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Abstract: For photosynthesis, phototrophic organisms necessarily synthesize not only 

chlorophylls but also carotenoids. Many kinds of carotenoids are found in algae and, 

recently, taxonomic studies of algae have been developed. In this review, the relationship 

between the distribution of carotenoids and the phylogeny of oxygenic phototrophs in sea 

and fresh water, including cyanobacteria, red algae, brown algae and green algae, is 

summarized. These phototrophs contain division- or class-specific carotenoids, such as 

fucoxanthin, peridinin and siphonaxanthin. The distribution of α-carotene and its 

derivatives, such as lutein, loroxanthin and siphonaxanthin, are limited to divisions of 

Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta and 

Chlorophyta. In addition, carotenogenesis pathways are discussed based on the chemical 

structures of carotenoids and known characteristics of carotenogenesis enzymes in other 

organisms; genes and enzymes for carotenogenesis in algae are not yet known. Most 

carotenoids bind to membrane-bound pigment-protein complexes, such as reaction center, 

light-harvesting and cytochrome b6f complexes. Water-soluble peridinin-chlorophyll  

a-protein (PCP) and orange carotenoid protein (OCP) are also established. Some functions 

of carotenoids in photosynthesis are also briefly summarized.  

Keywords: algal phylogeny; biosynthesis of carotenoids; distribution of carotenoids; 

function of carotenoids; pigment-protein complex 

 

1. Introduction  

Algae are classified throughout many divisions of the Kingdom Plantae. Their sizes range from 

single cells of picophytoplankton—the smallest of which are less than 1 µm—to seaweeds, the largest 

of which are more than 50 m. Attempts have been made to cultivate single-cell algae for a long time, 
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but numbers were limited. With the recent development of culture techniques, some single-cell species 

can be cultured, and their characteristics, including pigments, can be studied. With the development of 

taxonomic technology, including DNA base sequences of 16S or 18S rRNA and some genes, algae 

phylogenetics has been developed.  

More than 750 structurally defined carotenoids are reported from nature; land plants, algae, bacteria 

including cyanobacteria and photosynthetic bacteria, archaea, fungus and animals [1]. Except for 

animals, these organisms can synthesize many kinds of carotenoids, which are synthesized from 

diverse carotenogenesis pathways. These carotenoids and carotenogenesis pathways can be used as 

chemotaxonomic markers [2–7]. In addition, characteristics of carotenogenesis enzymes and genes are 

investigated. Some carotenogenesis genes have high similarity from bacteria to land plants, but some 

have low similarity. Some homologous genes have been proposed [8,9], but some carotenogenesis 

enzymes and genes, especially algae-specific ones, are not found.  

In this review, the term algae refers to an oxygenic phototroph found in both seawater and fresh 

water, including cyanobacteria but excluding land plants. Distribution of carotenoids, carotenogenesis 

enzymes and pathways, and function of carotenoids in photosynthesis in algae are summarized.  

2. Distribution of Carotenoids 

Many different kinds of carotenoids were found from the algal species studied. Structures of some 

important carotenoids in algae are illustrated in Figure 1. Among them, approximately 30 types may 

have functions in photosynthesis, and others may be intermediates of carotenogenesis or accumulated 

carotenoids. Some carotenoids are found only in some algal divisions or classes; therefore, these 

carotenoids and also chlorophylls can be used as chemotaxonomic markers, and their distribution in 

algae is summarized in Table 1 [2–6].  

Allene (C=C=C) is a unique structure in natural products, and is found mainly in carotenoids [10]; 

fucoxanthin in brown algae and diatoms, 19′-acyloxyfucoxanthin in Haptophyta and Dinophyta, 

peridinin only in dinoflagellates, and 9′-cis neoxanthin in green algae and land plants. Acetylene 

(C≡C) is also a unique structure, and acetylenic carotenoids are found only in algae; alloxanthin, 

crocoxanthin and monadoxanthin in Cryptophyta, and diadinoxanthin and diatoxanthin in 

Heterokontophyta, Haptophyta, Dinophyta and Euglenophyta. Acetylated carotenoids (-O-CO-CH3), 

such as fucoxanthin, peridinin and dinoxanthin, are also mainly found in algae, such as 

Heterokontophyta, Haptophyta and Dinophyta. These carotenoids are specific to certain algal divisions 

and classes, and they are summarized in Table 1 based on our results [11–14] and some references [1–6].  

Many cyanobacteria contain β-carotene, zeaxanthin, echinenone and myxol pentosides 

(myxoxanthophyll), while some species lack part of these and some contain additional carotenoids, 

such as nostoxanthin, canthaxanthin and oscillol dipentoside (Table 1, Figure 1) [13]. In addition,  

the carotenoid compositions of cyanobacteria are very different from those of chloroplasts in algae; 

consequently, during symbiosis of cyanobacteria to eukaryotic cells, carotenoids might be considerably 

restructured [13]. Note that since the name of myxoxanthophyll cannot specify the glycoside  

moieties, we have proposed the name of myxol glycosides to specify the glycosides, such as myxol  

2′-α-L-fucoside, 4-ketomyxol 2′-rhamnoside and oscillol dichinovoside [13,15].  
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Rhodophyta (red algae) can be divided into two groups based on carotenoid composition; the 

unicellular type contains only β-carotene and zeaxanthin, and the macrophytic type contains additional 

α-carotene and lutein (Table 1, Figure 1) [16]. The relationship between phylogenetics of red algae and 

carotenoid composition is not clear [14]. Cryptophyta also contains α-carotene and its acetylenic 

derivatives, crocoxanthin and monadoxanthin, which are only found in this division. 

Figure 1. Structures of some carotenoids. 
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Table 1. Distribution of carotenoids in algae.  

Division Carotene  Xanthophyll   Chlorophyll 

Class β α  Ze Vi Ne Da Dd Fx Va Lu Lo Sx Other xanthophyll(s)  a b c 

Cyanophyta H L  H          No, L; Ec, H; My, H  H L  

Glaucophyta H   H            H   

Rhodophyta                   

Unicellular type H   H            H   

Macrophytic type L L  H L    L  H     H   

Cryptophyta  H  L          Al, L; Cr, L; Mo, L  H  H 

Heterokontophyta 

Chrysophyceae H   L   L L H L      H  H 

Raphidophyceae H   H L  L L L       H  H 

Bacillariophyceae H   L   L L H       H  H 

Phaeophyceae H   H H  L L H       H  H 

Xanthophyceae H   L   H H      Va-FA, L  H  H 

Eustigmatophyceae H    H     L      H   

Haptophyta H   L   L H H     Fx-FA, L  H  H 

Dinophyta L   L   L H L     Pe, H  H  H 

Euglenophyta H   L  L L H    L L   H H  

Chlorarachniophyta H   L L L     L L  Lo-FA, L  H H  

Chlorophyta 

Prasinophyceae H L  L H H     L L H Pr, L; Lo-FA, L; Sx-FA, H  H H  

Chlorophyceae H H  L H H     H L L Sx-FA, L  H H  

Ulvophyceae H L  L H H     L L L Sx-FA, H  H H  

Trebouxiophyceae H   L H H     H     H H  

Charophyceae H   L H H     H     H H  

Land Plants H L  L H H     H     H H  

H, Major carotenoid in most species of the class; L, Low content in most species or major carotenoid in some species. α, α-carotene; β, β-carotene; Al, alloxanthin;  

Cr, crocoxanthin; Da, diatoxanthin; Dd, diadinoxanthin; Ec, echinenone; -FA, fatty acid ester; Fx, fucoxanthin; Lo, loroxanthin; Lu, lutein; Mo, monadoxanthin;  

My, myxol glycosides and oscillol glycosides; Ne, neoxanthin; No, nostoxanthin; Pe, peridinin; Pr, prasinoxanthin; Sx, siphonaxanthin; Va, vaucheriaxanthin;  

Vi, violaxanthin; Ze, zeaxanthin. Red, α-carotene and its derivatives.  
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Heterokontophyta, Haptophyta and Dinophyta contain β-carotene and its derivatives as well as 

chlorophyll c (Table 1, Figure 1). These divisions, except for Eustigmatophyceae, which lacks 

chlorophylls c, contain unique acetylenic carotenoids of diadinoxanthin and diatoxanthin. Fucoxanthin 

and its derivatives are found in only four classes of Heterokontophyta (Chrysophyceae, 

Raphidophyceae, Bacillariophyceae and Phaeophyceae), Haptophyta and Dinophyta. Peridinin and its 

derivatives are found only in Dinophyta. Fucoxanthin and peridinin have unique structures (Figure 1) 

and are class-specific carotenoids (Table 1).  

Euglenophyta, Chlorarachniophyta and Chlorophyta contain the same carotenoids, such as  

β-carotene, violaxanthin, 9′-cis neoxanthin [11] and lutein, as well as chlorophyll a and b with land 

plants (Table 1, Figure 1). Some classes contain additional carotenoids, such as loroxanthin, 

siphonaxanthin and prasinoxanthin, which are derivatives of lutein, and are class specific.  

Note that identifications of some carotenoids were lacking because of insufficient analysis, and that 

some algae names were changed because of new developments in taxonomic technology and 

phylogenetic classification.  

3. Carotenogenesis Pathways, Enzymes and Genes 

Carotenogenesis pathways and their enzymes are mainly investigated in cyanobacteria [13] and 

land plants among oxygenic phototrophs [17]. Especially in land plants, carotenogenesis pathways and 

characteristics of enzymes are studied in detail (Figure 2). On the other hand, algae have common 

pathways with land plants and also additional algae-specific pathways, which are solely proposed 

based on the chemical structures of carotenoids (Figure 2). Some common carotenogenesis genes in 

algae are suggested from homology of the known genes [8,9], but most genes and enzymes for  

algae-specific pathways are still unknown (Figure 2). In cyanobacteria, since carotenoid compositions 

are different from those in land plants and algae, the pathways and enzymes are also different from 

those in Figure 2, and they are shown in Figure 3. In addition, carotenogenesis enzymes and genes, 

whose functions are confirmed in algae, including cyanobacteria, are summarized in Table 2. 

Unfortunately, these enzymes are mostly from cyanobacteria and green algae (Table 2).  

3.1. Lycopene Synthesis 

3.1.1. Isopentenyl Pyrophosphate to Phytoene Synthesis 

Isopentenyl pyrophosphate (IPP), a C5-compound, is the source of isoprenoids, terpenes, quinones, 

sterols, phytol of chlorophylls, and carotenoids. There are two known independent pathways of  

IPP synthesis: the classical mevalonate (MVA) pathway and the alternative, non-mevalonate,  

1-deoxy-D-xylulose-5-phosphate (DOXP) pathway [18,19]. In the MVA pathway, acetyl-Coenzyme A 

is converted to IPP through mevalonate, and the enzymes and genes are well studied [20]. The 

pathway is found in plant cytoplasm, animals and some bacteria [18,20]. The DOXP pathway was 

found in the 1990s, and in this pathway, pyruvate and glycelaldehyde are converted to IPP. The DOXP 

pathway is found in cyanobacteria, the plastids of algae and land plants, and some bacteria [18]. 

Carotenoids are synthesized in plastids. Exceptionally among oxygenic phototrophs, Euglenophyceae 

has only the MVA pathway, and Chlorophyceae has only the DOXP pathway [18].  
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Figure 2. Carotenogenesis pathways and enzymes, whose functions are confirmed, 

in oxygenic phototrophs. 

 

Figure 3. Carotenogenesis pathways and enzymes in cyanobacteria. 
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Table 2. Carotenogenesis genes and enzymes, whose functions are confirmed, in algae. 

Gene Enzyme Species References 

crtE, ggps Geranylgeranyl pyrophosphate 

synthase 

Thermosynechococcus elongates BP-1 [21] 

crtB, pys, psy Phytoene synthase Gloeobacter violaceus PCC 7421 

Synechococcus elongatus PCC 7942 

Synechocystis sp. PCC 6803 

Chlamydomonas reinhardtii 

Haematococcus pluvialis NIES-144 

[22] 

[23] 

[24] 

[25] 

[26] 

crtI Phytoene desaturase (bacterial type) Gloeobacter violaceus PCC 7421 [22,27] 

crtP, pds Phytoene desaturase (plant type) Synechococcus elongatus PCC 7942 

Synechocystis sp. PCC 6803 

Chlamydomonas reinhardtii 

Chlorella zofingiensis ATCC 30412 

[23] 

[28] 

[29] 

[30,31] 

crtQ, zds δ-Carotene desaturase Anabaena sp. PCC 7120 

Synechocystis sp. PCC 6803 

[32] 

[33] 

crtH, crtISO Carotene isomerase Synechocystis sp. PCC 6803 [34,35] 

crtL, crtL-b, lcy-b Lycopene β-cyclase Synechococcus elongatus PCC 7942 

Prochlorococcus marinus MED4 

Cyanidioschyzon merolae NIES-1332 

Dunaliella salina CCAP 19/30 

Haematococcus pluvialis NIES-144 

[36] 

[37] 

[38] 

[39] 

[40] 

crtL-e, lcy-e Lycopene ε-cyclase Prochlorococcus marinus MED4 [37] 

crtR β-Carotene hydroxylase Anabaena sp. PCC 7120 

Anabaena variabilis ATCC 29413 

Synechocystis sp. PCC 6803 

Haematococcus pluvialis NIES-144 

[41,42] 

[42] 

[42–45] 

[46] 

crtG β-Carotene 2-hydroxylase Thermosynechococcus elongates BP-1 [47] 

zep, npq Zeaxanthin epoxidase Chlamydomonas reinhardtii CC-125 [48] 

vde Violaxanthin de-epoxidase Mantonilla squamata [49] 

crtO β-Carotene ketolase Anabaena sp. PCC 7120 

Gloeobacter violaceus PCC 7421 

Synechocystis sp. PCC 6803 

[50] 

[22] 

[42,45,51] 

crtW, bkt β-Carotene ketolase Anabaena sp. PCC 7120 

Gloeobacter violaceus PCC 7421 

Nostoc punctiforme PCC 73102 

Chlorella zofingiensis ATCC 30412 

Haematococcus pluvialis NIES-144 

Haematococcus pluvialis strain 34/7 

[42,50] 

[22,27,42] 

[42,52] 

[53] 

[54,55] 

[56] 

Red, genes and enzymes related to α-carotene. 

Most carotenoids consist of eight IPP units. Farnesyl pyrophosphate (C15) is synthesized from three 

IPPs, after which one IPP is added to farnesyl pyrophosphate by geranylgeranyl pyrophosphate 

synthase (CrtE, GGPS) to yield geranylgeranyl pyrophosphate (C20). In a head-to-head condensation of 

the two C20 compounds, the first carotene, phytoene (C40), is formed by phytoene synthase (CrtB, Pys, 

Psy) using ATP [57,58]. This pathway has been confirmed by cloning genes from two species of 
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Rhodobacter (purple bacteria) and two species of Pantoea (previously Erwinia) [57–59]. Among 

oxygenic phototrophs, the functions of CrtE of Thermosynechococcus elongatus BP-1 [21], and CrtB 

of three species of cyanobacteria [22–24] and two species of green algae [25,26] have also been 

confirmed (Table 2). The crtE and crtB genes have high sequence similarity from bacteria to land 

plants, respectively.  

3.1.2. Phytoene to Lycopene Synthesis 

Four desaturation steps are needed in the conversion from phytoene to lycopene. Oxygenic 

phototrophs require three enzymes: phytoene desaturase (CrtP, Pds), δ-carotene desaturase (CrtQ, Zds) 

and cis-carotene isomerase (CrtH, CrtISO) (Figure 2). CrtP catalyzes the first two desaturation steps, 

from phytoene to δ-carotene through phytofluene, and CrtQ catalyzes two additional desaturation 

steps, from δ-carotene to lycopene through neurosporene. During desaturation by CrtQ, neurosporene 

and lycopene are isomerized to poly-cis forms, and then CrtH isomerizes to all-trans forms. Light is 

also effective for their photoisomerization to all-trans forms [34]. The functions of these enzymes have 

been mainly confirmed in cyanobacteria, green algae and land plants (Table 2): CrtP from 

Synechocystis sp. PCC 6803 [28], Synechococcus elongatus PCC 7942 [23], Chlamydomonas 

reinhardtii [29] and Chlorella zofingiensis [30,31], CrtQ from Anabaena sp. PCC 7120 (CrtQa,  

crtI-like sequence) [32] and Synechocystis sp. PCC 6803 (CrtQb, plant crtQ-like) [33], and CrtH from 

Synechocystis sp. PCC 6803 [34,35]. The CrtP of S. elongatus PCC 7942 is stimulated by NAD(P) and 

oxygen as a possible final electron acceptor [60]. CrtQa has sequence homology with bacterial 

phytoene desaturase (CrtI) and CrtH, while CrtQb has sequence homology with CrtP. In addition, 

genes homologous to crtQa are not found in cyanobacteria; therefore, among oxygenic phototrophs, 

Anabaena sp. PCC 7120 is the only species to have functional CrtQa.  

In contrast, the bacterial type uses only one enzyme, phytoene desaturase (CrtI), to convert from 

phytoene to lycopene, and the primitive cyanobacterium of Gloeobacter violaceus PCC 7421 uses this 

type of CrtI, and the homologous genes of crtP, crtQ and crtH are not found in the genome [22,27]; 

therefore, G. violaceus is the first oxygenic phototroph that has been shown to use this type (Table 2). 

These observations suggest the following evolutionary scheme for this step in the reaction: the 

desaturation of phytoene was initially carried out by CrtI in ancestral cyanobacteria, crtP and related 

desaturase genes were acquired, and ultimately, there was replacement of crtI by crtP [27]. Among 

anoxygenic phototrophs, purple bacteria, green filamentous bacteria and heliobacteria use CrtI, 

whereas green sulfur bacteria use CrtP, CrtQ and CrtH [61].  

3.2. β-Carotene and α-Carotene Synthesis by Lycopene Cyclases 

All carotenoids in oxygenic phototrophs are dicyclic carotenoids; β-carotene, α-carotene and their 

derivatives, are derived from lycopene (Figures 1 and 2). Exceptionally, myxol glycosides and oscillol 

diglycosides in cyanobacteria are monocyclic and acyclic carotenoids, respectively.  

Lycopene is cyclized into either β-carotene through γ-carotene, or α-carotene through γ-carotene or 

δ-carotene. Three distinct families of lycopene cyclases have been identified in carotenogenetic 

organisms [13,62,63]. One large family contains CrtY in some bacteria except cyanobacteria, and CrtL 

(CrtL-b, Lcy-b) in some cyanobacteria and land plants. Lycopene ε-cyclases (CrtL-e, Lcy-e) from land 
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plants and lycopene β-monocyclases (CrtYm, CrtLm) from bacteria are also included. Their amino 

acid sequences exhibit a significant five conserved regions [39,62,64], and have an NAD(P)/ 

FAD-binding motif [65]. Note that Maresca et al. [63] divide this family into two CrtY and CrtL 

families. Three enzymes from Rhodophyta, Cyanidioschyzon merolae [38], and Chlorophyceae, 

Dunaliella salina [39] and Haematococcus pluvialis [40], are functionally confirmed (Table 2). 

Some cyanobacteria also contain these enzymes (Table 2). Synechococcus elongatus PCC 7942 

contains a functional CrtL [36]. Prochlorococcus marinus MED4 contains two lycopene cyclases 

(Table 2), which have sequence homology to CrtL. CrtL-b exhibits lycopene β-cyclase activity, while 

CrtL-e is a bifunctional enzyme having both lycopene ε-cyclase and lycopene β-cyclase activities [37]. 

The combination of these two cyclases allows the production of β-carotene, α-carotene and ε-carotene. 

Both enzymes might have originated from the duplication of a single gene. The characteristics of this 

CrtL-e are somewhat different from those in land plants [66]. In addition, the β-end groups of both  

β-carotene and α-carotene (left half) might be hydroxylated by CrtR to zeaxanthin through β-cryptoxanthin 

and 3-hydroxy-α-carotene, respectively, in P. marinus. Acaryochloris marina MBIC 11017, which 

produces α-carotene, contains only one crtL-like gene from genome sequence [14].  

The second family of lycopene cyclases, heterodimer (crtYc and crtYd) or monomer (crtYc-Yd), has 

been found in some bacteria, archaea and fungi [62,67], but not in phototrophs.  

Recently, a new family of functional lycopene cyclase, CruA, has been found in Chlorobaculum 

(previously Chlorobium) tepidum (green sulfur bacterium), and the main product is γ-carotene in 

Escherichia coli, which produces lycopene [68]. Homologous genes, cruA and cruP, have been found 

in the genome of Synechococcus sp. PCC 7002, and their main products are γ-carotene, in E. coli, 

which produces lycopene [63]. In addition, their homologous genes are widely distributed in 

cyanobacteria, such as Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; however, these 

cruA- and cruP-like genes from both Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 did not 

show the lycopene dicyclase or monocyclase activities [14]. S. elongatus PCC 6301 and PCC 7942, 

and A. marina MBIC 11017 contain crtL-, cruA- and cruP-like genes; consequently, distributions of 

functional lycopene cyclases (CrtL-, CruA- and CruP-like) in cyanobacteria are unknown.  

Since Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 lack crtL-like genes and contain 

non-functional cruA-like genes, there is a possibility to present a fourth new family of lycopene 

cyclases in these cyanobacteria. Further studies of distributions of functional lycopene cyclases  

(CrtL- and CruA-like, or others) in cyanobacteria are needed.  

Distribution of α-carotene, that is, CrtL-e, is limited in some algae classes (Table 1). Genes and 

enzymes of CrtL-e are not found in algae. In some species of land plants, the characteristics of CrtL-e 

were investigated [66], and were shown to have sequence homology with crtL-b. Lycopene is first 

converted to δ-carotene by CrtL-e, and then to α-carotene by CrtL-b. γ-Carotene produced by CrtL-b is 

not a suitable substrate for CrtL-e. 

3.3. β-Carotene Derivatives and Their Synthesis 

3.3.1. Cyanobacteria 

Some cyanobacteria produce zeaxanthin, and some produce both zeaxanthin and nostoxanthin 

(Figure 3). First, the C-3 and C-3′ hydroxyl groups of zeaxanthin are introduced to β-carotene by  
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β-carotene hydroxylase (CrtR) through β-cryptoxanthin. Then, the C-2 and C-2′ hydroxyl groups of 

nostoxanthin are introduced by 2,2′-β-hydroxylase (CrtG) through caloxanthin (Table 2) [13,41–43,47]. 

The same enzymes, CrtR and CrtG, can also introduce hydroxyl groups to deoxymyxol and myxol to 

produce myxol and 2-hydroxymyxol, respectively [13,44,47]; consequently, the same enzymes are 

used in two pathways.  

Cyanobacteria contain two ketocarotenoids, namely, canthaxanthin and 4-ketomyxol. Two distinct 

β-carotene ketolases, CrtO and CrtW, are known, and only seven enzymes are functionally confirmed 

in four species of cyanobacteria (Table 2) [13]. CrtO catalyzes β-carotene to echinenone, and the  

final product is canthaxanthin [22,42,45,50,51]. CrtW can introduce a keto group into β-carotene, 

zeaxanthin and myxol to produce canthaxanthin, astaxanthin and 4-ketomyxol, respectively  

(Figure 3) [22,27,42,50,52]; therefore, these ketolases are properly used in two pathways, β-carotene 

and myxol, depending on the species [13].  

The pathway and the enzymes to produce the right half of myxol 2′-pentoside are still unknown 

(Figure 3) [13].  

3.3.2. Land Plants 

In land plants, most of the carotenogenesis pathways and the functionally confirmed enzymes are 

known (Figure 2). Hydroxyl groups are introduced into β-carotene to produce zeaxanthin by  

β-carotene hydroxylase (CrtR, CrtR-b, BCH). Epoxy groups are introduced into zeaxanthin by 

zeaxanthin epoxidase (Zep, NPQ) to produce violaxanthin through antheraxanthin. Under high light 

conditions, violaxanthin is changed into zeaxanthin by violaxanthin de-epoxidase (Vde) for dispersion 

of excess energy from excited chlorophylls. One end group of violaxanthin is changed to an allene 

group of neoxanthin by neoxanthin synthase (Nsy). Because all neoxanthin in chloroplasts has the  

9′-cis form, unknown 9′-isomerase for all trans neoxanthin to 9′-cis neoxanthin should be present [11].  

3.3.3. Algae 

Little is known for the carotenogenesis pathways among algae, but some are proposed based on the 

chemical structures of carotenoids (Figure 2). Functionally confirmed enzymes are mainly reported in 

Chlorophyceae including Chlorella, Chlamydomonas, Dunaliella and Haematococcus for CrtB, CrtP, 

CrtL-b, CrtR-b [46], Zep [48], Vde [49], and CrtW (Table 2).  

In the cell-free preparation of Amphidinium carterae (Dinophyta), 
14

C-labellled zeaxanthin was 

incorporated into allenic carotenoid of neoxanthin, and then into acetylenic diadinoxanthin and C37 

peridinin (Figure 2). In addition, the three carbon atoms of C-13′,14′,20′ of peridinin were eliminated 

from neoxanthin (C-13,14,20) [69,70]. In organic chemistry, the C-7,8 double bond of zeaxanthin can 

be oxidized to the triple bond (acetylene group) of diatoxanthin [17].  

Allenic carotenoids are very limited in algae. From their chemical structures, all trans neoxanthin 

might be changed to fucoxanthin, dinoxanthin, peridinin, vaucheriaxanthin and diadinoxanthin, but the 

pathways and enzymes are still unknown (Figures 1 and 2).  

Under a stressful environment, such as high light, UV irradiation and nutrition stress, some 

Chlorophyceae, such as Haematococcus, Chlorella and Scenedesmus, accumulate ketocarotenoids, 

canthaxanthin and astaxanthin, which are synthesized by combining CrtR-b and β-carotene ketolase 
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(CrtW, BKT) (Table 2) [53–56,71]. Note that although β-carotene ketolase of Haematococcus and 

Chlorella were named CrtO at first [53,56], they are CrtW-type not CrtO-type from amino acid 

sequences (Table 2).  

3.4. α-Carotene Derivatives and Their Synthesis 

In Arabidopsis thaliana, β-carotene is hydroxylated mainly by the non-heme di-iron enzymes, 

BCH1 and BCH2 (CrtR-b), to produce zeaxanthin, while α-carotene is mainly hydroxylated by the 

cytochrome P450 enzymes, CYP97A3 for the β-end group and CYP97C1 for the β- and ε-end groups, 

to produce lutein [72].  

Lutein and its derivatives are found only in Rhodophyta (macrophytic type), Cryptophyta, 

Euglenophyta, Chlorarachniophyta and Chlorophyta (Table 1), but nothing is known for hydroxylation 

of α-carotene. From the chemical structures of siphonaxanthin [12], loroxanthin, prasinoxanthin and 

monadoxanthin, it could be considered that they are derived from lutein, but the pathways and 

enzymes are still unknown (Figures 1 and 2).  

4. Function of Carotenoids 

For photosynthesis, both carotenoids and chlorophylls are necessarily bound to peptides to form 

pigment-protein complexes in the thylakoid membrane. Five main kinds of the complexes described 

below are isolated from some algae, and the pigment compositions are investigated [73–75]. 

Exceptionally in cyanobacteria, myxol glycosides and some carotenoids are located in the cytoplasmic 

membrane for protection from high-light [76,77].  

β-Carotene is presented in the most divisions of the reaction-center complexes (RC) and the  

light-harvesting complexes (LHC) of photosystem I (PSI) as well as the RC and the core LHC of 

photosystem II (PSII); exceptionally zeaxanthin is presented in some red algae of the LHC of PSI.  

On the other hand, in the peripheral LHC of PSII, the bound carotenoids are heterogenous depending 

on the classes. Major carotenoids are alloxanthin (Cryptophyta); fucoxanthin (Chrysophyceae, 

Raphidophyceae, Bacillariophyceae, Phaeophyceae and Haptophyta); diadinoxanthin and 

vaucheriaxanthin (Xanthophyceae); violaxanthin and vaucheriaxanthin (Eustigmatophyceae);  

peridinin (Dinophyta); diadinoxanthin (Euglenophyta); siphonaxanthin (Chlorophyceae and 

Ulvophyceae); and lutein, violaxanthin and 9′-cis neoxanthin (land plants) (Figure 1) [73–75].  

β-Carotene in both RC might have protective functions, and carotenoids in the peripheral LHC of PSII 

mainly might have light-harvesting functions.  

The dimeric cytochrome b6f complexes of the cyanobacterium Mastigocladus laminosus [78] and 

the green alga Chlamydomonas reinhardtii [79] contain two β-carotene and two chlorophyll a 

molecules, while that of the cyanobacterium Synechocystis sp. PCC 6803 contains two echinenone and 

two chlorophyll a molecules [80]. These carotenoids might have protective functions.  

The water-soluble peripheral LHC of peridinin-chlorophyll-protein (PCP) isolated from 

Amphidinium carterae (Dinophyta) has a trimeric structure, and the monomer contains eight peridinin 

and two chlorophyll a molecules [81]. The water-soluble orange carotenoid protein (OCP) isolated 

from the cyanobacterium Arthrospira maima forms a homodimer with two 3′-hydroxyechinenone 
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molecules [82]. OCP is also found in some cyanobacteria, and its function might regulate energy 

dissipation from phycobilisomes to PSII [83].  

The keto groups at C-8 of fucoxanthin [84], siphonaxanthin [85,86] and prasinoxanthin [87], which 

are found only in algae, are the single-bond trans-conformation for the conjugated double bond  

(Figure 1). From the femtosecond time-resolved fluorescence spectroscopy of the purified carotenoids 

in organic solvents and the LHC in solution, these keto-carotenoids and peridinin have been found to 

have highly efficient energy transfer from the S1 state, not the S2 state, of carotenoids to chlorophylls. 

From the comparison of other structural carotenoids, these keto groups are essential for high  

efficiency [88,89]. These keto-carotenoids mainly might have light-harvesting functions.  

The xanthophyll cycle, also known as the violaxanthin cycle, is the cyclical interconversion of 

violaxanthin, antheraxanthin and zeaxanthin in green algae and land plants (Figure 2) [90]. Zep catalyzes 

zeaxanthin to violaxanthin through antheraxanthin during biosynthesis. Violaxanthin is found in the 

peripheral LHC of PSII. Under high light conditions, Vde is activated and catalyzes de-epoxidation of 

violaxanthin to zeaxanthin through antheraxanthin. Zeaxanthin is used for the dissipation of excess 

energy from excited chlorophylls. Zep from Chlorophyceae Chlamydomonas reinhardtii [48] and Vde 

from Pracinophyceae Mantonilla squamata [49] are functionally confirmed (Table 2). Similarly, the 

diadinoxanthin cycle occurs in Heterokontophyta, Haptophyta and Dinophyta, which contain 

diadinoxanthin and diatoxanthin (Figure 2). The enzymes of diadinoxanthin de-epoxidase and 

diatoxanthin epoxidase have not yet been found [9,91], but the characteristics of partially purified 

diadinoxanthin de-epoxidase from the diatom Cyclotella meneghinaina are reported [92]. 
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