Cell Reports, Volume 14

Supplemental Information

Metagenomic Sequencing with Strain-Level Resolution
 Implicates Uropathogenic E. coli in Necrotizing
 Enterocolitis and Mortality in Preterm Infants

Doyle V. Ward, Matthias Scholz, Moreno Zolfo, Diana H. Taft, Kurt R. Schibler, Adrian Tett, Nicola Segata, and Ardythe L. Morrow

Samples available for analysis

Tables 1, S1-S2, Figure S1
Description of samples and cohort:

- preterm gestational age less than 30 weeks
- term gestational age 38-41 weeks
- collection between days 3 and 22 inclusive
- two extraction protocols - "A" and "B"
\square

Read data processing

All read data from all samples subjected to:

- MetaPhlAn analysis of species abundance
- E. coli gene content analysis

Community Analysis (MetaPhIAn)

Figs. 1-5, S3-S8

Inclusion Criteria:

- 1 sample per infant per time window
- sample with latest postnatal collection
per window
- Extraction protocol "A" only

protocol A

262 samples
127 infants
22 term infants
16 NEC infants

E. coli gene content analysis

130 of 405 samples contained reads mapping to E. coli

any reads	$>1 \%$ abundance	$>10 \%$ abundance
130 Samples	96 Samples	92 Samples
58 infants	50 infants	47 infants
14 term infants	12 term infants	9 term infants
12 NEC infants	12 NEC infants	12 NEC infants

30 Samp

58 infants
12 NEC infants

MLST analysis

Fig. 6, Table S1
Inclusion Criteria

- E. coli >1\% abundance

Gene content analysis

Fig. 6, Tables 2, 3, S2

Inclusion Criteria

- E. coli >10\% abundance
- sample with highest E. coli abundance

Odds ratio calculation

Table 4

all** preterm

143 infants
Inclusion Criteria:

- all preterm infants
- any extraction protoco
**data from infant 12611 failed E. coli gene content analysis and was dropped from this analysis. This infant was free of NEC or death.

27 NEC infants
110 controls free from NEC or death

E

F

SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Samples available for analysis related to Experimental Procedures. Samples available per infant are plotted by day postpartum and color-coded to indicate relative abundance of E. coli at $<1 \%$ (blue), $1-<10 \%$ (light orange), and at least 10% (orange). Samples are divided by analysis group (days $3-9$, days 10-16 and days 17-22). Day of NEC onset is indicated by the number of the day postpartum in an outlined box. Also indicated is which of the two extraction protocols applied, as well as whether the infant developed NEC or died. Patient IDs for term infants begin with " 3 ".

Figure S2. Samples flow chart for analysis related to Experimental
Procedures. General characteristics of all 405 samples available for analysis are described (green). Read data from all samples was analyzed by MetaPhlAn analysis and also mapped to E. coli genomes for gene content analysis (white). All samples extracted under protocol A were included in community analysis (Purple). All samples with data mapping to E. coli genomes were considered for E. coli gene content analysis (light yellow); several samples did not contain enough read data to determine MLST type or call gene content. Samples with at least 1% relative abundance of E. coli and had a determined MLST type were considered for MLST analysis (yellow). Samples with at least 10\% relative abundance of E. coli and represented the sample with highest E. coli abundance for any sample from an individual infant were included in gene content analysis (orange). Odds ratio calculations with respect to UPEC included all preterm infants (blue) and used criteria of MLST analysis (yellow) to determine UPEC presence in an infant.

Figure S3. Clinical factors associated with community diversity and prevalence of E. coli and Klebsiella spp related to Figure 1. (A) Shannon's index of alpha diversity per infant group. Standard deviation is indicated by error bar. (B) Prevalence of E. coli and Klebsiella spp. per infant group. Prevalence is defined as the frequency each organism is carried in infants at greater than 1% relative abundance. The number of infants per group is indicated at bottom of figure. Date for each of the three collection windows is presented from left to right as day 3-9 (dark), day 10-16 (medium), and day 17-22 (light). Except for the 'Term' group (darker green), all other groups include only preterm infants less than 30 weeks gestational age.

Figure S4. Taxonomic biomarkers enriched in infants sampled at days 3-9 postpartum related to Figure 1. (A) Cladogram generated using LEfSe (Segata et al., 2011) indicates taxonomies found to be significantly enriched in either preterm or term infants. (B) Taxonomies significantly enriched in Term infants ("class:1", right side). (C) Taxonomies significantly enriched in Preterm infants ("class:0", left side). (D) Cladogram indicates taxonomies found to be significantly enriched in preterm infants with low (0-6 days) or high (7-14 days) antibiotic administration during their first 14 days of life. (E) Taxonomies significantly enriched in preterm infants with high antibiotic administration ("class:1", right side) or low antibiotic administration ("class:0", left side). (F) Cladogram indicating taxonomies enriched in preterm Cesarean births. (G) Bacilla were significantly enriched in preterm Cesarean births ("class:1", right side). Histograms plot relative abundance for each patient and were generated using LEfSe. Relative abundance scales differ for each plot. Median (dashed line) and Mean (solid line) relative abundances per group are indicated.

Figure S5. Taxonomic biomarkers enriched in infants sampled at days 10 16 postpartum related to Figure 1. (A) Cladogram generated using LEfSe (Segata et al., 2011) indicates taxonomies found to be significantly enriched in either preterm or term infants. (B) Taxonomies significantly enriched in preterm infants ("class:0", left side). (C) indicates taxonomies found to be significantly enriched in preterm infants with high (7-14 days) antibiotic administration. (D) Taxonomies significantly enriched in preterm infants receiving 7-14 days ("class:1", right side) and 0-6 days ("class:0", left side) antibiotic administration. (E) Cladogram indicating taxonomies enriched in preterm vaginal or Cesarean births. (F) Taxonomies significantly enriched in preterm Cesarean births ("class:1", right side). Histograms plot relative abundance for each patient and were generated using LEfSe. Relative abundance scales differ for each plot. Median (dashed line) and Mean (solid line) relative abundances per group are indicated.

Figure S6. Taxonomic biomarkers enriched in infants sampled at days 1722 postpartum related to Figure 1. (A) Cladogram generated using LEfSe (Segata et al., 2011) indicates taxonomies found to be significantly enriched in either preterm or term infants. (B) Taxonomies significantly enriched in preterm infants ("class:0", left side). (C) Enterobacter aerogenes is enriched in preterm infants delivered by Cesarean ("class:1; right side). (D) Cladogram indicates taxonomies found to be significantly enriched in preterm infants with low (0-6 days) or high (7-14 days) antibiotic administration. (E) Taxonomies significantly enriched in preterm infants with 0-6 days ("class:0", left side) and 7-14 days ("class:1", right side) antibiotic administration. (F) Cladogram indicating taxonomies enriched in preterm infants who did or did not develop NEC. (G) E. coli is significantly enriched in preterm NEC infants ("class:1", right side) while Veillonella is enriched in preterm infants who did not develop NEC ("class:0"; left side). Histograms plot relative abundance for each patient and were generated using LEfSe. Relative abundance scales differ for each plot. Median (dashed line) and Mean (solid line) relative abundances per group are indicated.

Figure S7. Infant samples clustered by E. coli gene content indicate samples from same infant collected over time contain the same strain of E. coli related to Figure 3. Infant samples subjected to E. coli gene content analysis were clustered using gene present/absence data using the Bray-Curtis dissimilarity metric. Reference E. coli genomes were also included in the cluster analysis. Patient and genome IDs are indicated. Clade identities relating to Figure 3 are also indicated.

