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Abstract

Background: ATAC-seq (Assays for Transposase-Accessible Chromatin using sequencing) is a recently developed
technique for genome-wide analysis of chromatin accessibility. Compared to earlier methods for assaying chromatin
accessibility, ATAC-seq is faster and easier to perform, does not require cross-linking, has higher signal to noise ratio,
and can be performed on small cell numbers. However, to ensure a successful ATAC-seq experiment, step-by-step
quality assurance processes, including both wet lab quality control and in silico quality assessment, are essential. While
several tools have been developed or adopted for assessing read quality, identifying nucleosome occupancy and
accessible regions from ATAC-seq data, none of the tools provide a comprehensive set of functionalities for
preprocessing and quality assessment of aligned ATAC-seq datasets.

Results: We have developed a Bioconductor package, ATACseqQC, for easily generating various diagnostic plots to help
researchers quickly assess the quality of their ATAC-seq data. In addition, this package contains functions to preprocess
aligned ATAC-seq data for subsequent peak calling. Here we demonstrate the utilities of our package using 25 publicly
available ATAC-seq datasets from four studies. We also provide guidelines on what the diagnostic plots should look like
for an ideal ATAC-seq dataset.

Conclusions: This software package has been used successfully for preprocessing and assessing several in-house and
public ATAC-seq datasets. Diagnostic plots generated by this package will facilitate the quality assessment of ATAC-seq
data, and help researchers to evaluate their own ATAC-seq experiments as well as select high-quality ATAC-seq
datasets from public repositories such as GEO to avoid generating hypotheses or drawing conclusions from low-quality
ATAC-seq experiments. The software, source code, and documentation are freely available as a Bioconductor package
at https://bioconductor.org/packages/release/bioc/html/ATACseqQC.html.
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Background
In eukaryotes, nuclear DNA is primarily found packaged
in nucleosomes, each of which consists of ~ 147 bp of
DNA coiled around a histone octamer core. Two adja-
cent nucleosomes are usually spaced by linker DNA of
~ 20–90 bp which can be bound by a linker histone H1
[1] . In general, the interplay between histones and DNA
serves as an important regulatory point for controlling
gene expression. Most notably, transcriptionally active
elements, such as promoters and enhancers, are defined
by short regions of DNA that are devoid of direct his-
tone interactions. These regions of “open” chromatin are
usually occupied by transcription factors that facilitate
gene transcription. By contrast, the promoters of genes
that are not actively expressed in a given cell type exhibit
much tighter association with histones, which prevents
transcription factors from activating transcription and
contributes to gene repression. Given the strong
correlation between open chromatin and active regula-
tory elements, this topological feature has become a
valuable marker that researchers can use to identify
putative promoter and enhancer elements of interest.
In recent years, several high-throughput methods have

been developed to assess chromatin accessibility, nucleo-
some positioning, and occupancy of DNA-associated
proteins. These include three direct chromatin accessibility
methods (DNase-seq [2], FAIRE-seq [3], and ATAC-seq
[4]) and one indirect method (MNase-seq [5]). Among
these methods, ATAC-seq has gained considerable popular-
ity for several reasons [6]. First, chromatin accessibility pro-
files identified by ATAC-seq are comparable to other
methods, including MNase-seq, DNase-seq and FAIRE-seq,
while yielding comparable or even higher signal-to-noise
ratios [7, 8]. Second, ATAC-seq is easier and faster to carry
out than other methods for assaying chromatin accessi-
bility. Third, it does not require fixation of cells, thereby
capturing native chromatin states. Importantly, ATAC-Seq
can be reliably applied to low numbers of cells and has
been successfully applied to single cells [9, 10]. More re-
cently, ATAC-seq has been further optimized to profile
chromatin states in properly frozen cells [11, 12], making
the method applicable to clinical studies.
Although it is relatively easy to perform ATAC-seq

experiments, analysis of ATAC-seq data is not trivial. A
number of tools have been developed or adopted for
assessing sequencing quality (e.g. FASTQC [13], ATAC-
Seq/DNase-Seq Pipeline [14], I-ATAC [15], and ataqv
[16]), identifying nucleosome occupancy (e.g. NucleoA-
TAC [17] and DANPOS2 [18]), and accessible chromatin
regions, a.k.a. peaks (MACS2 [19]). However, none of the
tools provide a comprehensive set of functionalities for
preprocessing and quality assessment of aligned ATAC-
seq datasets. For example, ATAqC/ATAC-seq/DNase-seq
pipelines have been used for the ENCODE project, which

adopt the same quality assessment (QA) criteria as ChIP-
seq data such as the use of duplication metrics, but do not
implement any ATAC-seq-specific QA. To help re-
searchers preprocess and quickly evaluate the quality of
their ATAC-seq data, we developed a Bioconductor pack-
age, ATACseqQC. Our ATACseqQC package not only in-
cludes most of the commonly adopted QA metrics such
as fragment size distribution, mitochondrial read fraction,
duplication rate, and aggregated read distribution along
proximal promoters, but also provides new functionalities
such as gene-centric view of signal distribution, library
complexity evaluation and sequencing depth analysis.

Methods
Implementation and functionalities of ATACseqQC
ATACseqQC is implemented as a Bioconductor [20]
package in R [21], a popular programming language and
framework for statistical computation and graphics.
Main functions implemented in the ATACseqQC pack-
age are listed in Table 1.
To promote component reusability and compatibility

among Bioconductor packages, several existing Bioconduc-
tor packages are leveraged. Alignment results in BAM files
are first efficiently imported into R for quality assessment
as GenomicAlignments objects using the readBamFile or
scanBam function in the Rsamtools [22] and Genomi-
cRanges [23] packages. The bamQC function implemented
in our package can be used to assess the quality of the
alignments and to generate filtered BAM files by removing
reads with low alignment scores and reads derived from
mitochondrial DNA or PCR/optical duplicates. In addition,
this function outputs the percentage of reads of mitochon-
drial origin, duplication metrics (percentage of duplicate
reads, non-redundant fraction (NRF), PCR bottleneck coef-
ficients 1 and 2 [24]), and other mapping statistics.
Next, the fragSizeDist function in ATACseqQC can be

used to plot the fragment size distributions of the fil-
tered BAM files. Then, coordinates of read alignments
are shifted using the shiftGAlignmentsList and shiftReads
functions in ATACseqQC as described [4]. Two
functions, splitGAlignmentsByCut and writeListOfGA-
lignements, are implemented for separating shifted reads
into nucleosome-free and oligo-nucleosome-bound
regions, which are used for the following analyses. To
visualize aggregated signals around transcription start
sites (TSSs) as heatmaps and histograms, the enriched-
Fragments, featureAlignedHeatmap and matplot func-
tions from packages ATACseqQC, ChIPpeakAnno and
graphics [25, 26] are used. In addition, IGVSnapshot is
implemented to allow streamlined visualization of read
distribution along any genomic regions of interest such
as those containing housekeeping genes, leveraging the
SRAdb package [27] and the Integrative Genomics
Viewer (IGV) [28].

Ou et al. BMC Genomics  (2018) 19:169 Page 2 of 13



For transcription factor footprint analysis, pwmScore,
plotFootprints and factorFootprints are implemented in
ATACseqQC. It makes use of genomic sequences as
BSgenome objects, available for various reference
genomes, which can be efficiently accessed by methods
in the BSgenome package [29], and of the position
frequency matrices (PFMs) of binding motifs of tran-
scription factors from the Jaspar database in the MotifDb
package [30]. The footprint analysis also leverages the
matchPWM function in the BSgenome package [29, 31]
to search potential binding sites for a given DNA-
binding protein, represent the matched genomic coordi-
nates as GenomicRanges objects, and plot the motif as a
sequence logo using the motifStack package [32]. The
factorFootprints function first uses the matchPWM
function to predict the binding sites with an input pos-
ition weight matrix (PWM) for a DNA-binding protein.
Next, it calculates and plots the average cutting rates for
those binding sites and 100-bp flanking sequences.
For the library complexity evaluation and sequence

depth analysis, readsDupFreq, estimateLibComplexity, and
saturationPlot are implemented in ATACseqQC. The
estimateLibComplexity function is built on the ds.min-
count.bootstrap function implemented in preseqR [33].
An installation guide and additional generic use cases

for ATACseqQC are described in the vignette and
manual provided with the package.
Case studies.

Twenty-five ATAC-seq datasets from four studies were
downloaded from NCBI SRA (Table 2) and analyzed to
illustrate the utilities of ATACseqQC [4, 34, 35] (Vallés
AJ and Izquierdo-Bouldstridge A. unpublished). First, se-
quence files in the SRA format were converted to the
fastq format using the SRA toolkits. Then, the quality of
raw reads per library was assessed using FASTQC [13].
Reads were then aligned to the human reference genome
GRCh38.p10 using the aligner BWA-mem with default
settings except an explicit option: -M. SAM files for read
alignments were converted into sorted BAM files and fil-
tered using SAMtools (v1.4.1) [36] to remove reads
meeting the following criteria: (1) reads aligning to the
mitochondrial genome; (2) reads from PCR/optical du-
plicates; (3) reads with mapping quality less than or
equal to 20; (4) read pairs aligned discordantly; and (5)
read pairs with mapping template shorter than 38 bp or
greater than 2000 bp.
Post-alignment quality of the ATAC-seq data was assessed

by using our ATACseqQC package. First, we determined the
fragment size distributions of the filtered BAM files. Given
that size distributions of libraries from the same studies were
more similar than those from different studies, further qual-
ity control steps were performed only for the representative
sequencing libraries from each study using reads aligned to
human chromosomes 1 and 2 unless otherwise stated. Coor-
dinates of read alignments were shifted as described [4].
Based on the inferred size of the sequenced fragments, read

Table 1 Functions implemented in the ATACseqQC package

Function Name Usage Description

readBamFile Read in bam files to R leveraging Rsamtools and create a GAlignments object

bamQC Perform quality assessment on alignments and Filter BAM files to remove duplicates, mitochondrial reads and
low-quality or discordant alignments

fragSizeDist Plot size distribution of sequenced fragments in ATAC-seq libraries

IGVSnapshot Streamline the visualization of read distribution along genomic regions of interest, such as those containing
housekeeping genes

shiftGAlignmentsList Shift 5′ end of aligned reads in GAlignments object

shiftReads

splitGAlignmentsByCut Split the shifted bam files based on ranges of fragment sizes in nucleosome-free, mono-, di-, tri-nucleosome
bins and so on

splitBam Shift 5′ end of aligned reads and split the updated bam files in one step

writeListOfGAlignments Export lists of GAlignment objects back into bam files

enrichedFragments Get enrichment signals for nucleosome-free and nucleosome-bound signals

pwmscore Calculate the maximal similarity score for each given sequence against a PWM of a TF binding motif

factorFootprints Discover and visualize footprints of a given transcription factor

plotFootprints

readsDupFreq Estimate library complexity, available for version 1.3.12 or later

estimateLibComplexity

saturationPlot Plot saturation curves based on the total number or width of significant peaks detected for a serial of
subsamples, available for version 1.3.12 or later
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Table 2 ATAC-seq datasets used for the ATACseqQC case studies. The four datasets chosen for detailed quality control are
highlighted in bold

SRA Run Accession Condition Comment Study Description Reference

SRR891269 EBV-transformed
lymphoblastoid
cell line

GM12878, 50 k cells Transposition of native chromatin for fast and sensitive
epigenomic profiling of open chromatin, DNA-binding
proteins and nucleosome position

[4]

SRR891270 EBV-transformed
lymphoblastoid
cell line

GM12878, 50 k cells

SRR891271 EBV-transformed
lymphoblastoid
cell line

GM12878, 50 k cells

SRR891272 EBV-transformed
lymphoblastoid
cell line

GM12878, 500 cells

SRR891274 EBV-transformed
lymphoblastoid
cell line

GM12878, 500 cells

SRR891275 CD4+ T-cells
purified using
negative selection

CD4+ T cells, day 1

SRR891276 CD4+ T-cells
purified using
negative selection

CD4+ T cells, day 1

SRR891277 CD4+ T-cells
purified using
negative selection

CD4+ T cells, day 2

SRR891278 CD4+ T-cells
purified using
negative selection

CD4+ T cells, day 2

SRR3295017 Uninfected HFF_uninfected Toxoplasma gondii remodels the cis-regulatory landscape
of infected human host cells

[30]

SRR3295018 HFF cells, uninfected HFF_uninfected

SRR3295019 HFF cells, uninfected HFF_uninfected

SRR3295020 HFF cells infected
with T. gondii

HFF_infected

SRR3295021 HFF cells infected
with T. gondii

HFF_infected

SRR3295022 HFF cells infected
with T. gondii

HFF_infected

SRR5720369 J-Lat A72 cells
treated with DMSO

Replicate 1 The Short Isoform of BRD4 Promotes HIV-1 Latency by
Engaging Repressive SWI/SNF Chromatin Remodeling
Complexes

[29]

SRR5720370 J-Lat A72 cells
treated with JQ1

Replicate 1

SRR5720371 J-Lat A72 cells
treated with DMSO

Replicate 2

SRR5720372 J-Lat A72 cells
treated withJQ1

Replicate 2

SRR5800797 Breast cancer cell
line T47D,
multiH1sh Control

Replicate 1, 75 k cells Analysis of the DNA accessibility upon knocking-down
multiple histone H1 variants by ATAC-seq

Vallés AJ and
Izquierd-Bouldstridge
A., unpublished

SRR5800798 Breast cancer cell
line T47D,
multiH1sh Control

Replicate 2, 75 k cells

SRR5800799 Breast cancer cell
line T47D,
multiH1sh Dox

Replicate 1, 75 k cells
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alignments were split into nucleosome-free bin (38–100 bp),
intermediate bin 1 (100–180 bp), mono-nucleosome bin
(180–247 bp), intermediate bin 2 (247–315 bp), di-
nucleosome bin (315–473 bp), intermediate bin 3 (473–
558 bp), tri-nucleosome bin (558–615 bp), and others (615–
2000 bp) [4]. For plotting read coverage signal around TSSs
from different inferred chromatin states, reads in
nucleosome-free and mono-nucleosome bins were directly
used, while reads in di- and tri-nucleosome bins were ex-
tended based on their aligned templates and then were split
into two and three reads, respectively. Reads in intermediate
bins and longer than 615 bp were not included for plotting
signal distribution around TSSs. Footprints of a DNA
binding protein, CTCF, were also assessed.
Sequencing depth analysis was performed for a high

quality ATAC-seq dataset (SRR891270). MACS2 was
used to call broad peaks for a series of subsamples (10%,
20%, 30%, …, 80%, 90%) of the filtered BAM file and the
full dataset. The number of significant peaks as well as
the total width of significant peaks (FDR ≤ 0.05) from
each subsample and the full dataset was plotted against
the size of the corresponding subsample or the full data-
set. The loess.smooth function from the stats package
was used to generate a smoothed saturation curve.
Library complexities were evaluated for five ATAC-seq

datasets (three 50 K–cell replicates: SRR891269-
SRR891271 and two 500-cell replicates: SRR891272 and
SRR891274), using the BAM files with mitochondria-
derived reads removed.
To assess the effect of sequencing depth on diagnostic

plots, the BAM file from a high-quality dataset (SRA
run accession SRR891270) [4] was subsampled to 10%,
25%, 50% and 75% of the total number of filtered align-
ments. All resulting sub-datasets were assessed using
ATACseqQC.
Scripts used for the case studies are available in

Additional file 1.

Results
To help researchers quickly assess the quality of
their ATAC-seq datasets, we have implemented a

comprehensive set of functionalities in ATACseqQC.
Detailed functional comparisons between ATAC-
seqQC and existing tools are listed in Additional file 2:
Table S1. Below, we demonstrate the utilities of our
package using 25 publicly available ATAC-seq data-
sets from four studies.

Quality assessment of raw and aligned reads, and
filtering alignments
For bioinformatics analysis of ATAC-seq data, quality of
reads per library is assessed using FASTQC. If raw reads
pass FASTQC quality control, then they can be aligned
to a reference genome of choice using BWA-mem [37],
Bowtie (for ≤ 50-bp reads), or Bowtie2 (for > 50-bp
reads) [38]. Otherwise, quality-based trimming of reads
needs to be performed using tools such as Trimmomatic
[39]. Adaptor trimming is optional since these aligners
can conduct soft-clipping during alignment. Before
performing downstream quality assessment and other
analysis, the resulting read alignments are evaluated and
filtered using the bamQC function in the ATACseqQC
package or external tools, such as SAMtools [36], to
remove identical alignments most likely resulting from
PCR/optical duplicates. In addition, reads mapping to
non-nuclear (e.g. mitochondrial) DNA, which is
nucleosome-free and an ideal substrate for Tn5 transpo-
sase, are removed, as are those of low mapping quality
or those exhibiting discordant mapping.
Per base quality assessment results from FASTQC,

and summary statistics of read mapping and filtering
using BWA-mem [37] and SAMtools [36] for the 25
ATAC-seq samples are shown in Additional file 3:
Table S2. The results from FASTQC show that all 25
datasets have very good sequencing quality. In
contrast, the proportions of reads mapping to the
mitochondrial genome showed a large degree of vari-
ation (1.2–74.0%) from study to study, although the
proportions were more similar within studies, as were
the sequence duplication rates (0.6–38.0%). These re-
sults underscore the importance of depleting

Table 2 ATAC-seq datasets used for the ATACseqQC case studies. The four datasets chosen for detailed quality control are
highlighted in bold (Continued)

SRA Run Accession Condition Comment Study Description Reference

SRR5800800 Breast cancer cell
line T47D,
multiH1sh Dox

Replicate 2, 75 k cells

SRR5800801 Breast cancer cell
line T47D, RDsh
control

Replicate 1, 75 k cells

SRR5800802 Breast cancer cell
line T47D, RDsh
Dox Control

Replicate 1, 75 k cells
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mitochondria during nuclei preparation to make
ATAC-seq more cost effective, and justify the neces-
sity of filtering mitochondrial reads and duplicates as
preprocessing steps.

Assessment of insert size distribution
ATAC-seq leverages the hyperactive Tn5 transposase,
preloaded with sequencing adaptors, to simultaneously
fragment transposase-accessible DNA and tag the
fragmented DNA with the sequencing adaptors, a
process called tagmentation. Tn5 transposase prefer-
entially inserts sequencing adaptors into chromatin
regions of higher accessibility. Notably, besides in vivo
chromatin states, frequency of Tn5 transposition also
depends on DNA sequence [40] and transposase con-
centration. It is always recommended to optimize the
ratio of cell number and enzyme concentration to
better capture in vivo chromatin accessibility profiles.
Thus, the size distribution of sequenced fragments of
ATAC-seq libraries is an important metric of quality
assessment.
High quality ATAC-seq libraries generally contain

about 50% of post-filtering reads as short fragments
(< 100 bp), which represent nucleosome-free regions.
In addition, the Tn5 transposase inserts sequencing
adaptors into the linker DNA between neighboring
nucleosomes. The remaining reads from larger frag-
ments therefore come from nucleosome-bound but
open chromatin regions. The insert size distribution
of all the fragments should show an obvious
downward laddering pattern reflecting the amount
and length of DNA fragments from nucleosome-free
regions, and those associated with one to several nu-
cleosomes. The size distributions of filtered sequence
fragments for all 25 samples from the four studies are
plotted using fragSizeDist (Fig. 1 and Additional file 4:
Figure S1). The results suggest that size distributions
of libraries within studies are more similar to each
other than those between studies. A typical size dis-
tribution plot for a successful ATAC-seq experiment
is shown in Fig. 1a. Such plots can generate valuable
insights into how to improve sample preparation. For
example, results such as those in Fig. 1j suggest that
ATAC-seq experiments with a too high ratio of Tn5
transposase concentration to the number of cells
often leads to over-transposition, resulting in
increased background signals and reduced signal-to-
noise ratio (also see Fig. 2 and Additional file 5:
Figure S2). In comparison, size distributions like those
in Fig. 1g might have resulted from biased size
selection during library preparation, likely due to an
improper ratio of magnetic beads to DNA con-
centration [41, 42].

Preprocessing read alignments in BAM files
The Tn5 transposase has been shown to function as a
dimer and inserts the two sequencing adaptors into
target regions separated by 9 bp [43]. For downstream
analysis, such as peak-calling and footprint analysis,
coordinates of all read alignments in the filtered
BAM file thus need to be shifted. Within the ATAC-
seqQC package, the function shiftGAlignmentsList can
be used to shift the chromosomal location of the
aligned reads. By default, 5′ of the reads aligned to
the positive and negative strands are offset by + 4 bp
and − 5 bp, respectively. Additionally, prior to
drawing several other diagnostic plots, reads need to
be separated into different bins based on their in-
ferred in vivo chromatin origins, i.e., nucleosome-free
and oligo-nucleosome-bound such as mono-, di-, and
tri-nucleosome regions, using the function
splitGAlignmentsByCut.

Genome-wide and gene-centric visualization of signals
around transcription start sites (TSSs)
Promoter regions of active genes are in an open
chromatin state. Ideally, ATAC-seq fragments shorter
than 100 bp (i.e., inferred nucleosome-free frag-
ments) should cluster immediately upstream of TSSs.
By contrast, fragments corresponding to mono-, di-
or tri-nucleosomes should be depleted from TSSs of
active promoters throughout the genome, but display
periodic peaks of read density immediately upstream
and downstream of those TSSs. Signals around TSSs
from nucleosome-free fragments and from oligo-
nucleosome-occupied fragments are shown as side-
by-side heatmaps and the average read coverage
plots for four representative ATAC-seq libraries from
4 different studies (Fig. 1b, c, e, f, h, i, k, and l).
The promoters are ordered by descending signal in-
tensities of nucleosome-free fragments at the TSSs.
Side-by-side heatmaps, depicting signals around TSSs
from nucleosome-free fragments and from oligo-
nucleosome-occupied fragments, facilitates the
visualization of expected or unexpected nucleosome
patterning. Figure 1b and c show a successful
ATAC-seq experiment with an increased signal im-
mediately proximal to TSSs in nucleosome-free bins
and nucleosome occupancy patterns in the further
neighboring regions around TSSs in the nucleosome-
bound bins. In contrast, Fig. 1k and l depict a failed
experiment where there is almost no enrichment of
signal around TSS from inferred nucleosome-free
reads and the nucleosome positioning signals are
barely detected. This could be caused by over-
transposition during tagmentation as there are
several-fold more nucleosome-free reads than
nucleosome-bound reads (Fig. 1j and l).

Ou et al. BMC Genomics  (2018) 19:169 Page 6 of 13



a b c

d e f

g h i

j k l

Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Diagnostic plots for four representative ATAC-seq datasets: SRR891270, SRR3295017, SRR5720369 and SRR580802. (a, d, g and j) Size distributions
of sequenced fragments with reads passed filtering criteria for each library. (b, e, h and k) Heatmaps showing the distributions of signals around
transcription start sites (TSSs), resulting from inferred nucleosome-free fragments and nucleosome-bound (mono-, di- and tri-nucleosome) fragments.
To plot TSS-associated signals arising from nucleosome-bound fragments, fragments associated with di- and tri-nucleosomes were split into two and
three sub-reads in silico, respectively. (c, f, i and l) Smoothed histograms of signals showing in b, e, h and k. The sample corresponding to SRR891270
was optimally transposed by Tn5, preloaded with sequencing adapters, while the sample resulting in SRR580802 was over-transposed. The other two
datasets were resulted from sub-optimal transposition. Biased size selection could have occurred during library preparation for SRR5720369. Shown
here are signals around TSSs on the human chromosomes 1 and 2

a

b

c

d

e

Fig. 2 Read distribution along genomic regions containing housekeeping genes for the optimal (SRR891270), near optimal (SRR3295017 and
SRR5720369) and over-transposed (SRR580802) ATAC-seq libraries. (a) C1orf43; (b) CHMP2A; (c) EMC7; (d) GPI; and (e) PSMB2
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While the heatmaps and histogram plots provide a
genome-wide overview of aggregated signals around
TSSs, read distribution along specific genomic re-
gions, such as those containing actively transcribed
genes and their flanking regions, can give an more in-
tuitive and detailed view of the quality of ATAC-seq
data. Therefore, we have developed the function
IGVSnapshot to allow streamlined visualization of
ATAC-seq results at genomic regions of interest.
Housekeeping genes are known to be expressed
across many tissue types [44]. Therefore, signal en-
richment is expected in some regulatory regions of
housekeeping genes in successful ATAC-seq experi-
ments, which provides valuable insights into the qual-
ity of the ATAC-seq library. As expected, signals are
enriched at the proximal promoters and/or enhancers
of 10 human housekeeping genes, including C1orf43,
CHMP2A, EMC7, GPI and PSMB2, for the optimal
or near-optimal ATAC-seq libraries (SRR891270,
SRR3295017 and SRR5720) (Fig. 2 and Additional file
5: Figure S2). By contrast, enrichment was barely ob-
served in the over-transposed ATAC-seq library
(SRR580802), even though many more reads were
sequenced for this library. These results suggest that the
signal distribution around housekeeping genes could serve
as another indicator of library quality.

Assessment of footprints of DNA-binding factors
In open chromatin regions, DNA stably bound by
DNA-binding proteins, such as transcription factors
(TFs), can be protected from Tn5-mediated insertion
of sequencing adaptors, while the flanking open
regions are not. As a result, these protein-bound
regions will be depleted of signal from adaptor inser-
tions and are referred to as “footprints.” Thus, the
existence of a “footprint” suggests the presence of a
DNA-binding protein at that site. By plotting the ag-
gregated signals from short-reads (< 100 bp) along
predicted binding sites for DNA-binding proteins, we
expect to observe “footprints” at known binding
motifs. The factorFootprints function can be used to
generate footprint plots. It first uses the matchPWM
function in the Bsgenome package to predict the bin-
ding sites with an input position frequency matrix
(PFM) for a DNA-binding protein. Next, it calculates and
plots the average cutting rates for those binding sites and
100-bp flanking sequences. Footprints of a DNA-binding
protein, CTCF, for the four representative ATAC-seq
libraries are shown in Fig. 3. Fig. 3a shows clear CTCF
footprints while Fig. 3d has a much shallower valley or
less obvious footprints, despite the fact that more than
two folds of reads were sequenced for the experiment cor-
responding to Fig. 3d than for the experiment

corresponding to Fig. 3a, indicative of a non-optimized
ATAC-seq experiment condition.

Assessment of sequencing depth and library complexity
The results from both peak number- and peak
width-based saturation analysis suggest that ATAC-
seq library SRR89127 was not sequenced to a
saturated depth, although the rate of increase in the
total number or width of peaks decreases slightly
after 10 million fragments passing filtering criteria
(Fig. 4a and b). To determine whether the library is
complex enough to warrant further sequencing, we
performed library complexity evaluation for this li-
brary using the function estimateLibComplexity,
along with two additional biological replicates con-
taining 50 K cells and two libraries from 500 cells.
As shown in Fig. 4c, the library complexities are
greater for the libraries containing higher number of
cells compared to those containing lower number of
cells, and are different even among biological repli-
cates. These results identified two 50 K–cell libraries
with higher complexities for further sequencing. It is
important to note that library complexity may not
be comparable among different treatment conditions,
cell types or developmental stages due to variations
in chromatin states. However, biological replicates
should have similar library complexity.

Assessment of the effect of sequencing depth on some
diagnostic plots
To determine whether sequencing depth affects the
patterns in various diagnostic plots, we randomly
subsampled the BAM files from a successful experi-
ment (SRR891270). The results show that the frag-
ment size distribution and the aggregated signals
around TSSs from the subsamples with as low as 2.6
million uniquely mapped reads (Additional file 6:
Figure S3) exhibit similar patterns to that of the full
dataset (more than 26 million uniquely mapped
reads) (Fig. 1a–c), and are easily distinguishable from
that of the failed experiment (Fig. 1j–l). By contrast,
although the footprints from the subsamples remain
evident (Additional file 6: Figure S3), the height of
the valley decreases as the depth decreases. These
results suggest that fragment size distribution and
nucleosome positioning pattern around TSSs are ro-
bust indicators of the quality of ATAC-seq data, and
footprint patterns are more comparable for experi-
ments with similar number of uniquely mapped
reads, at least for stably bound DNA-binding pro-
teins such as CTCF. In light of these observations,
we recommend using a subset of the uniquely
aligned reads as low as 3 million for generating all
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diagnostic plots except footprints to speed up the in
silico quality control process.

Discussion
ATAC-seq libraries are usually sequenced in a paired-
end mode for better estimating insert size distribution
and inferring in vivo chromatin states associated with
the reads. In addition to the multiple steps of quality
control performed before ATAC-seq libraries are
sequenced [9, 11], post-sequencing in silico quality
assessment is strongly recommended for diagnosis
and assurance purposes. Although some tools have
been adopted or developed for quality control and analysis
of ATAC-seq data in the past years (see Introduction and
Additional file 2: Table S1), to the best of our knowledge,
our ATACseqQC package provides the most comprehensive
and integrated set of functionalities for both quality assess-
ment and preprocessing of aligned ATAC-seq data for
further downstream analysis. Besides most of the

commonly adopted QA metrics such as fragment size dis-
tribution, mitochondrial read fraction, duplication rate, and
aggregated read distribution along proximal promoters,
ATACseqQC also provides several new functionalities such
as gene-centric view of signal distribution, library complex-
ity evaluation and sequencing depth analysis.
An appropriate fragment size distribution is generally a

prerequisite for a successful ATAC-seq assay. However,
this metric alone is not necessarily a sufficient condition
for a library to be of good quality. Thus, in our package,
simple analysis of size distribution is integrated with sev-
eral additional diagnostic plots and analyses, such as ag-
gregated TSS enrichment plots, footprint plots of tightly
bound DNA-binding factors, and gene-level visualization
of ATAC-seq signal. By applying these additional diagnos-
tic tools, we can achieve greater confidence in library
quality. For example, because promoter regions of active
genes are in an open chromatin state and have a stereo-
typical pattern of ATAC-Seq mapping, we can use the TSS

a b

c d

Fig. 3 CTCF footprints inferred from the four representative ATAC-seq datasets: SRR891270 (a), SRR3295017 (b), SRR5720369 (c) and SRR580802
(d). Shown here are aggregated CTCF footprints on the human chromosomes 1 and 2
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enrichment plot, in parallel to size distribution, to distin-
guish high quality libraries from low quality ones by visu-
alizing nucleosome-free fragment density around TSS
across the genome. An important observation from our
application of ATACseqQC on previously published librar-
ies is that an ATAC-seq library of an optimal or near-

optimal distribution of fragment size may not necessarily
have enough complexity or sequencing depth. Therefore,
we implemented and integrated several new functions,
such as estimateLibComplexity and saturationPlot into
ATACseqQC (Table 1) that together provide a comprehen-
sive assessment of ATAC-seq library quality.

ba

c

Fig. 4 Sequence depth analysis and library complexity evaluation. It is important to know that it is not meaningful to perform saturation analysis of
sequencing depth or library complexity for over-transposed ATAC-seq assays. (a) Total peak number-based saturation analysis of sequencing depth for
SRR891270. Sequenced fragments in the filtered BAM file (called effective fragments here) are subsampled to get 10%, 20%, 30%…, 80% and 90% of total
effective fragments. Broad peaks were called for each subsample and the full dataset using MACS2. The numbers of significant peaks (FDR≤ 0.05) are
plotted against the corresponding numbers of effective fragments. A smooth curve is fitted by using the geom_loess function in the ggplot2 package. The
gray band shows the 95% confidence interval of the predicted peak numbers. (b) Total peak width-based saturation analysis of sequencing depth for
SRR891270. The same procedure is used to fit the saturation curve except that the total width of significant peaks (FDR≤ 0.05) for each subsample and the
full dataset is used. (c) Library complexity analysis results for SRR891269-SRR891271, three biological replicates using 50 K cells, and for SRR891272 and
SRR891274, two biological replicates using 500 cells. Number of distinct fragments was estimated for each given number of putative sequenced fragments
free of mitochondrial reads
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Conclusions
To aid the quality assessment of ATAC-seq experiments,
we have developed the ATACseqQC package. This
package can generate publication-quality diagnostic plots
including fragment size distribution, nucleosome posi-
tioning pattern around TSSs, footprints of DNA-binding
proteins of known binding motifs. In addition, the
package has utilities for sequence depth analysis, library
complexity evaluation, quality assessment on BAM files,
and data preprocessing such as filtering alignments,
shifting aligned reads, and separating reads into
nucleosome-free and bound bins.
This package has facilitated the analysis of several in-

house ATAC-seq experiments, including one recently
published [45]. It will also help researchers to select high
quality ATAC-seq datasets from public repositories such as
GEO for re-analysis to avoid generating hypotheses or
drawing conclusions from low-quality ATAC-seq experi-
ments. In addition, this package could be incorporated into
a pipeline for data centers such as GEO or ENCODE to
evaluate each submitted ATAC-seq dataset before accepting
and releasing the dataset for public consumption.

Availability and requirements
Project name: ATACseqQC.
Project home page: https://bioconductor.org/packages/

release/bioc/html/ATACseqQC.html.
Operating systems: Platform independent.
Programming language: R.
Other requirements: None.
License: GNU GPL.
Any restrictions to use by non-academics: None.
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Additional file 1: Commands and scripts used for case studies. (TXT 19 kb)

Additional file 2: Table S1. Functional comparison between ATACseqQC
and existing tools for ATAC-seq data QC analyses. (XLSX 14 kb)

Additional file 3: Table S2. Summary statistics of base quality of raw
reads, mapping and filtering of read alignments. The four datasets
chosen for detailed quality control are highlighted in bold. (XLSX 21 kb)

Additional file 4: Figure S1. Size distributions of sequenced fragments
passing filtering criteria. NCBI SRA accession numbers for each ATACT-seq
dataset are listed above each sub-fig. (A-I) are based on a study by Buenros-
tro et al. 2013; (J-O) are based on a study by Wijetunga et al. 2017; (P-S) are
based on a study by Conrad et al. 2017; (T-Y) are based on an unpublished
study by Vallés AJ and Izquierdo-Bouldstridge A. (PDF 572 kb)

Additional file 5: Figure S2. Read distribution along genomic regions
containing housekeeping genes. (A) ACTB; (B) VCP; (C) REEP5; (D) RAB7A;
and (E) VPS29. (PDF 289 kb)

Additional file 6: Figure S3. Diagnostic plots for subsampled
datasets. Figs. A-D, E-H, I-L and M-P are based on 10%, 25%, 50%
and 75% of randomly sampled reads from the post-filtered BAM file
for dataset SRR891270. (A, E, I and M) fragment size distributions; (B,
F, J and N) Heatmaps showing signals around TSSs; (C, G, K and O)
distributions of averaged coverage; (D, H, L and P) aggregated CTCF
footprints. (PDF 1197 kb)
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