverification’, in analogy to the term ‘gamification’ for turning

tasks into games – can be complex and laborious. Besides the effort

to encode and test the Rosetta protocol, much effort is required to

plan database structures, create infrastructure for user interfaces,

and other core server tasks. Thus, although the servers in Table 1

have similar components, they all use different application

program interfaces (APIs) because they were created in five

different labs by different people at different times. The duplicated

effort is wasteful. In addition, support and maintenance currently

requires sustained effort by each laboratory. As noted above, this

post-serverification support can become especially difficult after

the researcher who created the server has left the laboratory.

We hypothesized that a common server codebase, a step-by-step

serverification protocol, and a virtual machine for testing would

lower barriers to server development and thus rapidly accelerate

the serverification process. Herein, we present ROSIE, the Rosetta

Online Server that Includes Everyone, and demonstrate that it

indeed accelerates the rate of serverification. ROSIE presents a

common source base that has solved tedious tasks in server

implementation and provides developers a simple route to create

new servers. The new framework uses a common set of libraries

and tools to speed and to simplify the creation of new web

interfaces. Additionally, ongoing support of the servers is

centralized. Thus, while previous cost-benefit decisions restricted

server implementation to broad-use applications such as Robetta

[9], RosettaDesign [16], and RosettaDock [11], ROSIE should

promote serverification of not only such wide-use applications but

also a diverse array of more specific-use and lower-traffic

protocols.

Most papers describing new Rosetta functionalities evaluate

success through experimental tests of Rosetta predictions of

macromolecule structure and behavior. Instead, this paper

evaluates success in the ROSIE effort by the rate of creation of

novel servers, the extent to which common features are re-used

across servers, and the usability of the resulting server (as assessed

by number of users and jobs so far). This paper’s primary intended

audience is the community of current and future Rosetta

developers who wish to bring their work into wider use via

serverification. Detailed descriptions of each ROSIE application –

meant for potential users – are presented in the available online

documentation and will also be presented in separate publications

elsewhere.

Results

The following describes the overall ROSIE infrastructure, a

detailed ‘serverification’ protocol that has been used by several

developers already, and the successful implementation of shared

ROSIE features across nine current applications.

A Generalized Server Infrastructure
Traditionally, Rosetta servers are organized as a front-end web

server, a SQL (Structured Query Language) database, a back-end

job management daemon and a high-performance computing

cluster, all on the same local network (Figure 1). ROSIE

implements a more flexible architecture (Figure 2). The server

handles multiple protocols feeding the same database, while

allowing each lab to customize the appearance of each application

and permit uniquely named links from their own web sites and

publications.

The following services are implemented:

(a) A generalized database schema that stores a wide range of

protocol information. The schema stores input and output

files and uses the JSON format (http://www.ietf.org/rfc/

rfc4627.txt) for protocol options and other structured data.

Table 1. Public Rosetta servers available prior to current work, in chronological order of development.

Application Server Year Jobs Developer Status References

Ab initio, fragments, alascan Robetta.org 2004 34000 Baker@UW 7-day queue [9]

Design rosettadesign.med.unc.edu 2006 17022 Kuhlman@UNC 1 day queue [16]

Antibody antibody.graylab.jhu.edu 2007 2437 Gray@JHU Offline [10]

Docking rosettadock.graylab.jhu.edu 2007 10000 Gray@JHU 3–7 day queue [11]

FunHunt funhunt.furmanlab.cs.huji.ac.il 2008 173 Furman@HebrewU 1 day queue [12] [13]

FlexPepDock flexpepdock.furmanlab.cs.huji.ac.il 2010 5000 Furman@HebrewU 1 day queue [14] [15]

Backrub kortemmelab.ucsf.edu/backrub 2010 4,300 Kortemme@UCSF 1 day queue [63] [77] [78] [58] [60]

doi:10.1371/journal.pone.0063906.t001

Figure 1. Schematic of a typical server for molecular modeling.
doi:10.1371/journal.pone.0063906.g001

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e63906

(b) Common user interface elements, including a job queue

(Figure 3a), user self-registration (Figure 3b), password and

account management tasks, and a web-based administrative

interface for group, job, and priority management.

(c) For protocol interfaces, user-interface widgets including file

uploaders (Figure 3c), Protein Data Bank (PDB) file

visualizations (Figure 3d, 3f), and score plot widgets

(Figure 3e). Additionally, we have created a library of input

validator functions for Python and JavaScript to sanitize (or

reject) imperfectly formatted user input and to ensure

security.

(d) A layer in the computational back-end to specify what to run

(command-line scripts) and how to run them (parallelization

scheme and data pipeline). Thus, the job specifications can

be used with adapter functions to create scripts for new high-

performance computing (HPC) clusters. The current strategy

Figure 2. Schematic of ROSIE (Rosetta Online Server that Includes Everyone), which permits a number of front-ends for job
submission by users, a number of servers (stored in a unified database), and a number of backends to allow expansion of
computational resources.
doi:10.1371/journal.pone.0063906.g002

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e63906

has been designed to consolidate spare computing cycles

across multiple resources, and to prepare for the future

ubiquitous nature of inexpensive cloud computing resources.

At the time of writing, a 320-core cluster is active, with

additional plans to make use of a second comparably sized

cluster and, in the near future, national computing

infrastructure and commercial resources.

The first test application for ROSIE was Rosetta Docking [17],

which was ported from a previously existing server. This test

provided archetypes of all the functionalities described above (see

Fig. 3). At the time of writing, 1069 jobs by 198 independent users,

totaling 50,925 CPU-hours, have been successfully completed with

the ROSIE Docking server.

RNA De Novo Modeling and ERRASER as ‘External’ Test
Cases

The basic hypothesis underlying ROSIE was that it would

permit rapid serverification of Rosetta applications, even by

laboratories at different universities and with different modeling

focus than the Johns Hopkins site where the ROSIE code was

originally developed. RNA de novo modeling [18] and ERRASER

[19], both developed by the Stanford Rosetta group, provided first

test cases.

RNA de novo modeling, including high resolution refinement

(Fragment Assembly of RNA with Full Atom Refinement [18]),

was not previously available via a server, but naturally fit into the

ROSIE framework. Serverification required a total development

time of four weeks (accelerated for later applications; see below).

The Stanford team created the application by specifying the

inputs, outputs, and Rosetta command-lines for modeling,

clustering and simple testing to the main ROSIE administrator

(SL). Automated setup of cluster jobs, visualization of model scores

vs. RMSD, PyMOL-based rendering of model images, archiving

of models, and numerous other features would normally be

complex to implement,but here these features could be adapted

rapidly from existing components from the ROSIE Docking

implementation. In addition, features such as text processing and

validation of user input before job setup, model post-processing

(clustering), interactive display of energy components for each

model, and aesthetically pleasing application logos were developed

at this time, and later were put into use in other applications. At

the time of writing, the ROSIE RNA de novo server has been active

for approximately one year. The server has completed 191 jobs by

45 separate users, totaling 30,494 CPU-hours. This level of use is

notable given that the server was not described in any publication

or advertised, aside from two links from the developer’s laboratory

website at Stanford and from a forum post at the EteRNA project

for massively multiplayer online RNA design (http://eterna.

stanford.edu).

The third ROSIE application, ERRASER, provided a test case

for more rapid and independent implementation by application

developers, rather than extensive cross-correspondence between

the developers and ROSIE administration. It was also the first

example of a Rosetta server being created and published

concomitantly with a new Rosetta application, and the first

example of a ROSIE server that accepts experimental data

(electron density maps). In brief, ERRASER (Enumerative Real-

space Refinement ASsisted by Electron density under Rosetta)

optimizes the local geometries of RNA crystallographic structures

under the constraints of an electron density map and the Rosetta

scoring function, and it is designed to be a practically useful tool

for RNA crystallographic studies [19]. The Stanford application

developers used the previously implemented docking and RNA de

novo applications as templates and developed the server nearly

independently from the ROSIE administrators.

For this third application, a virtual machine image of the server

was created to enable local testing of the server by the developer

without requiring public deployment on the Web. After the

developers were able to run the ERRASER server successfully on

their local machine, the ROSIE administrator then integrated the

new application to the central server. The overall development

time was three weeks (two weeks for the initial deployment by the

developers and one week for integrating the application to the

central server). The Stanford developers also created a standard

protocol for adding new applications to ROSIE (see Methods),

which is constantly updated by ROSIE developers.

Rapid Creation of Additional Server Functionalities
In parallel or after the deployment of the first three applications,

a diverse set of seven additional ROSETTA functionalities were

serverified, briefly summarized below.

b-peptides: b-peptides are peptides with an additional

backbone carbon atom, leading to an extra dihedral angle and

an extended length between adjacent side chains. As polymers

with non-biological backbones, structured beta peptides are often

called foldamers (see also the NCBB design section below) [20]

[21]. Recently, high-resolution structures of multimeric b-peptide

bundles have been solved by X-ray crystallography [22,23], which

opened up the possibility of performing structure-based rational

redesign of the b-peptides [24–27]. A b-peptide redesign protocol

was created under the Rosetta framework, and applied to redesign

an octameric b-peptide bundle [28]. Briefly, the protocol fixes the

backbone of the input model and searches for the lowest-energy

combination of the side chains for residues of interest (as specified

by the user). For the design of the b-peptide bundle, we also

included functionality for symmetric design, in which equivalent

residues are forced to have the same side-chain identities and

rotamers. All the features mentioned above are available in the

ROSIE b-peptide design server. Users input a starting b-peptide

structure and specify the residues to be redesigned. One final

model with the lowest Rosetta energy is returned as output.

Adding functionality: NMR chemical shifts in RNA de
novo: NMR chemical shifts have long been recognized as an

important source of structural information for functional macro-

molecules. Backbone chemical shifts are widely used for protein

analysis, including determination of protein secondary structures

and backbone torsions [29,30] and refinement of three-dimen-

sional models [31–33]. Recently, the integration of non-exchange-

able 1H chemical shift data with Rosetta RNA de novo modeling

produced high-resolution RNA structures [34]. Rather than

creating a separate ROSIE server, we chose to include the

NMR chemical shift guided modeling feature into the ROSIE

RNA de novo server. This chemical-shift-guided modeling mode is

activated when the user uploads an NMR chemical shift data file

during RNA de novo job submission. When run in this mode, the

RNA structures are first generated by the standard RNA de novo

method [35,36] and then refined and rescored using a hybrid

energy function. The hybrid energy function consists of the

standard Rosetta energy function plus a NMR chemical shift

pseudo-energy term that is proportional to the sum of squared

deviations between experimental and back-calculated chemical

shifts. In this mode, the modeling results are the same as in

standard RNA de novo with three additional data columns reported

in the score data table: (1) rna_chem_shift, the chemical shift pseudo-

energy score, (2) chem_shift_RMSD, the root-mean-square-deviation

between the experimental and back-calculated chemical shifts, and

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e63906

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e63906

(3) num_chem_shift_data, the total number of experimental chemical

shift data points.

Antibody: Antibody modeling is important in biological and

medical applications, such as antibody design and drug develop-

ment [37,38]. RosettaAntibody predicts the structure of an

antibody variable region given the amino acid sequence of the

heavy and light immunoglobulin chains. Originally developed

under the Rosetta2 framework [39], RosettaAntibody was

available as one of the early public Rosetta web services [40]

(Table 1). The protocol identifies the most homologous templates

for frameworks of light and heavy chains and each of the

complementarity determining region loops (CDR loops). Subse-

quently, these templates are assembled into a crude model and

then CDR-H3 is remodeled with simultaneous VL/VH domain

orientation optimization and refinement of canonical CDR loops.

The implementation of RosettaAntibody available through

ROSIE is an expanded and improved version of the previous

antibody modeling protocol built on the Rosetta3 platform. The

major improvements include the ability to perform loop modeling

using the Kinematic Loop Closure (KIC) algorithm [41], a score

function restricting CDR-H3 with knowledge-based rules [42],

and an updated structural database, which provides better

templates for VL, VH, and the canonical CDR loops. The

mandatory inputs are the sequences for both the light chain and

heavy chain of an antibody. The output includes the coordinates

of the antibody FV models, images of the models, a summary of

the homologous templates and scoring information. The output

models can be used for the subsequent modeling of an antibody-

antigen complex using EnsembleDock [43] or SnugDock [44],

both of which are being prepared for future ROSIE implemen-

tation.

Supercharge: Increasing protein net charge using surface

mutations, or supercharging, has many possible uses. Increased net

charge can prevent aggregation of partially unfolded states

[45,46], thereby improving protein refolding. Improved refolding

of protein can increase longevity of protein-based reagents or

therapeutics [47] and increase yields when purifying recombi-

nantly-expressed proteins from inclusion bodies [48]. Additionally,

highly cationic proteins can undergo nonviral cell entry [49,50]

and highly anionic proteins resist kidney filtration for longer

retention time in the bloodstream [51]. The potential users of the

Rosetta supercharge protocol [52] [53] are experimentalists

attempting to enhance the properties of various proteins of

interest.

To run the supercharge protocol, the user provides an input

PDB file containing the coordinates of the protein structure to be

supercharged, and, optionally, an input residue file that can specify

positions to leave as wild-type. The input PDB file can be a

Rosetta-relaxed crystal structure, a raw crystal structure, an NMR

structure, or a homology model. Supercharge operates in fixed

backbone mode by default (backbone minimization is optional)

and starts by repacking all sidechains. Second, the user specifies

the target net charge and either AvNAPSA-mode (Average

Neighboring Atoms Per Sidechain Atom mode, implementing a

protocol developed by the Liu lab [54]) or Rosetta-mode [52]. As

output, the user receives the PDB file of the designed protein, a

residue file indicating which residues were allowed to mutate to

which amino acid types (this residue file can be subsequently used

in other Rosetta design protocols, such as fixed backbone design),

and a log file detailing the command-line options, the net charge,

the number of mutations, the list of mutated residues, a PyMOL

selection text for convenient viewing of mutated residues, and an

energy comparison of wild-type residues versus mutated residues

for each Rosetta energy term. These Rosetta energies can be used

to evaluate Rosetta-mode designs, or they can be used along with

the deterministic AvNAPSA-mode as a hybrid approach. For

example, AvNAPSA-mode could be used to generate fifteen

mutations, and Rosetta energies might flag three of these

mutations as energetically unfavorable, resulting in a final list of

twelve mutations.

Sequence Tolerance: The concept of ‘‘tolerated sequence

space’’ describes the set of sequences that are consistent with a

protein’s structure and function(s). Methods to determine which

sequences would be tolerated by proteins, given desired structures

and functions, have many uses: designing proteins for new

functions or against undesired activities [55], optimizing protein

stability [56], anticipating drug resistance mutations [57], or

predicting protein interaction specificity [58]. Predicted tolerated

sequences can also be used to construct sequence libraries to

diversify existing or select for new functions. Such prediction is

useful because it is often difficult to accurately identify single

successful sequences, especially for functional specifications that

are not explicitly modeled in current computational design

methods (for example the rate of an enzymatic reaction or the

emission maximum of a fluorescent protein [59]).

The Rosetta sequence tolerance protocol [58,60] predicts a set

of tolerated sequences for user-defined positions (generally less

than ten at a time) in a protein or protein-protein interface, using

flexible backbone protein design. The protocol also allows for

positions to be mutated before the sequence tolerance simulations

(pre-mutation). This is useful, for example, to predict changes in

interaction specificity in response to mutations. To emphasize

certain functional requirements during sequence design, such as

binding to another protein, the protocol allows the weighting of

interfaces within and between protein chains.

Two published versions of the protocol are currently imple-

mented in ROSIE. The earlier version [58] was developed

originally for PDZ domains (commonly occurring interaction

proteins recognizing linear peptide motifs) and has been success-

fully validated against a large set of phage display data on peptide

interaction specificity of natural and engineered PDZ domains

[61]. A generalized version [60] was then developed by testing the

protocol in several additional systems using a common set of

parameters.

Both versions follow the same protocol. First, an ensemble of

structures is generated from the starting (or pre-mutated) structure

using Monte Carlo simulations involving side chain and backbone

moves using the backrub method [62,63]. Next, low-energy

sequences are found for each member of the ensemble using the

defined interaction weights. Finally, the individual results are

combined to create a predicted set of tolerated sequences.

To run the protocol on ROSIE, the user first uploads a protein

structure or model in PDB format to the server or enters a PDB

ID, using the common ROSIE PDB widget. This widget returns

the list of chains and residues from the PDB file so that the user

input controls are limited to valid options, reducing the likelihood

Figure 3. Examples of re-usable features and widgets shared across ROSIE servers. (a) Global job queue page, which can be filtered by
specific application (e.g., docking). (b) Self-registration (not required). (c) Coordinate file uploader using Protein Databank format, (d) Automatic
visualization of uploaded coordinate file, (e) Score vs. root mean squared deviation plotting widget, (f) Automatic rendering of final models, which
can be customized by developer for specific applications (in this case, RNA de novo modeling).
doi:10.1371/journal.pone.0063906.g003

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 6 May 2013 | Volume 8 | Issue 5 | e63906

of accidental errors. The user then selects the participating protein

chains (partners) and their internal and pairwise interaction

weights. Between one and ten positions can be specified for

sequence tolerance prediction (‘designed’ positions) and up to ten

positions can be specified for mutation before prediction. A

Boltzmann factor, used to combine predictions from the ensemble,

is automatically set to the optimized value determined in the

published protocol [58]: this factor may be overridden by the user.

Finally, the number of structures to be created for the ensemble is

specified. The computation time scales linearly with this value, but

higher values allow for more sampling. Because of the limited

number of sequences sampled for each structure in the ensemble

in the design stage (relative to the number of total sequences

possible), we recommend using no more than six designed

positions. Future updates to the protocol may allow greater

sampling when specifying higher numbers of designed positions.

The output page displays graphics generated using the

published analysis scripts [58,60] so that results are presented in

a similar fashion to the publications. The user is shown the ranked

table of amino acids at the designed positions, individual boxplots

per designed position, a sequence motif generated using the

WebLogo package [64], and images of ten low-energy structures

from the ensemble. ROSIE presents all relevant output files (PDB

files, the positional weight matrix, and PNG and PDF versions of

the graphics) for download.

NCBB design: The NCBB design application designs protein

interaction inhibitors with noncanonical backbones (NCBB).

NCBBs, also known as peptidomimetics or foldamers, are classes

of molecular scaffolds that are a novel strategy to inhibit protein

interactions. The NCBB design server application is capable of

making inhibitor designs for three different scaffolds, oligooxopi-

perazines (OOP), hydrogen bond surrogates (HBS) and peptoids.

OOPs are molecular scaffolds with a peptide backbone and

ethylene bridges between pairs of residues that stabilize the

conformation. In this stabilized conformation, OOPs mimic one

face of an a-helix (i, i+4, and i+7 residues) and show promise as

inhibitors for targets with helices at the interface [65,66]. The HBS

scaffold is a peptide where a covalent linker is attached between

the 1st and 4th residues. This modification mimics the first

hydrogen bond of a helix and stabilizes the peptide into an alpha

helix conformation [67] thus improving pharmacokinetic proper-

ties. An HBS inhibitor targeting the P300– Hif1a protein

interaction (often poorly regulated in cancer cells) was successful

in disrupting the angiogensis pathway in cell based assays [68].

Peptoids are N-substituted glycine amino acids, which have known

proteolytic resistance and mimic poly-proline type I and type II

helices [69]. Many research efforts have shown that peptoids are a

valuable avenue for future therapeutics and have shown to be

valuable protein interaction inhibitors [70].

In the ROSIE NCBB design application, minor rigid-body

perturbations along with backbone specific moves are iterated with

the design of residues on the NCBB scaffold. As input, the user

submits a Rosetta-formatted PDB file with a target protein and the

NCBB scaffold to be designed. Since this application does not do

large docking moves, the rigid body conformation of the NCBB

scaffold with respect to the target protein needs to be close to the

anticipated binding mode in order to achieve a successful design.

The user also can specify which residues to design on the NCBB

scaffold as well as how many design cycles and perturbations per

cycle the application will perform. The application selects a single

final design that is chosen from a filtered set of all decoys produced

(top 5% of total_score) and sorted by binding energy (REPACK_-

ENERGY_DIFF). Users can download the score file with

additional scoring information and all decoys produced can be

found in the decoys directory.

RosettaVIP: One of the first observations of early crystal

structures is that the hydrophobic cores of proteins are well-packed

[71]. Cavities in the cores of proteins are associated with loss of

stability and conformational specificity. Computational filters,

such as RosettaHoles, can identify packing defects in computa-

tionally designed structural models [72]. Typically, models with

defects are discarded. The RosettaVIP protocol identifies muta-

tions that are predicted to improve hydrophobic packing in the

cores of proteins, and therefore to generate mutants with

enhanced stability [73]. The application of this protocol has been

shown to ‘‘rescue’’ protein designs with packing defects. The

protocol has also proven itself capable of suggesting mutations that

can improve the stability of wild-type proteins.

The RosettaVIP protocol is iterative. Each iteration either

suggests a mutation that is predicted to improve the packing of the

protein core, or terminates the protocol if no such mutation can be

identified. The output of one iteration (with the new mutation and

a relaxed structural model) is the input for the next iteration. The

protocol takes as initial input a structural model in PDB format.

The user selects the total number of iterations (i.e., the maximum

number of mutations) to try; the protocol may be configured to

run iterations until no further mutations are found. Because the

protocol relies on a stochastic version of the RosettaHoles

algorithm to identify protein cavities, it is sometimes beneficial

to retry an iteration that fails to find a mutation in the hopes that a

second attempt will succeed. The user specifies the maximum

number of failed attempts at each iteration before the protocol is

terminated. Finally, the user may specify a list of residues that

should be excluded from mutation, if some prior activity of the

original protein is to be preserved. The output of the protocol is a

structural model in PDB format that incorporates all suggested

mutations and all structural relaxation performed during the

course of the protocol. Optionally, intermediate structural models

at the end of each successful iteration may be generated as output.

Server Usage to Date
From October 2012 to the time of writing (March 2013), more

than 778 users have registered. Some of the ROSIE users are

scientists who previously used our other servers (e.g. the

RosettaDock or RosettaAntibody server). Users of well-established

Rosetta protocols, such as RNA-Denovo were likely attracted by

links from lab web sites. Additionally, some users approached us

and volunteered to act as beta-testers. The current computational

demand on ROSIE is about 25,500 CPU-h per month, or 300,000

CPU-h annually, equivalent to 40 CPUs in continuous use. Since

its launch, ROSIE has completed more than 1833 jobs, reflecting

more than 116,000 CPU-hours of computational modeling

leveraged by the general biological and modeling communities.

Discussion

We have developed a core web server infrastructure called

ROSIE, the Rosetta Online Server that Includes Everyone, to

lower barriers to Rosetta application deployment as servers.

ROSIE was presented at the 2012 Rosetta Developers Conference

(August, 2012) to illustrate its speed in implementing the RNA de

novo application and to identify new protocols needing web

distribution. After this conference, the first ROSIE applications

RosettaDock and RNA-Denovo were joined by ERRASER, RNA

de novo with chemical shifts, Antibody, Sequence Tolerance,

Supercharge, Beta peptide design, NCBB design, and VIP

(Table 2). Additional servers in preparation are listed in Table 2.

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 7 May 2013 | Volume 8 | Issue 5 | e63906

The number of these applications, created on a timescale of a few

months, is similar to the number of applications previously

implemented in several years of Rosetta development, supporting

our hypothesis that the ROSIE framework would accelerate

serverification. These ROSIE protocols are now online, free of

charge for academic users, at http://rosie.rosettacommons.org.

The design philosophy of ROSIE was meant not only to

accelerate serverification, but to promote maximal sharing of data

and collaboration. This emphasis on sharing follows from the

premise of the RosettaCommons initiative – a shared source code

and a continuous open flow of scientific information, mostly

funded by public research funds. Six features of the present

manuscript derived from this largely open philosophy. First, this

manuscript is being submitted to an open access journal that does

not force privacy restrictions on described servers, unlike other

journals. Second, all ROSIE input forms and documentation are

open for anyone to view without registration. (Users are

encouraged to register an account to track their jobs, but this is

not required. Those who register receive email notifications for job

submission, start, and finish, and a link to the job status page.)

Third, documentation for how to use the server is a prerequisite

for deployment, promoting the writing of user-friendly explana-

tions of applications by developers. Fourth, by default, all input

and output data are shared publicly on the job queue, although for

those concerned about privacy there is an option to hide job

output. Fifth, as a further incentive for openness, jobs that are

available for open access are given priority access to the ROSIE

computing resources. Sixth, the job output can be easily shared

with others though email or via social networking widgets

including Facebook and Google+. Continuing our open philoso-

phy, we will make the source code for ROSIE tools available upon

request. Hopefully other research projects will benefit from the

plugin architecture for developing HPC web applications.

Serverification can also benefit the Rosetta codebase itself in

that it encourages common input and output file formats and

command line options, and otherwise promotes protocol unifica-

tion. Protocols also become more robust as they are challenged

with input cases from ROSIE users that were not tested or even

anticipated by the Rosetta protocol developers.

Our long-term goal is to provide free web versions of all core

Rosetta protocols. In the near future, Rosetta developers are

planning to use ROSIE to serverify a wide range of applications,

covering the full spectrum of available functionalities: small

molecule docking [20], multi-state design [21], flexible peptide

docking [9] [10], enzyme design [22], pKa prediction [74], and

scaffold grafting [23]. With the server tools already implemented

and detailed documentation available for new developers, the web

server creation process and ROSIE maintenance has become

streamlined. However, we anticipate two areas of improvement.

First, although presently the ROSIE computational resources are

not over-burdened, additional applications and users will eventu-

ally strain the system. Plans are being made to (1) continually

expand and upgrade lab clusters, (2) include clusters from

additional labs, (3) expand to national computing infrastructure

resources such as the Pittsburgh Supercomputing Center or the

Texas Advanced Computing Center (both funded by the National

Science Foundation) or the Department of Defense Supercomput-

ing Resource Center, and (4) allow ROSIE to use cloud resources

(Amazon Elastic Compute Cloud, IBM SmartCloud, Google

Cloud Platform, etc.), in which case users would pay for the

needed CPU hours. It is difficult to extrapolate the needed

computer power in the coming years, but exponential growth

would be expected given the compounding effects of adding new

users, adding new apps, and opening apps with larger computa-

tional demands (e.g. flexible backbone design or global docking).

A second area of improvement is incorporating more diverse

workflows. App design necessarily requires trade-offs between

ease-of-use (few control options) and a richer set of options

targeted toward advanced users. Our approach has been to favor

ease-of-use first with possible expansion later. For example,

capturing complex workflows requiring multiple stages of calcu-

lations whose results depend on previous calculations (e.g. stepwise

assembly of RNA motifs [75], RasRec for refining large proteins

with NMR data [76], or homology modeling including identifi-

cation of templates [9]), and these protocols cannot yet be

implemented. In these cases, subcomponents of the workflows can

be serverified to permit potential users to preview steps of the more

complex workflows. Finally, we note that emerging scripting

Table 2. Applications made available via the Rosetta Online Server Including Everyone (ROSIE), in chronological order of
development.

ROSIE Application Date Jobs Developer Status References

Docking Mar 2012 1069 Gray@JHU Public [11]

RNA Denovo (with NMR
chemical shifts)

Mar 2012 191 Das@Stanford Public [34,79]

Erraser Oct 2012 9 Das@Stanford Public [19]

Beta Peptide Design Nov 2012 5 Das@Stanford Public [20]

Supercharge Nov 2012 71 Kuhlman@UNC Public [52,80]

NCBB design Dec 2012 14 Bonneau@NYU Public [81]

Antibody Mar 2013 78 Gray@JHU Public [39]

Sequence Tolerance Mar 2013 - Kortemme@UCSF Public [58] [60]

VIP 2013 - Havranek@WUSTL Testing [73]

pKa 2013 Gray@JHU In preparation [82]

EnsembleDock 2013 Gray@JHU In preparation [83]

SnugDock 2013 Gray@JHU In preparation [44]

Ligand docking 2013 Meiler@Vanderbilt In preparation [84]

doi:10.1371/journal.pone.0063906.t002

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63906

systems [3,4] and interactive interfaces to Rosetta [3,5–7] are

lowering barriers to Rosetta applications through laptops. ROSIE

may offer a useful backend to these services as their users require

more computational power.

Methods

ROSIE Server
The ROSIE server was implemented with PostgreSQL as a

database, using the TurboGears web server framework. Dynamic

web controls and widgets were implemented in jQuery, jQuery-

UI, jqGrid and FlotCharts libraries. The code for the ROSIE

server is under version control, and available to all Rosetta

developers, through the same repository that hosts the Rosetta

codebase: svn.rosettacommons.org/trac/browser/trunk/rosie.

The applications are freely available on the World Wide Web to

the public at http://rosie.rosettacommons.org.

Protocol for ‘Serverification’ of a New Rosetta Application
The following summarizes the steps required for a developer to

turn an existing Rosetta application into a ROSIE server. It is a

snapshot of the protocol at the time of writing. A continuously

updated version of this protocol is being made available at http://

goo.gl/Sh7oB. Importantly, the protocol has been written by new

ROSIE developers and so captures the perspective required to

promote faster first development cycles for other new engineers.

ROSIE development tools and source code are available to

registered developers through RosettaCommons.

I. Install a local ROSIE test server

Download the VM (http://graylab.jhu.edu/ROSIE) and open

it with VirtualBox (http://www.virtualbox.org). Before you start,

you may want to do a ‘svn update’ in ‘,/rosie’ and ‘,/R/trunk/

rosetta’, and rebuild the Rosetta trunk, since they may be out of

date.

1 Modify the file ‘rosie/rosie.front/development.ini’. Find the

line ‘host = 192.168.0.64’ and comment it out. Enable the line

‘host = 127.0.0.1’.

2 To run the server: Open two terminals. In one of them, cd

into ‘rosie/rosie.back’ and execute ‘./run_rosie-daemon.sh’. In the

other terminal, cd into ‘rosie/rosie.front’ and execute ‘./run-rosie-

server.sh’.

3 Open ‘localhost:8080’ in your browser. Login as admin

(password: managepass).

II. Add a new application XXX (Tip: check other released apps

to see how to format the files, see table 3 for an overview of

file locations and their roles):

1 Create your application in rosie.back/protocols/XXX. You

need at least two files: submit.py and analyze.py. See ‘‘rna_de-

novo’’ for example files.

2 For machine-dependent files, edit rosie.back/data.template/

XXX. Edit rosie.back/rosie-daemon.ini.template, add useful

shorthands and add the app into the protocol line. Copy the

corresponding files to rosie.back/data/XXX and rosie.back/rosie-

daemon.ini so the VM server can read the files.

3 Add the corresponding controller in rosie.front/rosie/

controllers/XXX.py. See rna_denovo.py as an example.

4 Add your controller into controllers/root.py. In root.py,

search for ‘rna_denovo’. Add the two corresponding lines for your

application.

5 During the creation of the controller files, you may want to

make some validation checks for the input format. They are in

rosie.front/rosie/lib/validators. You might need to create your

own validation tests.

6 Create your page in rosie.front/rosie/templates/XXX/. You

need at least 3 pages: index.html, submit.html, and viewjob.html.

See rna_denovo for example.

7 Link your application to the main page in template/

index.html.

8 You may want an icon. Put a png file of , 1024*1024 into

rosie/public/image/XXX_icon.png, and link it to the pages.

9 For documentation, create pages in template/documenta-

tions. Also you need to edit controllers/documentation.py to let

the server know where it is. Then link your documentation to

documentation/index.html and in the other pages of your

application.

10 Edit rosie.front/rosie/websetup/bootstrap.py and add the

name of the new app.

Table 3. Files required for app implementation and their role.

Path Role

controllers/root.py Front-end: Main code that handles common tasks for all protocols such as queue and file
viewing, user registration, jobs management.

rosie.front/rosie/templates/index.html HTML template for server home page

rosie.front/rosie/lib/validators/ Front-end: Sanitizes and validates user inputs.

rosie.front/rosie/websetup/bootstrap.py Bootstraps the database.

rosie.front/rosie/controllers/XXX.py Front-end: Server-side app logic.

rosie.front/rosie/templates/XXX/index.html HTML template for home page of your protocol

rosie.front/rosie/templates/XXX/submit.html HTML template for submit page of your protocol

rosie.front/rosie/templates/XXX/viewjob.html HTML template for viewjob page of your protocol

rosie.back/protocols/XXX/submit.py Back-end: app script for pre-process steps (if any) and generation of HPC job
descriptions.

rosie.back/protocols/XXX/analyze.py Back-end: app script for post-processing steps. Called after HPC jobs complete. Handles
any computational heavy post-processing of job results before display to user.

rosie.back/rosie-daemon.ini
and rosie.back/rosie-daemon.ini.template

Back-end: Configuration script for back-daemon. Specify general daemon settings as well
as location of executable and supplemental files for various apps.

doi:10.1371/journal.pone.0063906.t003

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e63906

11 Go to rosie.front/. Run ‘source ,/prefix/TurboGears-2.2/

bin/activate’ then ‘python update_protocol_schema.py’ to update

the database.

12 Test the new application in the browser of the VM to make

sure it runs fine.

13 Create a new file rosie/doc/XXX.txt, put a short description

of protocol input, output, and command line flags. Also add an

example job, with input files and a simple readme, into rosie/

examples/validation_tests.

14 Commit the changes (use ‘svn commit –username XXXX’ to

specify the user name of the commit). Inform the ROSIE

administrators for integration into the central server.

Acknowledgments

We are grateful to P. Cordero for help in designing the RNA de novo

server.

Author Contributions

Contributed reagents/materials/analysis tools: SL FC SÓC BD KD DK

JX BW PDR PS BB JH BK TK RB JG RD. Wrote the paper: SL FC SÓC

BD KD DK JX BW PDR PS BB JH BK TK RB JG RD.

References

1. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. (2011)

ROSETTA3: an object-oriented software suite for the simulation and design of

macromolecules. Methods in Enzymology 487: 545–574.

2. Janin J (2010) Protein-protein docking tested in blind predictions: the CAPRI

experiment. Mol Biosyst 6: 2351–2362.

3. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta. Bioinformatics 26:

689–691.

4. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM, Khare SD, et al. (2011)

RosettaScripts: a scripting language interface to the Rosetta macromolecular

modeling suite. PloS one 6: e20161.

5. Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-time PyMOL

visualization for Rosetta and PyRosetta. PLoS ONE 6: e21931.

6. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, et al. (2012) Increased Diels-

Alderase activity through backbone remodeling guided by Foldit players. Nature

biotechnology 30: 190–192.

7. Jared Adolf-Bryfogle RD (2013) The PyRosetta Toolkit: A Graphical User

Interface for the Rosetta Software Suite. PlosOne RosettaCon2012 collection.

8. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J (2010)

Practically useful: what the Rosetta protein modeling suite can do for you.

Biochemistry 49: 2987–2998.

9. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis

using the Robetta server. Nucleic Acids Research 32: W526–W531.

10. Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: Antibody variable region

homology modeling server. Nucleic Acids Research 37: W474–W479.

11. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein

docking. Nucleic Acids Res 36: W233–238.

12. London N, Schueler-Furman O (2008) Funnel hunting in a rough terrain:

learning and discriminating native energy funnels. Structure 16: 269–279.

13. London N, Schueler-Furman O (2007) Assessing the energy landscape of

CAPRI targets by FunHunt. Proteins 69: 809–815.

14. London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta

FlexPepDock web server–high resolution modeling of peptide–protein interac-

tions. Nucleic Acids Research.

15. Raveh B, London N, Schueler-Furman O (2010) Sub-angstrom modeling of

complexes between flexible peptides and globular proteins. Proteins: Structure,

Function, and Bioinformatics 78: 2029–2040.

16. Liu Y, Kuhlman B (2006) RosettaDesign server for protein design. Nucleic Acids

Research 34: W235–W238.

17. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, et al. (2011)

Benchmarking and analysis of protein docking performance in Rosetta v3.2.

PLoS ONE 6: e22477.

18. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and

designing noncanonical RNA structure. Nat Meth 7: 291–294.

19. Chou FC, Sripakdeevong P, Dibrov SM, Hermann T, Das R (2013) Correcting

pervasive errors in RNA crystallography through enumerative structure

prediction. Nat Methods 10: 74–76.

20. Molski MA, Goodman JL, Chou F-C, Baker D, Das R, et al. (2013) Remodeling

a [small beta]-peptide bundle. Chemical Science 4: 319–324.

21. Bautista AD, Craig CJ, Harker EA, Schepartz A (2007) Sophistication of

foldamer form and function in vitro and in vivo. Current Opinion in Chemical

Biology 11: 685–692.

22. Daniels DS, Petersson EJ, Qiu JX, Schepartz A (2007) High-Resolution

Structure of a b-Peptide Bundle. Journal of the American Chemical Society 129:

1532–1533.

23. Goodman JL, Petersson EJ, Daniels DS, Qiu JX, Schepartz A (2007) Biophysical

and Structural Characterization of a Robust Octameric b-Peptide Bundle.

Journal of the American Chemical Society 129: 14746–14751.

24. Craig CJ, Goodman JL, Schepartz A (2011) Enhancing b3-Peptide Bundle

Stability by Design. ChemBioChem 12: 1035–1038.

25. Molski MA, Goodman JL, Craig CJ, Meng H, Kumar K, et al. (2010) b-Peptide

Bundles with Fluorous Cores. Journal of the American Chemical Society 132:

3658–3659.

26. Petersson EJ, Schepartz A (2008) Toward b-Amino Acid Proteins: Design,

Synthesis, and Characterization of a Fifteen Kilodalton b-Peptide Tetramer.
Journal of the American Chemical Society 130: 821–823.

27. Shandler SJ, Shapovalov MV, Dunbrack, Jr., DeGrado WF (2010) Development
of a Rotamer Library for Use in b-Peptide Foldamer Computational Design.

Journal of the American Chemical Society 132: 7312–7320.

28. Molski MA, Goodman JL, Chou F-C, Baker D, Das R, et al. (2013) Remodeling

a b-peptide bundle. Chemical Science 4: 319–324.

29. Szilágyi L (1995) Chemical shifts in proteins come of age. Progress in Nuclear

Magnetic Resonance Spectroscopy 27: 325–442.

30. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from

searching a database for chemical shift and sequence homology. J Biomol NMR
13: 289–302.

31. Kuszewski J, Gronenborn AM, Clore GM (1995) The impact of direct
refinement against proton chemical shifts on protein structure determination by

NMR. J Magn Reson B 107: 293–297.

32. Clore GM, Gronenborn AM (1998) New methods of structure refinement for

macromolecular structure determination by NMR. Proc Natl Acad Sci U S A
95: 5891–5898.

33. Vila JA, Aramini JM, Rossi P, Kuzin A, Su M, et al. (2008) Quantum chemical
13C(alpha) chemical shift calculations for protein NMR structure determination,

refinement, and validation. Proc Natl Acad Sci U S A 105: 14389–14394.

34. Sripakdeevong P CM, Chang AT, Erat MC, Ziegeler M, et al (2012) Consistent

structure determination of noncanonical RNA motifs from 1H NMR chemical

shift data. in preparation.

35. Das R, Baker D (2007) Automated de novo prediction of native-like RNA
tertiary structures. Proceedings of the National Academy of Sciences 104:

14664–14669.

36. Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and

designing noncanonical RNA structure. Nat Methods 7: 291–294.

37. Almagro JC, Beavers MP, Hernandez-Guzman F, Maier J, Shaulsky J, et al.

(2011) Antibody modeling assessment. Proteins 79: 3050–3066.

38. Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer-aided

antibody design. Protein Eng Des Sel 25: 507–521.

39. Sivasubramanian A, Sircar A, Chaudhury S, Gray JJ (2009) Toward high-

resolution homology modeling of antibody Fv regions and application to
antibody-antigen docking. Proteins 74: 497–514.

40. Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region
homology modeling server. Nucleic Acids Res 37: W474–479.

41. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in
protein loop reconstruction by robotics-inspired conformational sampling. Nat

Methods 6: 551–552.

42. Kuroda D, Shirai H, Kobori M, Nakamura H (2008) Structural classification of

CDR-H3 revisited: a lesson in antibody modeling. Proteins 73: 608–620.

43. Chaudhury S, Gray JJ (2008) Conformer selection and induced fit in flexible

backbone protein-protein docking using computational and NMR ensembles.
J Mol Biol 381: 1068–1087.

44. Sircar A, Gray JJ (2010) SnugDock: paratope structural optimization during
antibody-antigen docking compensates for errors in antibody homology models.

PLoS Comput Biol 6: e1000644.

45. Fields GB, Alonso DOV, Stigter D, Dill KA (1992) Theory for the aggregation

of proteins and copolymers. Journal Name: Journal of Physical Chemistry;

Journal Volume: 96; Journal Issue: 10; Other Information: PBD: 14 May 1992:
Medium: X; Size: pp 3974–3981.

46. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and
amyloid. Fold Des 3: R9–23.

47. Wang W (2005) Protein aggregation and its inhibition in biopharmaceutics.
International Journal of Pharmaceutics 289: 1–30.

48. Mitraki A, King J (1989) Protein Folding Intermediates and Inclusion Body

Formation. Nature Biotechnology 7: 690–697.

49. Heitz F, Morris MC, Divita G (2009) Twenty years of cell-penetrating peptides:

from molecular mechanisms to therapeutics. Br J Pharmacol 157: 195–206.

50. Cronican JJ, Beier KT, Davis TN, Tseng JC, Li WD, et al. (2011) A Class of

Human Proteins that Deliver Functional Proteins into Mammalian Cells In

Vitro and In Vivo. Chemistry & Biology 18: 833–838.

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e63906

51. Lund U, Rippe A, Venturoli D, Tenstad O, Grubb A, et al. (2003) Glomerular

filtration rate dependence of sieving of albumin and some neutral proteins in rat

kidneys. Am J Physiol Renal Physiol 284: F1226–1234.

52. Miklos AE, Kluwe C, Der BS, Pai S, Sircar A, et al. (2012) Structure-based

design of supercharged, highly thermoresistant antibodies. Chem Biol 19: 449–

455.

53. Der BS KC, Miklos AE, Jacak R, Lyskov S, Gray JJ, Georgiou G, Ellington AD,

Kuhlman B (2012) Alternative computational protocols for supercharging

protein surfaces for reversible unfolding and retention of stability. in preparation.

54. Lawrence MS, Phillips KJ, Liu DR (2007) Supercharging proteins can impart

unusual resilience. J Am Chem Soc 129: 10110–10112.

55. Mandell DJ, Kortemme T (2009) Computer-aided design of functional protein

interactions. Nat Chem Biol 5: 797–807.

56. Pokala N, Handel TM (2001) Review: protein design–where we were, where we

are, where we’re going. J Struct Biol 134: 269–281.

57. Humphris-Narayanan E, Akiva E, Varela R, S OC, Kortemme T (2012)

Prediction of mutational tolerance in HIV-1 protease and reverse transcriptase

using flexible backbone protein design. PLoS Comput Biol 8: e1002639.

58. Smith CA, Kortemme T (2010) Structure-Based Prediction of the Peptide

Sequence Space Recognized by Natural and Synthetic PDZ Domains. Journal

of Molecular Biology 402: 460–474.

59. Treynor TP, Vizcarra CL, Nedelcu D, Mayo SL (2007) Computationally

designed libraries of fluorescent proteins evaluated by preservation and diversity

of function. Proc Natl Acad Sci U S A 104: 48–53.

60. Smith CA, Kortemme T (2011) Predicting the Tolerated Sequences for Proteins

and Protein Interfaces Using RosettaBackrub Flexible Backbone Design. PLoS

ONE 6: e20451.

61. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, et al. (2008) A specificity

map for the PDZ domain family. PLoS Biol 6: e239.

62. Davis IW, Arendall WB, 3rd, Richardson DC, Richardson JS (2006) The

backrub motion: how protein backbone shrugs when a sidechain dances.

Structure 14: 265–274.

63. Smith CA, Kortemme T (2008) Backrub-Like Backbone Simulation Recapit-

ulates Natural Protein Conformational Variability and Improves Mutant Side-

Chain Prediction. Journal of Molecular Biology 380: 742–756.

64. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence

logo generator. Genome Res 14: 1188–1190.

65. Tošovská P, Arora PS (2010) Oligooxopiperazines as Nonpeptidic a-Helix

Mimetics. Organic Letters 12: 1588–1591.

66. Bullock BN, Jochim AL, Arora PS (2011) Assessing helical protein interfaces for

inhibitor design. J Am Chem Soc 133: 14220–14223.

67. Patgiri A, Jochim AL, Arora PS (2008) A hydrogen bond surrogate approach for

stabilization of short peptide sequences in alpha-helical conformation. Acc

Chem Res 41: 1289–1300.

68. Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, et al. (2010)

Inhibition of hypoxia inducible factor 1-transcription coactivator interaction by
a hydrogen bond surrogate alpha-helix. J Am Chem Soc 132: 941–943.

69. Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R (2009) A

preliminary survey of the peptoid folding landscape. J Am Chem Soc 131:
16798–16807.

70. Zuckermann RN, Kodadek T (2009) Peptoids as potential therapeutics. Curr
Opin Mol Ther 11: 299–307.

71. Lee B, Richards FM (1971) The interpretation of protein structures: estimation

of static accessibility. J Mol Biol 55: 379–400.
72. Sheffler W, Baker D (2009) RosettaHoles: rapid assessment of protein core

packing for structure prediction, refinement, design, and validation. Protein Sci
18: 229–239.

73. Borgo B, Havranek JJ (2012) Automated selection of stabilizing mutations in
designed and natural proteins. Proc Natl Acad Sci U S A 109: 1494–1499.

74. Kilambi KP, Gray JJ (2012) Rapid calculation of protein pKa values using

Rosetta. Biophys J 103: 587–595.
75. Sripakdeevong P, Kladwang W, Das R (2011) An enumerative stepwise ansatz

enables atomic-accuracy RNA loop modeling. Proc Natl Acad Sci U S A 108:
20573–20578.

76. Lange OF, Baker D (2012) Resolution-adapted recombination of structural

features significantly improves sampling in restraint-guided structure calculation.
Proteins 80: 884–895.

77. Friedland GD, Lakomek N-A, Griesinger C, Meiler J, Kortemme T (2009) A
Correspondence Between Solution-State Dynamics of an Individual Protein and

the Sequence and Conformational Diversity of its Family. PLoS Comput Biol 5:
e1000393.

78. Humphris EL, Kortemme T (2008) Prediction of Protein-Protein Interface

Sequence Diversity Using Flexible Backbone Computational Protein Design.
Structure 16: 1777–1788.

79. Das R, Baker D (2007) Automated de novo prediction of native-like RNA
tertiary structures. Proc Natl Acad Sci U S A 104: 14664–14669.

80. Der BS, Kluwe C, Miklos AE, Jacak R, Lyskov S, et al. (2013) Alternative

computational protocols for supercharging protein surfaces for reversible
unfolding and retention of stability. Submitted to PLoS One Rosetta Special

Collection.
81. Drew K, Renfrew PD, Craven T, Butterfoss GL, Chou F-C, et al. (2013) Adding

Diverse Noncanonical Backbones to Rosetta: Enabeling Peptidomimetic and
Foldamer Design. Submitted to PLoS One Rosetta Special Collection.

82. Kilambi Krishna P, Gray Jeffrey J (2012) Rapid Calculation of Protein pKa

Values Using Rosetta. Biophysical journal 103: 587–595.
83. Chaudhury S, Gray JJ (2008) Conformer Selection and Induced Fit in Flexible

Backbone Protein–Protein Docking Using Computational and NMR Ensembles.
Journal of Molecular Biology 381: 1068–1087.

84. Lemmon G, Meiler J (2012) RosettaLigand Docking with Flexible XML

Protocols. Methods in Molecular Biology 819: 143–155.

ROSIE: Rosetta Online Server That Includes Everyone

PLOS ONE | www.plosone.org 11 May 2013 | Volume 8 | Issue 5 | e63906

