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Abstract: Transforming growth factor (TGF)-β is an evolutionarily conserved pleiotropic factor that
regulates a myriad of biological processes including development, tissue regeneration, immune
responses, and tumorigenesis. TGF-β is necessary for lung organogenesis and homeostasis as evidenced
by genetically engineered mouse models. TGF-β is crucial for epithelial-mesenchymal interactions
during lung branching morphogenesis and alveolarization. Expression and activation of the three TGF-β
ligand isoforms in the lungs are temporally and spatially regulated by multiple mechanisms. The lungs
are structurally exposed to extrinsic stimuli and pathogens, and are susceptible to inflammation, allergic
reactions, and carcinogenesis. Upregulation of TGF-β ligands is observed in major pulmonary diseases,
including pulmonary fibrosis, emphysema, bronchial asthma, and lung cancer. TGF-β regulates
multiple cellular processes such as growth suppression of epithelial cells, alveolar epithelial cell
differentiation, fibroblast activation, and extracellular matrix organization. These effects are closely
associated with tissue remodeling in pulmonary fibrosis and emphysema. TGF-β is also central to T
cell homeostasis and is deeply involved in asthmatic airway inflammation. TGF-β is the most potent
inducer of epithelial-mesenchymal transition in non-small cell lung cancer cells and is pivotal to
the development of tumor-promoting microenvironment in the lung cancer tissue. This review
summarizes and integrates the current knowledge of TGF-β signaling relevant to lung health
and disease.
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1. Introduction

The transforming growth factor (TGF)-β superfamily consists of three isoforms of TGF-β, Activin,
Nodal, bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs), and others.
In mammals, 33 proteins are known to be members of the TGF-β superfamily [1]. TGF-β is the
prototypic and most-studied factor, and exhibits versatile functions in almost all cell types. Molecular
cloning of human TGF-β was reported in 1985 [2], and its receptors were subsequently identified [3].
Numerous studies over the past decades have reported that TGF-β regulates a wide range of biological
processes including cell proliferation, differentiation, apoptosis, extracellular matrix (ECM) synthesis,
and stem/progenitor cell fates, thereby affecting embryogenesis, morphogenesis, wound healing, and
immune responses of multiple organs. TGF-β family members diversified and adapted to regulate
biological systems that evolved over time. TGF-β family members are evolutionarily conserved from
arthropods, although TGF-β ligands originated at a later stage of evolution.
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Development of the respiratory system is an essential event for vertebrate land adaptation.
The fetal lungs are first inflated at birth; thereafter, repeated cycles of respiration continue throughout
the entire lifespan. The lungs are structurally exposed to extrinsic stimuli and pathogens, and are
susceptible to inflammation, allergic reactions, and carcinogenesis. TGF-β is necessary for lung
organogenesis and homeostasis, and is involved in many respiratory diseases, including pulmonary
fibrosis, emphysema, bronchial asthma, and lung cancer [4]. In this review, we focus on TGF-β
signaling and integrate the current literature to address its role in lung health and disease.

2. TGF-β Activation in the Extracellular Milieu

Secretion of TGF-β alone is not sufficient for its bioavailability. TGF-β needs to be activated
by several mechanisms, including proteolysis, low pH, reactive oxygen species (ROS), and
thrombospondin-1 [5,6]. Specific integrins such as integrin αVβ6 also activate TGF-β by sensing
traction forces or stiffness of the ECM [7].

TGF-β peptides are synthesized as latent precursors and are cleaved to form a mature TGF-β
dimer noncovalently associated with latency-associated peptide (LAP). LAP of TGF-β1 or TGF-β3
has an integrin recognition motif (RGD sequence) and binds to integrins. The secreted complex of
TGF-β and LAP is bound by latent TGF-β binding protein (LTBP), which forms a large latent complex
(LLC) [8]. LTBP is a matrix protein incorporated in the ECM, and latent TGF-β (TGF-β-LAP complex)
can be stored in the extracellular milieu.

Animal studies have demonstrated functional importance of LTBP isoforms in lung morphogenesis.
LTBP-3-null mice display defective lung alveolarization [9]. LTBP-4 is highly expressed in the murine
developing lung [10], and is necessary for elastic fiber assembly on microfibrils [11]. LTBP-4-deficient
mice show severe pulmonary emphysema [12] due to impaired elastogenesis and structural defects of
lung alveoli. These phenotypes are presumably associated with dysregulated TGF-β signaling.

Upon activation, TGF-β is released from the LAP and rapidly mobilized to exert its activity
through binding to cell surface receptors. Temporospatial distribution of latent TGF-β and its receptors
in the tissue and its dynamic activation contribute to the diversity of TGF-β-mediated biological
processes. Intriguingly, a mechanical stress-mediated mechanism of TGF-β activation has been
reported [13], and integrins bound to the TGF-β-LAP complex mediate cell contractile forces that lead
to TGF-β activation. LTBP incorporated in the ECM is also bound to the LAP that provides mechanical
resistance. Such pulling forces result in conformational changes of latent TGF-β and concomitant
TGF-β release. Latent TGF-β therefore serves as a sensor for mechanical stress, and released TGF-β acts
as an effector. TGF-β itself further regulates expression of integrins and ECM proteins [14,15], which in
turn participate in the fine-tuning of TGF-β activation by binding to LAP and LTBP. Because the lung
is a highly mechanical organ with a unique alveolar structure, mechanical stress-mediated regulation
of TGF-β activity and ECM organization are likely to be important parameters for understanding
pulmonary physiology and pathology.

3. Context-Dependency of TGF-β Signaling

Activated TGF-β in a dimeric form binds to type I (TGFβR-I, also known as ALK-5) and type
II (TGFβR-II) receptors. TGFβR-I is phosphorylated by TGFβR-II upon ligand binding, and in the
canonical Smad-dependent pathway, TGFβR-I phosphorylates the intracellular signal transducers,
Smad2 and Smad3. Phosphorylated Smad2 and Smad3 interact with Smad4, and translocate into
the nucleus [16]. Smad complexes regulate target gene transcription in association with various
transcription factors, transcriptional coactivators, and corepressors. In addition to this canonical
pathway, TGF-β also activates mitogen-associated protein kinase cascades and RhoA GTPase [17].

TGF-β acts on a wide variety of cell types and induces various cellular responses. For example,
TGF-β is involved in stem cell self-renewal and also controls differentiation of multiple cell
lineages [18]. Context-dependent responses are regulated by multiple aspects of the TGF-β signaling
cascade, including crosstalk with other signals and transcriptional regulation [19]. The three TGF-β
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ligand isoforms show differential expression patterns and biological effects. Intracellular Smad7
is known to inhibit TGF-β signaling through various mechanisms, and is important as a negative
feedback regulator [20,21]. TGF-β receptors and Smad molecules are post-translationally controlled by
ubiquitination-mediated degradation [22], and their activity and signaling magnitude are also regulated
by protein modifications [23,24].

Cell type specification is regulated by a few master transcription factors, and forced overexpression
of such master genes is sufficient for inducing many cell lineages [25]. Recent genome-wide
chromatin occupancy and gene expression analyses have revealed that cell type-specific effects of
TGF-β are achieved by cooperation between Smad complexes and master transcription factors. For
example, induction of Myod1, a master transcription factor for myogenesis, directs Smad3-mediated
transactivation of muscle-specific genes [18].

NKX2-1 (also known as thyroid transcription factor-1) is a homeodomain transcription factor
expressed in pulmonary epithelial cells. NKX2-1 is a master regulator of lung morphogenesis
and is indispensable for tracheoesophageal separation, branching morphogenesis, and alveolar
maturation [26]. NKX2-1 is essential for transactivation of lung-specific genes, such as the alveolar
epithelial cell-specific surfactant genes (SPA, SPB, and SPC) as well as the club cell-specific gene,
CC10 [27]. Convergence of NKX2-1 and TGF-β signaling has been shown to be important for
transcriptional regulations in lung epithelial cells. TGF-β represses transcription of SPB, and Smad3
interacts with NKX2-1 and decreases its activity [28]. Moreover, genome-wide chromatin occupancy
analysis using lung adenocarcinoma cells has revealed that NKX2-1 colocalizes with Smad3 to regulate
a subset of genes while competing with Smad3-Smad4 complex formation resulting in altered genomic
binding profiles of Smad3 [29]. Both pro-tumorigenic and tumor-suppressive roles of NKX2-1 have
been reported in lung adenocarcinoma [30]. NKX2-1 and TGF-β signaling therefore appear to be a key
component for regulating lung adenocarcinoma cell features.

4. TGF-β Signaling in Lung Organogenesis

Lung development takes place through coordinated growth and differentiation of the endoderm-
derived epithelium and the mesoderm-derived mesenchyme. During the embryonic stage, lung buds arise
from the anterior foregut, and branching morphogenesis follows during the pseudoglandular stage [31].

Lung morphogenesis is controlled by multiple signals such as fibroblast growth factor, sonic
hedgehog (SHH), Wnt/β-catenin, and BMP. In cooperation with these signals, TGF-β plays key roles in
epithelial-mesenchymal interactions. During the pseudoglandular stage, the three isoforms of TGF-β
show different expression patterns [32]. TGF-β1 is expressed throughout the mesenchyme and is
highly localized in the area underlying the epithelial branching point. TGF-β2 is localized in the distal
epithelium, and TGF-β3 is detected in the proximal mesenchyme and distal epithelium.

Different pulmonary phenotypes have been reported in the knockout mice of TGF-β isoforms,
indicating distinct functions for the different isoforms (Table 1). TGF-β1-deficient mice show systemic
inflammation, and in the lungs, generalized perivasculitis or interstitial pneumonia is observed [33,34].
TGF-β2-null mice have postnatal lung defects with collapsed distal airways [35]. TGF-β3 deficiency
leads to defective lungs with alveolar hypoplasia and mesenchymal thickening [36].

Conditional abrogation of TGFβR-II and TGF-β signaling inhibition in SPC-expressing lung
epithelial cells result in retarded postnatal alveologenesis, but without an apparent prenatal
phenotype [37]. Conditional TGFβR-II knockout mice generated using Nkx2-1-Cre display abnormal
alveolarization and emphysema [38]. Smad3-deficient mice show impaired alveolarization and
centrilobular emphysema [39,40], similar to the effect of TGFβR-II abrogation in lung epithelial
cells. Notably, deletion of TGFβR-I in epithelial cells using Gata5-Cre leads to immature alveoli and
a disorganized epithelium with reduced club cell population [41]. All of these indicate that TGF-β
signaling is necessary for lung epithelial cell differentiation and maturation.
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Table 1. Genetically engineered mouse models that demonstrate the roles of TGF-β signaling in lung organogenesis.

Mouse Model Induction Target Cell Phenotype in the Lungs Phenotype in Other Organs Reference

Tgfb1 (−/−) perivasculitis with lymphocytic and plasmacytic infiltration systemic inflammation [33]

Tgfb1 (−/−)
perivasculitis with lymphocytic and plasmacytic
infiltration; interstitial pneumonia systemic inflammation [34]

Tgfb2 (−/−) collapsed distal airways with dilated conducting airways
Cardiac, craniofacial, limb,
spinal column, eye, inner ear,
and urogenital defects

[35]

Tgfb3 (−/−)

atelectatic, pseudograndular histology with alveolar
hypoplasia; mesenchymal thickening; extensive
intrapulmonary and pleural hemorrhage; dilated
conducting airways

cleft palate [36]

Smad3 (−/−)
progressive lung airspace enlargement and
emphysematous changes

defects in immune function
with inflammatory lesions
(originally reported by Yang
X et al. in 1999)

[39]

Smad3 (−/−)
reduced pulmonary alveolarization and subsequent
centrilobular emphysema

decreased growth rate
(originally reported by Datto
MB et al. in 1999)

[40]

Tgfbr2flox/flox crossed with
SPC-rtTA/TetO-Cre mice lung epithelial cells retardation of postnatal lung alveolarization with markedly

decreased type I alveolar epithelial cells [37]

Tgfbr2flox/flox crossed with
Dermo1-Cre mice

mesoderm-derived tissue
including lung mesenchyme abnormal lung branching and reduced cell proliferation

defective secondary ventral
body wall formation,
congenital diaphragmatic
hernia, and abnormal cardiac
development

[37]

Tgfbr2flox/flox crossed with
Dermo1-Cre mice

mesoderm-derived tissue
including lung mesenchyme

failure in branching morphogenesis and cystic airway
malformations

abnormalities in
multiple organs [42]

Tgfbr2flox/flox crossed with
Nkx2-1-Cre mice lung epithelial cells

alveolar enlargement and non-progressive emphysema;
resistance to TGF-β-mediated, bleomycin-induced lung
injury

[38]

Tgfbr1flox/flox crossed with
GATA5-Cre mice embryonic lung epithelium

immature alveoli and formation of a disorganized and
multi-layered epithelium in the proximal airways; marked
reduction in the number of club cells

[41]

Tgfbr1flox/flox crossed with
Dermo1-Cre mice

mesoderm-derived tissue
including lung mesenchyme

reduced submesothelial mesenchyme; restricted
α-SMA-positive cell fate and promoted lipofibroblast
differentiation; defective epithelial differentiation;
disrupted pulmonary vasculogenesis

[43]
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Mesenchymal abrogation of TGFβR-II disrupts lung branching morphogenesis, resulting in
cystic malformation of the bronchi. This phenotype was shown to be associated with dysregulated
SHH signaling in the mesenchyme [42]. Mesodermal inactivation of TGFβR-I results in pulmonary
hypoplasia due to impaired differentiation of mesodermal progenitor cells [43].

Ectopic expression of TGF-β1 in the lung epithelium disrupts lung morphogenesis and perturbs
epithelial differentiation [44]. Moreover, exogenous TGF-β exerts an inhibitory effect on lung branching
morphogenesis as demonstrated in explant cultures [45].

Taken together, TGF-β signaling appears to play distinct and critical roles in the lung epithelium
and mesenchyme, and is required for epithelial-mesenchymal interactions to achieve lung branching
morphogenesis and alveologenesis (Figure 1).
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Figure 1. Structure of the airway and alveolus. TGF-β regulates epithelial-mesenchymal interactions
and is crucial for branching morphogenesis and alveologenesis during development.

5. TGF-β Signaling in Lung Alveolar Epithelial Growth and Differentiation

Differentiated airway epithelial cells include basal, secretory, ciliated, and neuroendocrine cells,
and the alveoli are lined by alveolar epithelial type I and type II cells (Figure 1). Alveolar epithelial
type I cells cover the majority of the alveolar surface, allowing for gas exchange, while type II cells are
involved in pulmonary surfactant production [46]. As previously mentioned, analyses of genetically
engineered mouse models have revealed crucial roles for TGF-β signaling in lung epithelial growth
and differentiation (Table 1).

It is widely accepted that TGF-β shows cytostatic effects in most epithelial cells, and TGF-β
has been shown to inhibit proliferation of alveolar epithelial type II cells [47]. TGF-β is also known
as the most powerful inducer of epithelial-mesenchymal transition (EMT) [48]. EMT is a biological
process where polarized epithelial cells acquire mesenchymal phenotypes with enhanced cell motility.
Mechanistically, TGF-β induces transcriptional repressors, SNAI1, SNAI2, ZEB1, and ZEB2, which
subsequently repress adherens junction and tight junction proteins such as E-cadherin and ZO-1,
thereby disrupting epithelial cell junction and apical-basal polarity [49] (Figure 2A). ZEB1 and ZEB2
also repress the miRNA-200 family and miR-205, which target ZEB1 and ZEB2, and thereby derepress
the EMT regulatory axis of TGF-β and ZEB proteins [50]. TGF-β induces EMT in rat alveolar epithelial
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cells, which may contribute to disease conditions by endowing epithelial cells with migratory and
anti-apoptotic phenotypes [51,52].

A series of pioneering studies established primary cultures of alveolar epithelial type II cells
that form polarized monolayers and spontaneously differentiate into type I cells [53]. TGF-β inhibits
expression of alveolar epithelial type II cell markers and enhances differentiation of cultured type
II cells into type I cells [54] (Figure 2B). Thus, the effects of TGF-β in alveolar epithelial type II cells
include EMT induction and type I cell differentiation, which may depend on cell culture conditions.
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Figure 2. Context-dependent action of TGF-β. (A) TGF-β promotes epithelial-mesenchymal transition
(EMT) in alveolar epithelial cells to confer a mesenchymal phenotype, or in lung cancer cells to
enhance migratory and invasive capacities. TGF-β induces EMT-related transcriptional repressors
(SNAI1/SNAI2 and ZEB1/ZEB2) and inhibits the action of NKX2-1, a homeodomain transcription
factor important for lung epithelial cell differentiation; (B) TGF-β promotes transdifferentiation of
surfactant protein C (SPC)-positive type II alveolar epithelial cells to type I alveolar epithelial cells that
express podoplanin (T1α); (C) TGF-β promotes transdifferentiation of lung fibroblasts to myofibroblasts
positive for α-smooth muscle actin (α-SMA), and downregulates TBX4, a T-box family transcription
factor unique to lung fibroblasts; (D) TGF-β suppresses induction of T helper type 1 (Th1) and type 2
(Th2) cells while positively regulating cell lineage specification from naïve CD4+ T cells to Th17 and
regulatory T (Treg) cells. T-bet, GATA3, RORγt, and Foxp3 are master transcription factors for Th1,
Th2, Th17, and Treg cells, respectively.
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It is thought that alveolar epithelial type II cells contribute to alveolar homeostasis by
self-renewing and differentiating into type I cells [55]. Conversely, a subset of alveolar epithelial
type I cells generate type II cells, illustrating the plasticity of alveolar epithelial cells [56]. Importantly,
conversion of type I to type II cells is facilitated by TGF-β signaling inhibition in organoid culture [56].

Recently, cell culture methods to induce alveolar epithelial cells from pluripotent stem cells
have been developed [57,58]. Inhibition of TGF-β signaling has been shown to augment in vitro
differentiation of anterior foregut endoderm cells that give rise to NKX2-1-positive alveolar epithelial
progenitors [59].

Taken together, TGF-β plays multifaceted roles in alveolar epithelial cells, including cell growth
suppression, EMT, and regulating reciprocal differentiation between type I and type II cells.

6. TGF-β Signaling in Pulmonary Diseases

6.1. TGF-β Signaling in Pulmonary Fibrosis and Emphysema

Pulmonary fibrosis is a chronic and progressive lung disease, in which repeated wound and repair
processes lead to irreversible structural alterations and tissue stiffening [60]. Pathophysiological steps
include alveolar epithelial damage by extrinsic irritants, fibroblast activation, and persistent fibrotic
reaction. Differentiation of lung fibroblasts into myofibroblasts is a key step in the development of
tissue fibrosis. Myofibroblasts express α-smooth muscle actin (α-SMA) as a marker of activated
fibroblasts, and are capable of ECM production including collagen, laminin, and fibronectin.
TGF-β is the most potent factor for the induction of myofibroblast differentiation (Figure 2C), and
increased expression of TGF-β has been reported in fibrotic lungs. The major cellular sources of
TGF-β in pulmonary fibrosis have been shown to be alveolar macrophages and metaplastic type II
alveolar epithelial cells [61,62]. In addition to ECM components, TGF-β induces integrins, matrix
metalloproteinases, protease inhibitors, and regulators of small GTPases [14,15]. These molecules
participate in tissue remodeling and influence cell-ECM interactions. In addition, TGF-β is thought to
promote lung fibrosis by suppressing production of anti-fibrotic molecules such as hepatocyte growth
factor and prostaglandin E2 [63,64]. Furthermore, TGF-β inhibits alveolar epithelial cell growth and
repair. Thus, TGF-β is a key player in fibrotic processes, acting on both fibroblasts and alveolar
epithelial cells.

Smoking-induced emphysema is the main cause of chronic obstructive pulmonary disease
(COPD), and is characterized by lung hyperinflation and enlargement of air spaces distal to the
terminal bronchioles. Recently, an association between TGFB2 polymorphisms and COPD has been
reported [65]. TGF-β1 expression has been shown in small airway epithelial cells among smokers and
patients with COPD [66], suggesting that pathologically activated TGF-β signaling is involved in the
pathogenesis of emphysema.

In murine models, fibrosis and emphysema are often discussed as contrasting disorders.
As previously mentioned, conditional deletion of TGFβR-II in lung epithelial cells results in
emphysema-like phenotypes whereas these mice are protected from bleomycin-induced pulmonary
fibrosis [37,38]. Smad3-deficient mice show progressive alveolar destruction resembling emphysema
while they are protected from bleomycin-induced lung fibrosis [67]. Itgb6-null mice develop age-related
emphysema [68], similar to the effects of Smad3 deficiency [39,40] or TGFβR-II abrogation in lung
epithelial cells [37,38]. Supporting the notion that the phenotype of Itgb6 deletion is caused by
disruption of integrin αvβ6-mediated TGF-β activation, ectopic expression of active TGF-β1 overcomes
the effect of Itgb6 deletion [68]. On the other hand, Itgb6-null mice are resistant to bleomycin-induced
lung injury and fibrosis [69]. Another study consistently showed that αvβ6-blocking antibody
attenuated bleomycin-induced pulmonary fibrosis [70]. These models suggest that lack of TGF-β
signaling predisposes the lungs to develop emphysema while conferring resistance to fibrosis.

In contrast to this simplified dichotomy in mouse models, the coexistence of fibrosis and
emphysema in the same patient is common. Of clinical importance, pulmonary fibrosis and COPD



Int. J. Mol. Sci. 2018, 19, 2460 8 of 18

are independent risk factors for lung cancer (Figure 3). Notably, combined pulmonary fibrosis and
emphysema (CPFE) is increasingly recognized as an entity with severely impaired gas exchange and
higher frequencies of pulmonary hypertension and lung cancer [71] (Figure 3). Pathologically activated
TGF-β signaling in relation to smoking and ageing are involved in emphysema and fibrosis, and
common molecular mechanisms have therefore been postulated in both diseases. Because dynamic
organization and turnover of the ECM in the lung tissue is largely regulated by TGF-β, these processes
might represent different forms of tissue remodeling as a consequence of pathologically activated
TGF-β signaling. However, it remains largely unknown how TGF-β signaling differentially contributes
to these two contrasting phenotypes.
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6.2. Dual Roles of TGF-β in Asthma Involving Immune Response and Airway Remodeling

Bronchial asthma is a global health problem that affects more than 300 million people
worldwide [72]. Asthma is characterized by chronic airway inflammation and hyperresponsiveness
mediated by T helper type 2 (Th2) cells and the related cytokines, interleukin (IL)-4, IL-5, IL-9, and
IL-13. These cytokines cause chronic inflammation, pulmonary eosinophilia, mucus cell hyperplasia,
smooth muscle contraction, and airway remodeling. In addition to Th2 cells, Th17 cells that secrete
IL-17A and IL-17F also participate in the development of allergic airway inflammation [72]. Inhaled
corticosteroids have greatly improved the management of asthma in recent decades. However, some
asthmatic patients are refractory to this therapy because of irreversible narrowing of the airway [73].
Thickening of the airway smooth muscle layer, a hallmark of asthmatic airway remodeling, is related
to the clinical severity of asthma [74]. Recently, increasing attention has been focused on asthma and
COPD overlap as a clinical entity (Figure 3).

The importance of TGF-β signaling in the pathogenesis of asthma has been illustrated by
genome-wide association studies. It has been reported that SMAD3 polymorphism is associated
with asthma [75]. A meta-analysis further suggested that C509T or T869C polymorphism of TGFB1
gene may predispose to asthma [76]. Moreover, a recent study reported that patients with Loeys-Dietz
syndrome who harbor loss-of-function mutations in TGFβR-I or TGFβR-II frequently develop allergic
diseases including asthma [77].
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TGF-β1 concentration in bronchoalveolar lavage fluid is elevated in atopic asthma [78], and
TGF-β expression is increased in bronchial specimens of asthmatic patients [79]. Bronchial epithelial
cells and eosinophils are the major source of TGF-β in the asthmatic airway [80]. TGF-β enhances
airway smooth muscle proliferation and ECM deposition by activated fibroblasts, eventually leading
to structural alterations of the airway. Moreover, it has been reported that TGF-β1 modulates airway
smooth muscle shortening and hyperresponsiveness by enhancing excitation-contraction coupling [81].

The pathological role of TGF-β in asthma is not restricted to airway remodeling, and its effect on
the immune response is thought to be more important than previously recognized. TGF-β induces
Foxp3 gene expression in CD4+ CD25- naïve T cells in the presence of T cell receptor stimulation, which
in turn mediates differentiation of regulatory T (Treg) cells with immunosuppressive functions [82]
(Figure 2D). Notably, TGF-β is further produced by Treg cells. TGF-β1-null mice consistently fail
to maintain peripheral Treg cells, resembling the phenotype of Foxp3-null mice [83]. Of therapeutic
importance, it has been reported that adoptive transfer of Treg cells ameliorates allergic airway
inflammation in a murine model [84]. T cell-specific deletion of TGFβR-II results in a reduction of
peripheral Treg cells, and also inhibits thymic CD8+ T cell maturation and natural killer T (NKT)
cell development in the thymus [85]. CD4+ T helper cells differentiate into Th1, Th2, and Th17 cells
characterized by the signature cytokines, IFN-γ, IL-4, and IL-17, respectively [86]. TGF-β is known
to induce Th17 cells in combination with IL-6, which contribute to neutrophilic recruitment into the
airway and Th2 cell-mediated eosinophilic inflammation [87,88]. In contrast, TGF-β has inhibitory
effects on Th1 and Th2 cell differentiation through suppression of T-bet and GATA3 transcription
factors, respectively [89] (Figure 2D). Thus, TGF-β plays multimodal roles in Th2 type immune
response. TGF-β suppresses Th2 cells directly or through induction of Treg cells. On the other hand,
TGF-β also enhances Th2 cell-mediated action by inducing Th17 cells.

Collectively, TGF-β positively regulates Treg, Th17, NKT, and CD8+ T cells while inhibiting
Th1 and Th2 differentiation. Thus, TGF-β plays multifunctional roles in T cell differentiation and
homeostasis, thereby affecting the immune system in the asthmatic airway.

6.3. TGF-β Mediates EMT in Non-Small Cell Lung Cancer (NSCLC)

Lung cancer is the leading cause of cancer-related mortality worldwide [90]. NSCLC comprises
the majority of lung cancers, which include the histological subtypes of adenocarcinoma and squamous
cell carcinoma. Higher TGF-β expression levels are associated with lymph node metastasis and tumor
angiogenesis in NSCLC [91], and tumor cells established from NSCLC express TGF-β ligands.

It is widely believed that TGF-β plays dual roles during tumor progression [92]. TGF-β suppresses
epithelial cell proliferation and acts as a tumor suppressor in the early stage of tumorigenesis, and
loss-of-function mutations in TGF-β signaling components have been identified in several cancer
types. Inactivating mutations of TGFβR-II are frequent in colorectal carcinomas with microsatellite
instability [93], and loss of chromosomal region 18q21, encoding SMAD4 gene, is found in pancreatic
and colorectal cancers [94]. Mutations of TGFβR-II and SMAD4 are rare in NSCLC [95], whereas
epidermal growth factor receptor (EGFR) and KRAS mutations are frequently found in lung
adenocarcinomas [96].

In addition to its cytostatic effects, TGF-β potently induces EMT in cancer cells, which represents
a tumor-promoting aspect of TGF-β activity in the later stages of cancer progression. Cultured
cancer cells usually lack cell polarity or epithelial integrity, and remain in an intermediary state of
partial or incomplete EMT [97]. NSCLC cell lines could therefore be classified into epithelial-like and
mesenchymal-like subgroups based on gene expression profiling [98,99]. Recent studies using NSCLC
cell lines have focused on the TGF-β-mediated completion of EMT programs.

TGF-β-mediated EMT is modified by crosstalk with other signaling pathways. In A549 lung
adenocarcinoma cells, TNF-α enhances EMT and induces cancer cells with a secretory phenotype
capable of producing various cytokines and chemokines [14]. Of particular importance is the
convergence between oncogenic KRAS and TGF-β signaling in EMT processes [100]. Transduction of
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oncogenic KRAS dramatically enhances TGF-β-elicited SNAI1 expression, and TGF-β induces SNAI1
more strongly in cancer cells harboring constitutively active KRAS mutations.

TGF-β-mediated EMT in cancer cells is associated with aggressive features such as resistance to
apoptosis, acquisition of stem cell traits, and chemoresistance [101]. On the other hand, recent studies
have suggested that EMT is likely dispensable for metastasis [102].

6.4. TGF-β Orchestrates the Tumor Microenvironment

Besides its direct effect on cancer cells, TGF-β facilitates invasion and metastatic spread
through reciprocal interactions between cancer cells and the tumor stromal microenvironment [103].
TGF-β orchestrates the development of tumor stroma and promotes angiogenesis, immune evasion,
and remodeling of the ECM [104,105]. The stromal reaction presumably mediated by TGF-β is
associated with poor prognosis in resected lung adenocarcinomas [106]. Tumor stroma comprises
cancer-associated fibroblasts (CAFs), immune cells, blood vessels, and the ECM [107]. CAFs are
activated by TGF-β and promote tumor progression by secretion of soluble factors and ECM
remodeling [108,109]. The gene signatures related to TGF-β signaling are enriched in CAFs isolated
from NSCLC tissues compared to their normal counterparts [110]. Tumor stroma shows dysregulated
ECM organization and tissue stiffness, which are similar to the features of pulmonary fibrosis. Of
clinical importance, cancer tissue fibrosis is associated with increased interstitial fluid pressure, which
impedes delivery of cancer therapeutics [111].

Tumor angiogenesis is crucial for the delivery of oxygen and nutrients to cancer cells. TGF-β
is known to stimulate angiogenic factors such as vascular endothelial growth factor and connective
tissue growth factor produced by cancer cells or stromal fibroblasts. On the other hand, it has been
suggested that TGF-β negatively regulates lymphangiogenesis [112].

Cancer progression is thought to be dependent on immunosurveillance evasion, and this notion
is supported by the recent success of immune checkpoint inhibitors as therapeutic options for NSCLC.
As previously mentioned, TGF-β participates in the maintenance of T cell homeostasis and induces
Treg cells that limit tumor immune responses [82]. Moreover, TGF-β in the cancer tissue polarizes
tumor-associated macrophages, myeloid-derived suppressor cells, and tumor-associated neutrophils
to tumor-promoting phenotypes [113,114]. It has also been reported that TGF-β signaling blockade
by TGF-β blocking antibody or TGFβR-I kinase inhibitor enhances anti-tumor immunity and shows
therapeutic benefits [115,116].

Taken together, TGF-β facilitates cancer progression through diverse host-tumor interactions,
including fibroblast activation, ECM remodeling, angiogenesis, and immune evasion.

6.5. TGF-β Signaling in Small Cell Lung Cancer (SCLC)

SCLC is a highly aggressive lung cancer subtype that accounts for 10–15% of lung cancers [117].
SCLC originates from lung neuroendocrine cell precursors, and achaete-scute complex homolog 1
(ASCL1) is a master transcription factor for neuroendocrine differentiation [118]. SCLC cell lines and
tissue samples contain heterogeneous gene expression patterns. A variant subtype of SCLC with poor
neuroendocrine differentiation and low ASCL1 expression has been recently reported [119,120].

Most classic SCLC cell lines lack TGFβR-II expression and are unresponsive to TGF-β [121],
whereas variant SCLC cell lines tend to express relatively high levels of TGFβR-II. A recent
report described molecular mechanisms responsible for this SCLC heterogeneity [122]. In lung
epithelial/cancer cells with TGFβR-II expression, endogenous TGF-β suppresses ASCL1 expression.
However, TGF-β signaling is inactivated in classic SCLC cells and ASCL1 expression is derepressed.
Because TGF-β signaling inactivation and ASCL1 induction can promote SCLC survival, loss of TGF-β
responsiveness is probably an important aspect of SCLC pathogenesis. Detailed analyses of genomic
profiles in heterogeneous SCLC tumor samples may be helpful to dissect the exact role of TGF-β
signaling in SCLC and its relation to neuroendocrine differentiation.
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7. Gene Regulatory Networks Responsible for the TGF-β-Induced Cellular Response

The genome, epigenome, and transcriptome in a broad range of cell types and disease conditions
have been characterized using recent advances in next-generation sequencing technology. Histone
modification, DNA methylation, and gene expression profiling data across the whole genome have
been included in public databases [123]. Genome-wide chromatin-binding profiling data have further
provided mechanistic insights into transcriptional regulations [124]. It is becoming clear that a subset
of transcription factors control cell lineage determination through activation of cell type-specific
super-enhancers, which are enriched with active histone marks and defined as large genomic regions
occupied by high densities of master transcription factors [125,126]. In parallel with these advances
in genome biology, context-dependent transcriptional regulations by TGF-β-Smad pathway is being
elucidated in more detail.

It has been reported that T-box family genes such as TBX4 are associated with super-enhancers and
are involved in defining cellular identity of lung fibroblasts. TGF-β potently suppresses T-box family
genes while inducing myofibroblast differentiation, and super-enhancers unique to lung fibroblasts
are globally suppressed in lung CAFs. Thus, it has been proposed that TGF-β induces redistribution of
super-enhancers at the expense of cell type-specific basal super-enhancers [127].

In the process of TGF-β-mediated EMT in A549 lung adenocarcinoma cells, a few transcription
factors associated with super-enhancers (HNF4A, JUNB, and ETS2) have been shown to constitute
a gene regulatory network that synergistically induces EMT [128]. As such, TGF-β-mediated cell
differentiation or phenotypic conversion is coupled with dynamic reorganization of core transcriptional
networks that involve the Smad complex, master transcription factors, and super-enhancers.

8. Future Perspectives

TGF-β is essential for lung organogenesis, homeostasis, and pathological conditions.
Because TGF-β is involved in the pathogenesis of pulmonary fibrosis and NSCLC, there have been
clinical trials testing the efficacy of inhibitors, antisense oligonucleotides, and neutralizing antibodies
targeting TGF-β [129]. Moreover, TGF-β inhibition is emerging as a promising strategy for augmenting
cancer immunotherapy [115,116].

Recently, single cell transcriptome analysis has become a powerful tool for investigating
heterogeneous cell populations and differentiation processes in various conditions [130,131]. In-depth
analyses using single cell-based technologies could further elucidate molecular mechanisms underlying
TGF-β-mediated cell type-specific responses in physiological and pathological processes.
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