
REVIEW
published: 19 March 2019

doi: 10.3389/fonc.2019.00156

Frontiers in Oncology | www.frontiersin.org 1 March 2019 | Volume 9 | Article 156

Edited by:

Giovanna Schiavoni,

Istituto Superiore di Sanità (ISS), Italy

Reviewed by:

Jinpu Yu,

Tianjin Medical University, China

Tomonori Yaguchi,

Keio University School of Medicine,

Japan

*Correspondence:

Maxim Shevtsov

Maxim.shevtsov@tum.de

Atsushi Shibata

shibata.at@gunma-u.ac.jp

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Oncology

Received: 05 November 2018

Accepted: 25 February 2019

Published: 19 March 2019

Citation:

Shevtsov M, Sato H, Multhoff G and

Shibata A (2019) Novel Approaches to

Improve the Efficacy of

Immuno-Radiotherapy.

Front. Oncol. 9:156.

doi: 10.3389/fonc.2019.00156

Novel Approaches to Improve the
Efficacy of Immuno-Radiotherapy
Maxim Shevtsov 1,2,3,4*, Hiro Sato 5, Gabriele Multhoff 1 and Atsushi Shibata 6*

1Center for Translational Cancer Research, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany,
2 Institute of Cytology, Russian Academy of Sciences (RAS), St. Petersburg, Russia, 3 First Pavlov State Medical University of

St. Petersburg, St. Petersburg, Russia, 4 Almazov National Medical Research Centre, Polenov Russian Scientific Research

Institute of Neurosurgery, St. Petersburg, Russia, 5Department of Radiation Oncology, Graduate School of Medicine, Gunma

University, Maebashi, Japan, 6 Education and Research Support Center, Graduate School of Medicine, Gunma University,

Maebashi, Japan

Radiotherapy (RT) has been applied for decades as a treatment modality in the

management of various types of cancer. Ionizing radiation induces tumor cell

death, which in turn can either elicit protective anti-tumor immune responses or

immunosuppression in the tumor micromilieu that contributes to local tumor recurrence.

Immunosuppression is frequently accompanied by the attraction of immunosuppressive

cells such as myeloid-derived suppressor cells (MDSCs), M2 tumor-associated

macrophages (TAMs), T regulatory cells (Tregs), N2 neutrophils, and by the release

of immunosuppressive cytokines (TGF-β, IL-10) and chemokines. Immune checkpoint

pathways, particularly of the PD-1/PD-L1 axis, have been determined as key

regulators of cancer immune escape. While IFN-dependent upregulation of PD-L1

has been extensively investigated, up-to-date studies indicated the importance of

DNA damage signaling in the regulation of PD-L1 expression following RT. DNA

damage dependent PD-L1 expression is upregulated by ATM/ATR/Chk1 kinase activities

and cGAS/STING-dependent pathway, proving the role of DNA damage signaling in

PD-L1 induced expression. Checkpoint blockade immunotherapies (i.e., application of

anti-PD-1 and anti-PD-L1 antibodies) combined with RT were shown to significantly

improve the objective response rates in therapy of various primary and metastatic

malignancies. Further improvements in the therapeutic potential of RT are based on

combinations of RT with other immunotherapeutic approaches including vaccines,

cytokines and cytokine inducers, and an adoptive immune cell transfer (DCs, NK cells, T

cells). In the current review we provide immunological rationale for a combination of RT

with various immunotherapies as well as analysis of the emerging preclinical evidences

for these therapies.
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IMMUNOSUPPRESSIVE EFFECTS OF RADIOTHERAPY (RT)

Apart from surgery and chemotherapy, RT is one of themajor pillars to treat solid tumors. However,
the radiation-induced immunosuppression could hamper the therapeutic benefits of abscopal
effects (Figure 1). RT can contribute to the anti-immunogenicmicromilieu by recruiting TAMs and
MDSCs (1–3). Previously Ahn et al. demonstrated that irradiated tumors recruit large numbers of
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bone marrow-derived CD11b+ myeloid suppressor cells that
express matrixmettaloproteinase-9 (MMP-9) which can promote
tumor growth and metastatic spread (4). Proangiogenic effects
are induced by the expression of various chemoattractants
and angiogenic molecules including Bv8, S100A8, TGF-β, and
VEGF (5–8). Furthermore, production of arginase I by MDSCs
decreases the expression of the zeta chain of the CD3 complex
(CD3ζ) and thereby impairs T cell activity (9). Intriguingly, as
recently shown by Noh et al. MDSCs could also induce the
expression of PD-L1 on tumor cells (10).

Subsequent studies demonstrated that the application of
anti-CD11b antibodies in human squamous cell carcinomas
in mice resulted in a reduced tumor-infiltration of MDSCs
(expressing S100A8 and MMP-9) and thereby increases
the efficacy of radiation (1). Another study by Crittenden
et al. showed that following radiation therapy influx of M2-
differentiated macrophages into the tumor stroma induced
immune suppression mediated by a transcriptional regulation of
NFκB p50 (3). Radiation-induced apoptotic cancer cells activate
M2 macrophages that in turn secrete various anti-inflammatory
cytokines including TGF-β and IL-10 (11, 12).

Among other immune cells also Tregs have been found
to be enriched in the tumor after irradiation (13). Tregs
(CD4+CD25+Foxp3+) play a major role in regulating anti-
tumor immune responses via direct cell-to-cell contacts and the
release of various cytokines such as TGF-β, IL-4, IL-10 (14, 15).

Irradiated tumors could also recruit large numbers of
CD11b+Gr1+ neutrophils (16). The presence of TGF-β in

FIGURE 1 | Radiation-induced immunosuppressive effects in the tumor micromilieu. RT induces recruitment, proliferation and polarization of immunosuppressive cell

subtypes including myeloid-derived suppressor cells (MDSCs), M2 tumor-associated macrophages, N2 neutrophils, and regulatory T cells (CD4+CD25+Foxp3+). RT

induces increased levels of suppressive factors including nitric oxide synthase (NOS) and reactive nitrogen intermediates (RNI), reactive oxygen species (ROS),

cytokines (IL-4, IL-10, TGF-β), matrix metalloproteinases (MMPs), arginase I, collagenase, lipoxygenase (LOX) which in turn leads to the suppression of the T

cell activity.

the tumor micromilieu induces the promotion of pro-tumoral
N2 neutrophils and the activation of PI3K-Akt, RHOA,
MAPK, and SMAD pathways (17, 18). Indeed preclinical
studies demonstrated that anti-Ly6G antibodies that deplete
neutrophils can improve the efficacy of RT (19). In contrast,
the application of anti-Gr1+ antibodies did not affect radiation-
induced immunity (1).

Additionally irradiation induces an upregulation of the
PD-L1 expression on tumor cells which in turn blocks the
function of activated T and NK cells against tumors (20).
Studies analyzing PD-L1 expression on tumor cells following
irradiation also demonstrated that this upregulation could be
mediated by IFNγ, which is produced by T cells (21). Particularly
conventional (5 × 2Gy) and hypo-fractionated but not single
high dose irradiation increases the surface expression of PD-L1
on melanoma B16-F10 and glioblastoma GL261 cells, in vitro
(22). Furthermore, standard RT combined with chemotherapy
increased the expression of PD-1 on CD4+ T cells in the
peripheral blood in oropharyngeal cancer patients (23).

Among other immunosuppressive chemokines and cytokines
hypoxia-inducible factor-1α (HIF-1 α), adenosine, lactate,
potassium, vascular endothelial growth factor (VEGF), and
acidosis have been found to block anti-tumor immune responses
(24–26). Presumably, all mechanisms of radiation-induced
immunosuppression [i.e., infiltration by MSCDs, Tregs, M2
macrophages, expression of inhibitory molecules (PD-L1)]
represent cellular responses that constrain local tissue damage.
The interference of these mechanisms particularly that of the
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immune checkpoint inhibitor axis could provide a promising
strategy to further induce cancer cell damage via an activation
of T and NK cell mediated anti-tumor responses.

IMMUNOTHERAPY IN COMBINATION
WITH CANCER THERAPY CAUSING DNA
DAMAGE RESPONSE

Immune Checkpoint Inhibition
Evidence accumulated over the past decade that multiple factors
are involved in the establishment of an immunosuppressive
micromilieu of tumors (27, 28). For example defects in T
cell receptor signaling, tumor-induced impairment of antigen
presentation, activation of negative co-stimulatory signals,
such as CTLA-4/CD80 (or CTLA-4/CD86) and PD-1/PD-
L1, elaboration of immunosuppressive factors (IL-10, TGF-
β, galectin-1, gangliosides, and PGE2), inactivation of pro-
apoptotic pathways (FasL, TRAIL, IDO, and RCAS1), inhibition
of natural killer (NK) cell mediated cytotoxicity, and inhibition
of differentiation and maturation of dendritic cell (DC) have
been found to establish an immunosuppressive environment that
promotes tumor growth (29). The interference of the PD-1/PD-
L1 and CLTA-4/CD80 (or CTLA-4/CD86) pathways has shown
promising results in therapy of cancer of different entities (30).
For example, ipilimumab which is an anti-CTLA-4 antibody,
was approved by the US Food and Drug Administration (FDA)
for the treatment of melanoma, advanced renal cell carcinoma,
and metastatic colorectal carcinoma with high microsatellite
instability (MSI) or mismatch repair (MMR) deficiencies
(Table 1). Nivolumab, targeting PD-1 on T and NK cells was also
approved by the FDA for the treatment of many types of cancers,
including advanced or metastatic melanoma and metastatic,
refractory non-small cell lung cancer (NSCLC) (Table 1) (31–
35). These immune checkpoint inhibitor therapies restore anti-
tumor immune responses by disrupting the interactions between
receptors (PD-1 or CTLA-4) on T and NK cells and their
corresponding ligands, PD-L1 on tumor cells or CD80/86 on
antigen presenting cells, respectively. These immune checkpoint
inhibition therapies provide effective anti-tumor effects by
augmenting the body’s own immune system against cancer
(36, 37). However, although the predicted mechanism of the
restoration of immune activity is attractive, patient responses are
highly variable. For example, anti-PD-1/PD-L1 therapies result in
impressive response rates in ∼5% of the patients, whereas ∼40%
of the patients show cancer progression (31–35). Therefore,
researchers are highly interested to improve therapeutic efficacy
by identifying reliable biomarkers that could predict responses to
an anti-PD-1/PD-L1 therapy (38). Although PD-L1 expression
on tumor cells appears to be ideal for determining the efficacy
of an anti-PD-1/PD-L1 therapy, its predictive quality is under
debate, presumably due to various other factors that contribute
to the immunosuppressive environment on an individual tumor.
Thus, an improved understanding of the molecular mechanisms
underlying the regulation of the PD-L1 expression in cancer
cells is critical for the identification of valuable biomarkers for a
personalization of an anti-PD-1/PD-L1 therapy. Another aspect

refers to the identification of the best combination therapy (i.e.,
RT, chemotherapy, and molecular targeted drugs), which will be
supportive for an anti-PD-1/PD-L1 therapy. However, despite
promising results from in vivo- or clinical trials-based studies,
understanding of the molecular mechanisms underlying the PD-
L1 expression in cancer cells has not been completely elucidated.

Multiple studies have provided evidence that the PD-L1
expression is upregulated in cancer cells following RT or
chemotherapy (21, 39, 40). Similar to RT, platinum-based drugs
and alkylating agents induce DNA damage in cancer cells.
Therefore, it is important to understand the mechanistic linkage
between DNA damage signaling and PD-L1 expression.

PD-L1 Expression Induced by
Mutational Loads
PD-L1 expression in tumors is one important factor in the
establishment of an immunosuppressive environment. Clinical
data indicate that a high PD-L1 expression on tumors is
associated with poor prognosis (41–43). The PD-L1 expression
in tumors, as well as immune cells surrounding the tumor, can
affect the efficacy of anti-PD-1/PD-L1 therapy (44, 45). In the
regulation of PD-L1 expression in tumors, IFN is considered
as a critical molecule to induce PD-L1 upregulation at the
transcriptional level. Recent studies have revealed that type I IFN
(α and β) and type II IFN (γ) cause PD-L1 upregulation in cancer
and immune cells (46). Although all IFN subtypes are able to
upregulate PD-L1, IFNγ exhibits a stronger and more prolonged
effect than the type I IFNs (47). IFNγ binds to the IFNγ receptor
and continuously stimulates downstream signaling of JAK1/2,
STAT1/2/3, and IRF1 to induce the PD-L1 expression (47, 48).

In terms of regulation of PD-L1 expression in tumors,
evidence suggests that cancer cells with multiple gene mutations,
i.e., high mutational loads, show a higher PD-L1 expression.
Importantly, high response rates of cancers with MSI, which is
caused by frequent mis-DNA-incorporation at small repetitive
sequences during DNA replication and is a hallmark of genomic
instability, to anti-PD-1 therapy have been reported. MSI-
positive tumors presenting neoantigens promote the release
of IFNγ from tumor-infiltrating lymphocytes, which enhances
PD-L1 expression in tumors and immune cells (49–51).
Therefore, the level of MSI in tumors is considered as a
marker for the efficacy of anti-PD-1/PD-L1 therapy (Figure 2).
Consistent with this notion, PD-L1-positive cells in the tumor
parenchyma of desmoplastic melanomas is highly associated
with an increased CD8 density in the tumor invasive margin,
that contribute substantial clinical benefits of anti-PD-1/PD-L1
therapy (50). Furthermore, this notion is strongly supported
by the observation that patients with MMR-deficient cancers
achieved a higher rate of progression-free survival following
anti-PD-1/PD-L1 therapy (52, 53). Therefore, MMR status is
a potent predictive marker for the response to anti-PD-L1
therapy. High expression of PD-L1 has also been observed in
DNA polymerase epsilon-mutated cancers (54). More recently,
the defect of a chromatin remodeling factor ARID1A has been
correlated with high MSI and mutation load across multiple
human cancer types due to the attenuation of MMR activity,
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TABLE 1 | List of clinical trials in the FDA-approved Nivolumab and Ipilimumab.

NIVOLUMAB (OPDIVO)

Primary diagnosis Details Base clinical trials Phase

Melanoma Unresectable or metastatic melanoma, Previously treated with

ipilimumab and, if BRAF V600 mutation positive, a BRAF inhibitor

NCT01721746 (CHECKMATE-037) 3

Previously untreated unresectable or metastatic melanoma NCT01721772 (CHECKMATE-066) 3

NCT01844505 (CHECKMATE-067) 3

Adjuvant setting for lymph node involvement or metastatic after

complete resection

NCT02388906 (CHECKMATE-238) 3

Non-small cell cancer Squamous NSCLC metastatic with progression, on or after

platinum-based chemotherapy, or FDA-approved therapy for EGFR or

ALK genomic tumor aberrations for patients with these aberrations

NCT01642004 (CHECKMATE-017) 3

Non-squamous NSCLC metastatic with progression, on or after

platinum-based chemotherapy, or FDA-approved therapy for EGFR or

ALK genomic tumor aberrations for patients with these aberrations

NCT01673867 (CHECKMATE-057) 3

Small cell lung cancer Metastatic with progression, after platinum-based chemotherapy and

at least one other line of therapy.

NCT01928394 (CHECKMATE-032) 1/2

Renal cell cancer Advanced, after prior anti-angiogenic therapy NCT01668784 (CHECKMATE-025) 3

Previously untreated advanced intermediate or poor risk NCT02231749 (CHECKMATE-214) 3

Classical Hodgkin

lymphoma

Relapsed or progressed after 1. autologous hematopoietic stem cell

transplantation (HSCT) and brentuximab vedotin, or 2. three or more

lines of systemic therapy that includes autologous HSCT

NCT02181738 (CHECKMATE-205)

NCT01592370 (CHECKMATE-039)

2

1/2

Head and Neck Squamous

Cell Carcinoma

Recurrent or metastatic with progression, on or after a platinum-based

therapy

NCT02105636 (CHECKMATE-141) 3

Urotherial carcinoma Locally advanced or metastatic after 1. disease progression during or

following platinum-containing chemotherapy, or 2. disease progression

within 12 months of neoadjuvant or adjuvant treatment with

platinum-containing chemotherapy.

NCT0238799 (CHECKMATE-275) 2

Colorectal cancer Microsatellite instability-high (MSI-H) or mismatch repair deficient

(dMMR) metastatic with progression, after fluoropyrimidine, oxaliplatin,

and irinotecan

NCT02060188 (CHECKMATE-142) 2

Hepatocellular carcinoma Previously treated with sorafenib NCT01658878 (CHECKMATE-040) 1/2

IPILIMUMAB (YERVOY)

Melanoma Unresectable or metastatic melanoma NCT00094653 3

Adjuvant setting for cutaneous melanoma with pathologic involvement

of regional lymph nodes of more than 1mm who have undergone

complete resection with total lymphadenectomy

NCT00636168 3

Renal cell cancer Previously untreated advanced intermediate or poor risk NCT02231749 (CHECKMATE-214) 3

Colorectal cancer MSI-H or dMMR metastatic with progression, after fluoropyrimidine,

oxaliplatin, and irinotecan

NCT02060188 (CHECKMATE-142) 2

which eventually phenocopies the MMR-defective tumors in
terms of the increased activation of the neoantigen–IFNγ/PD-L1
pathway (55). Alternatively, homologous recombination (HR)-
deficient tumors and immune cells were also shown to exhibit
greater neoantigen loads and expression levels of TILs and
PD-1/PD-L1 (56), although the magnitude of the mutations
was not as substantial as with MMR-defective tumors. This
could be explained by the mechanism in the process generating
mutations, i.e., defects of DNA double-strand break (DSB)
repair that preferentially cause chromosomal rearrangement,
such as large deletions or translocations, but not a few
base deletions or base substitutions. As established by DNA
repair research, a few endogenously generated DSBs occur
per day (57, 58). In contrast, MMR defects or abnormal
DNA replication causes base substitutions at a frequency
substantially greater than that of deletions or translocations

induced by DSBs. Thus, the evidence suggests that high levels
of mutations and neoantigens are augmented in tumors due to
the failure of MMR and/or replication errors, which promotes
IFNs release and the PD-L1-dependent immunosuppressive
environment in the tumor-associated surrounding cells. Thus,
the mutation/neoantigen/IFNγ pathway is well-understood as a
major pathway that upregulates PD-L1 expression in tumors.
However, such mechanisms may not be simply applied in
tumors after cancer treatment because the immune cell-
associated tumor environment might be drastically changed
following RT or chemotherapy (see section Perspective of
Combination Therapy Between Anti-PD-1/PD-L1 Therapy and
RT). Particularly after ionizing radiation (IR), as described
above, because the misrepair of DSBs induced by IR does
not cause substantial number of mutations, the mutational
loads induced by RT may not be a significant factor in the
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FIGURE 2 | Regulation of PD-L1 expression in response to DNA damage in cancer cells. As per the DNA damage response pathway, DNA damage induced by IR or

chemotherapeutic regents activates ATM/ATR/Chk1 signals, followed by the STAT-IRF pathway. In this pathway, STAT1/3-IRF1 appears to play an important role in

PD-L1 upregulation after DNA damage. Alternatively, PD-L1 expression is regulated by the neoantigen pathway in the context of DNA damage and repair in cancer

cells. Levels of mutation burden are associated with MSI. Mutation burdens and MSI are augmented by the defect of mismatch repair, chromatin remodeling, or

abnormal DNA replication. Neoantigens presented by MHC class I, which is recognized by T cell receptors, activate T cells, followed by the release of IFNγ. IFNγ

stimulates the STAT-IRF pathway via the IFNγ receptor (IFNGR) and upregulates PD-L1 expression in cancer cells. Another novel pathway, the cGAS/STING pathway,

may also be involved in the activation of the IFN-STAT/IRF-PD-L1 pathway. Cytosolic DNA fragments induced by DNA damage activate the cGAS/STING pathway.

Activation of the cGAS/STING pathway induces IFN type I (IFNα and IFNβ), which is incorporated into cancer cells via the IFNα/β receptor (IFNAR). IFNα/β-dependent

signaling also activates the STAT-IRF pathway, resulting in PD-L1 upregulation.

regulation of the mutation/neo-antigen/IFN pathway. In fact,
However, X-rays at a dose of 2Gy induces only ∼60 DSBs in
G1 phase cells which are most likely precisely repaired even
in cancer cells. Thus, the number of mutations induced by X-
rays must be significantly lower than that caused by MMR or
replication defects.

PD-L1 Expression in Response to DNA
Damage Signaling
While neoantigen–IFN-dependent PD-L1 upregulation in
tumors has been extensively studied, the importance of DNA
damage signaling in the regulation of PD-L1 expression after IR
has only recently been addressed. For example, we demonstrated
that PD-L1 expression in cancer cells is upregulated in response
to DSBs, representing the most critical type of genotoxic damage
after IR (59). This upregulation requires ATM/ATR/Chk1 kinase
activities, suggesting that DNA damage signaling is among the
factors controlling PD-L1 expression in cancer cells (Figure 2).

Consistent with these findings, the use of a specific ATR inhibitor
in mouse tumor models significantly prevented IR-induced
upregulation of PD-L1, which resulted in the attenuation of
IR-induced CD8+ T cell exhaustion and a stimulation of the
cytotoxic activity of CD8+ T cells (60).

More in-depth research regarding the molecular factors
affecting PD-L1 expression after DSB induction showed that
defects to Ku or BRCA2 also augmented PD-L1 upregulation

after IR. DSBs are repaired by two major pathways: non-
homologous end joining (NHEJ) and HR. NHEJ repairs DSBs

throughout the cell cycle in mammalian cells, while HR repairs
DSBs only in the S/G2 phase following DNA replication.

Despite the pro-HR environment in the S/G2 phase, current
models suggest that Ku70/80 heterodimers bind rapidly to DSBs,
allowing NHEJ to make the first attempt toward repair (61,
62). However, if NHEJ does not ensue, the repair pathway
can be switched toward HR, which is initiated by MRE11/CtIP
endonuclease activity and stimulated by BRCA1-dependent RIF1
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release (61, 63, 64). The second step of resection is expanded
by the exonucleases EXO1, BLM, and DNA2. Following DNA
end resection, single-stranded DNA is coated by RPA, which
is replaced by Rad51 to facilitate homology searching and the
subsequent steps of HR. ATM is activated at two-ended DSBs at
an early stage after IR, namely, before resection. Alternatively,
ATR is activated following RPA recruitment on single-stranded
DNA. While ATM is activated at non-resected DSB ends, ATR
is activated at resected DSB ends (65). Therefore, ATR activation
occurs after the progression of resection during HR. Since ATM
is required to initiate resection at DSB ends after IR, resection
is ATM-dependent and ATR functions downstream of ATM
(66). ATR phosphorylates and activates Chk1; therefore, Chk1
activation is ATM- and ATR-dependent. The high upregulation
of PD-L1 in Ku or BRCA2 depleted cells can be explained by
the mechanism of Chk1 activation related to the progression
of resection. It is known that the Ku heterodimer complex
rapidly binds and protects DSB ends and promotes NHEJ.
Therefore, depletion of the Ku complex increases resection and
ATR/Chk1 signaling. Alternatively, loss of BRCA2 function fails
to recruit Rad51 during HR. However, because resection and
RPA loading are normal in BRCA2-depleted cells, ATR/Chk1
activity can be continuously maintained on the resected DSB
ends without Rad51 loading. Thus, we propose that the
regulators of ATR/Chk1 activity, rather than DSB repair proteins,
are important factors that influence PD-L1 expression after
DSBs (59).

ATR/Chk1 is a multi-functional protein that regulates DNA
repair, signaling, and transcriptional activation. The open
question is how ATR/Chk1 activates the downstream signaling
in the STAT1/3–IRF1 axis. ATR/Chk1 may directly or indirectly
phosphorylate STAT1/3. STATs are localized in the cytoplasm,
while Chk1 is activated through its phosphorylation by ATR
at DNA damage sites in the nuclei (67). Thus, Chk1 must be
transported from the nucleus to the cytoplasm following its
activation. Previous studies have demonstrated that activated
Chk1 is transported into the cytoplasm via phosphorylation
of Ser286 and Ser301 by CDK during G2/M transition (68).
However, it remains unclear whether activated Chk1 on
chromatin gets also transported into the cytoplasm. If this is the
case, Chk1 may be able to directly phosphorylate STAT1/3. The
other open question is whether the cell cycle phase is involved
in PD-L1 upregulation after DNA damage. IR-dependent DSBs
activate ATM throughout all phases of the cell cycle. When
cells are in the S/G2 phase, the HR pathway is activated and
DSBs undergo resection. Therefore, ATR/Chk1 is activated only
when DSBs are induced in the S/G2 phase. Importantly, because
resection is ATM-dependent, ATR/Chk1 is activated downstream
of ATM. While ATR/Chk1 can be activated in the S/G2 phase,
these kinases are not effectively activated in cells arrested at G1
or G0/G1. Although it remains unclear how PD-L1 expression
is regulated in G0/G1-arrested cancer cells, this question should
be addressed in the future because most human cancer cells are
arrested in the G1 phase. Recently, we showed that PD-L1 is
not effectively upregulated in primary normal human dermal
fibroblasts even after exposure to 30Gy X-rays (69). Although the
precisemechanisms underlying the non-responsiveness of PD-L1

upregulation after DNA damage are unclear, signaling fromChk1
to STAT1/3 in normal cells may not be as efficient as that in cancer
cells. This can be explained by the insufficient Chk1 activation
in primary fibroblasts, which mainly remain in the G1 phase. As
an alternative explanation, epigenetic modifications of histones,
such as methylation at the promoter regions, may suppress
signaling from STAT1/3 to PD-L1. Although poor responsiveness
of PD-L1 upregulation after DNA damage has been shown in
primary normal human dermal fibroblasts, responses in other
normal tissues should be carefully examined in the future.
Since the canonical IFNγ pathway activates not only PD-L1
but also MHC class I and indoleamine 2, 3-dioxygenase (IDO)
via STAT/IRF signaling, the DNA damage-dependent STAT/IRF
pathway may also affect such IFNγ-related molecules. Therefore,
it is also of interest to clarify the similarities or differences in the
regulation of downstream targets between the canonical IFNγ

pathway and the DNA damage-dependent STAT/IRF pathway.
In contrast to the involvement of T cell-dependent immune

responses after DNA damage, previous studies demonstrated
that NKG2D ligands in cancer cells are also upregulated
after DNA damage in a Chk1-dependent manner (70, 71).
Since multiple distinct types of ligands on tumor cells and
receptors on immune cells are concerted in a time-dependent
and/or a magnitude of DNA damage dependent manner, the
ligand/receptor network in response to DNA damage should be
comprehensively investigated to fully understand the molecular
mechanisms underlying DNA damage-dependent alterations of
the immune environment.

In contrast to the regulation of PD-L1 via ATM/ATR/Chk1
signaling, the cyclic-GMP-AMP (cGAMP) synthase
(cGAS)/stimulator of interferon genes (STING)-IFNs pathway
is also able to activate the immune response in tumors after
DNA damage (Figure 2). Detection of cytoplasmic DNA is a
fundamental mechanism of the innate immune system to sense
the presence of microbial pathogens (72). Such cytoplasmic
DNA has also been identified in cancer cells. Cytoplasmic DNA
is generated during mitosis following endogenous DNA damage
or exogenous DNA damage after RT or chemotherapeutic
drugs. The cGAS recognize cytosolic DNA and catalyzes the
synthesis of cGAMP which functions as a second messenger
that binds and activates the adaptor protein STING. Activation
of the cGAS/STING pathway induces IFN type I (IFNα

and IFNβ) through IRF3/NFγB-dependent transcriptional
activation (73, 74). The combination of cGAMP and anti-PD-L1
antibody exerts stronger antitumor effects than either treatment
alone (75). These data strongly support the notion that the
cGAS/STING pathway is important for the antitumor effect of
immune checkpoint blockade. Activation of STING-dependent
innate immune signaling has been observed in response to
DNA damage in cancer cells (76). Following the induction of
DNA damage, DNA damage signaling activates checkpoint
arrest of the cell cycle (77). G2/M checkpoint arrest is critically
important to prevent cells with DSB entering mitosis and
causing errors of mis-segregation. Failure of G2/M checkpoint
arrest leads to cell cycle progression into mitosis with DSBs
and the subsequent formation of micronuclei. A recent study
demonstrated that micronuclei cause activation of inflammatory
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signaling by recognition of the cGAS/STING pathway (78, 79).
Interestingly, loss of the STING pathway prevented the
regression of abscopal tumors when IR and immune checkpoint
inhibitors were combined in an in vivo mouse model (78).
These findings illustrate a novel pathway where micronuclei
are recognized by cGAS/STING, as an important source of
immunostimulation (79). More recently, non-canonical STING
signaling in the nuclei was identified in response to DNA damage
(80). Dunphy et al. demonstrated that ATM activates STING via
the p53/IFI16 and TRAF6 pathways, which transduce STING
to IRF3/NFκB-dependent transcriptional activation in a cGAS-
independent manner. In the non-canonical STING pathway,
NF-κB, rather than IRF3, is activated and the ubiquitination
of STING is required for signaling, which may not be required
for the canonical cGAS/STING pathway. Since cGAS/STING
predominantly activates IFN type I (IFNα and IFNβ) signaling
and PD-L1 transcription is regulated via IFN type II (IFNγ)
signaling, PD-L1 expression may be not directly regulated in
this axis. In fact, our analysis showed that depletion of cGAS
or STING did not affect PD-L1 upregulation in U2OS cells
after X-ray exposure (unpublished observation). However, since
the immunostimulatory response is orchestrated by multiple
pathways, PD-L1 expression may also be influenced via the

canonical or non-canonical cGAS/STING pathway, as well as the
ATM/ATR/Chk1-dependent DNA damage signaling pathway,
particularly in vivo. An overview of PD-L1 regulation in cancer
cells in response to genotoxic stress in the context of DNA
damage signaling is summarized in Figure 3.

Alternatively, it has also been suggested that PD-L1 expression
after IR may be regulated by toll-like receptor 4 (TLR4)/myeloid
differentiation primary response gene 88 (MyD88)/TIR-
domain-containing adapter-inducing interferon-β (TRIF)
signaling. It is known that immunogenic cell death signaling
via damage-associated molecular pattern molecules (DAMPs)
activates immune response. In principle, the release of high
mobility group box 1 (HMGB1), which is a ligand of TLR4,
from chromatin in dying cells results in the activation of
the TLR4/MyD88/TRIF pathway (82). HMGB1-dependent
TLR4/MyD88/TRIF activation leads to T cell activation in
response to dying tumor cells (82, 83). In contrast to the role of
immune-simulative effects via the TLR4/MyD88/TRIF pathway,
the involvement of the TLR4/MyD88/TRIF pathway in the
regulation of PD-L1 expression has also been suggested (84).
Consistent with these data, a recent study has shown that the
TLR4 expression level is significantly correlated with the PD-L1
expression level and poor survival of patients with NSCLC

FIGURE 3 | Repair pathways and signaling in response to DSB induction by IR. After DSB induction, the Ku70/80 heterodimer complex (Ku) rapidly binds to all DSB

ends. Ku bound to DSB ends plays the following roles: 1) Ku70/80 complex promotes NHEJ and 2) Ku70/80 complex protects DNA ends from unscheduled digestion

by DNA nucleases. In the NHEJ pathway, DSBs are rapidly rejoined by DNA-PKcs and XLF/XRCC4/LIG4 following Ku binding to DSB ends (81). On the other hand,

DSB ends are digested in the 5
′

to 3
′

direction by EXO1 to direct repair pathway toward HR. The resected ssDNA is coated with RPA. BRCA2 promotes the protein

switch from RPA to RAD51, facilitating strand invasion into the template strand for recombination-mediated repair. In terms of DNA damage signaling, ATM, which

serves as a sensor of DSBs, is the major DNA damage response (DDR) kinase and is activated at unresected DSB ends. At DSB ends during HR, resection promotes

a switch from ATM to ATR activation, followed by Chk1 activation. In the context of DNA damage-dependent PD-L1 expression, the activation of Chk1 is a critical step

leading to STAT/IRF-mediated PD-L1 upregulation.
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(85). Cumulatively, the HMGB1-dependent TLR4/MyD88/TRIF
pathway via immunogenic cell death may also be involved in
PD-L1 upregulation in response to IR.

Perspective of Combination Therapy
Between Anti-PD-1/PD-L1 Therapy and RT
In terms of in vivo basic research for the development
of immunoradiotherapy, the findings of several studies have
suggested that the blockage of PD-1/PD-L1 interactions enhances
the delay of in vivo tumor growth in combination with IR
(21, 40). Combination of anti-PD-1 antibody and stereotactic
radiation improves survival in mice with intracranial gliomas
(86). Stereotactic radiation therapy increase anti-PD-1 antibody
dependent antitumor responses via cross-presentation of tumor
antigens (87). These studies demonstrated the ability of RT
to provide an additional mechanistic rationale for combining
radiation with PD-1 blockade. Park and colleagues demonstrated
that stereotactic ablative RT induces abscopal tumor-specific
immune responses in both irradiated and non-irradiated tumors,
which is potentiated by PD-1 blockade in bilateral flank mice
models of melanoma and renal cell carcinoma (88). Thus,
preclinical evidence indicates that combining RT with anti-PD-1
treatment increases the anti-tumoral activity of both treatments
and enhances long-term survival (89).

The results of the Pacific trial showed that progression-free
survival of patients with advanced NSCLC was significantly
longer with durvalumab than with a placebo after concurrent
chemoradiotherapy (90). Other clinical studies demonstrated
that the combination of local irradiation with anti-PD-1/PD-
L1 checkpoint blockade was a feasible and synergistic treatment
for cancer and improved patient outcomes (91, 92). Secondary
analysis of the phase 1 KEYNOTE-001 trial suggested that
previous treatment with RT in patients with advanced NSCLC
resulted in longer progression-free survival and overall survival
with pembrolizumab treatment than that of patients who did
not receive previous RT (93). It is a fact that 25% of patients
with melanoma showed regression of non-irradiated lesions
when anti-PD1 was continued after RT to a tumor site that had
progressed upon anti-PD1 monotherapy (94).

To date, although ∼100 clinical trials of anti-PD-1/PD-L1-
based immunoradiotherapy are ongoing (∼20 active trials are
listed in Table 2), little is known about whether fractionation
regimens, radiation dosages, and the timing of IR have any
specific impact on the antitumor immune response (95). While
data suggest that single fraction radiation is better than multiple
fractions for inducing antitumor immunity (96), other studies
report that both single and multiple fractions had similar effects
on antitumor immunity (97). In addition to this, fractionated,
but not single-dose RT induced an immune-mediated abscopal
effect to maximize tumor immunity (98, 99). Regarding an
approximate dose in immunoradiotherapy, Vanpouille-Box, and
colleagues reported that the DNA exonuclease trex1 is induced
by a radiation dose >12–18Gy in different cancer cells and
attenuates cGAS/STINGmediated immunogenicity by degrading
DNA that accumulates in the cytosol upon radiation (100).
Regarding the timing of combination, Dovedi et al. reported

that concurrent checkpoint blockade immunotherapy starting on
the day of or during fractionated RT was better than starting
checkpoint blockade immunotherapy after the completion
of RT (21).

As described above, immunoradiotherapy is highly
promising, particularly for non-responders to anti-PD-1/PD-L1
monotherapy. Accumulating evidence suggests that RT activates
host immunity. However, because PD-L1 is upregulated,
as well as other immunosuppressive response [see section
Immunosuppressive Effects of Radiotherapy (RT)], in response
to DNA damage signaling after IR, the immune response may
not be fully activated after RT. Therefore, anti-PD-1/PD-L1
treatment is likely able to normalize the appropriate activation of
the immune response under the immunosuppressive conditions
after IR. Immune activation induced by RT can be categorized
as follows. IR triggers immunogenic cell death, which is
characterized by the release of danger signals to ensure the
effective presentation of tumor antigens and priming of antigen-
specific T cells (101). Damage-associated molecular patterns,
such as ATP, calreticulin, heat shock proteins (HSPs), and
HMGB1, are released or expressed upon the immunogenic cell
death. For example, ATP attracts DCs into the tumor (102) and
the cell surface exposure of calreticulin, which is an endoplasmic
reticulum-resident protein, promotes phagocytosis of irradiated
tumor cells (103, 104). In addition, IR induces cancer cell-death
that releases HMGB1 (105). Furthermore, HMGB1 activates
DCs via binding to TLR4 (106, 107). Both calreticulin and
HMGB1 were found to be essential for the antigen-specific T-cell
responses in murine tumor models (108). IR also enhances the
immune response via cross-presentation of tumor antigens.
Gupta et al. reported that local high-dose RT resulted in the
activation of tumor-associated DCs in B16gp tumor-bearing
C57BL/6 mice (109). Enhancement of antigen-presenting cell
function and tumor immunity through signaling pathways,
such as NFκB, has been demonstrated after DNA damage (110).
As described in the previous section, the type I IFN pathway
is upregulated via the cGAS/STING pathway after IR (100).
The release of type I IFN activates DCs, which is followed by
immunoactivation (111, 112).

The immunosuppressive environment in tumors is
established through the obstruction of immune cell infiltration
and/or growth of tumor-infiltrating lymphocytes as well as
some other factors as described in section Immunosuppressive
Effects of Radiotherapy (RT) (113). Therefore, re-acquisition of
T cell infiltration in tumor tissue promotes the restoration of an
adequate immune response against tumors. Among the multiple
approaches suggested to restore an adequate immune response,
IR is believed to overcome the immunosuppressive environment
by promoting T-cell infiltration to tumors (114). Lower doses of
radiation therapy normalize dysfunctional tumor vasculature,
thereby allowing the infiltration of antigen-specific T cells into
the tumor tissue and the mediation of antitumor effects (114).
Hallahan and colleagues showed that radiation increased the
expression of E-selectin and ICAM-1 in human endothelial cells
(115). The release of the chemokine CXCL16, which can attract
CXCR6-expressing CD8T cells to tumor tissues, and CXCL21
by irradiation was reported (116, 117). The axis of MHC class
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2 I pathway has been identified as another route of immune

activation after IR. Many cancers have significant correlations
between poor clinical prognosis and the low expression of
MHC class I molecules. Thus, the downregulation of MHC
class I molecules may impede the detection of cancer cells
under immunosuppressive conditions (118, 119). Accumulating
studies demonstrated the changes in MHC class I expression
and antigen presentation that occur after IR. Reits et al. reported
that irradiation led to a dose-dependent increase in the levels of
intracellular peptides and increased protein synthesis via mTOR
activation, resulting in an increase in MHC class I expression
(118). Also, we previously reported that HLA class I upregulation
by preoperative hyperthermo-chemoradiotherapy in patients
with rectal cancer (119). In addition to the T-cell dependent
pathway, IR also upregulates the NK pathway via activation of
NKG2D ligands, which are potent immunomodulators of the
innate and adaptive immune responses (70, 71, 120–122). The
increase in antigen presentation and expression of MHC class I
molecules, together with the immunogenic release of damage-
associated molecular patterns, is believed to highly contribute to
the enhanced susceptibility of irradiated cells, which results in
immune-mediated cancer cell death (118). Taken together, the
evidence strongly suggests that anti-PD-1/PD-L1 treatment is
effectively able to normalize the appropriate immune response
against tumors in combination with the immune activation
by IR.

In addition to the development of immunotherapy, RT has
been largely advanced by introducing novel technologies, such
as heavy ion particle and proton therapy. As the next generation
of immunoradiotherapy, the results of clinical trials of anti-
PD1/PD-L1 and heavy ion particle therapy have been highly
promising. Although little is known about the immune response
following heavy ion particle irradiation, a combination may
be the best choice because heavy ion particle therapy has two
cooperating advantages as compared with other radiotherapies,
i.e., high-specificity against tumors and greater cell killing effects.
Particularly, because the great cell killing effect is related to the
type of DNA damage, which can be defined as complex DNA
lesions and clustered DSBs (Hagiwara et al., JRR, in press), heavy
ion-specific DNA damage may cause greater immune activation,
although PD-L1 may be also highly upregulated. However,
importantly, even if PD-L1 is highly upregulated after heavy ion
particle therapy, the downregulation of immune activity should
be normalized by treatment with anti-PD1/PD-L1 antibodies.

COMBINATION OF THE RADIATION AND
OTHER IMMUNOTHERAPEUTIC
TREATMENT MODALITIES

One of the potential systemic treatment modalities is the addition
of immunotherapeutic methods to standard RT including
vaccines, cytokines, and cytokine inducers, adoptive cell transfer
(DCs, NK cells, T cells). Thus, radiation-induced biological
effects in the tumor could make tumors more susceptible
to immune-mediated responses. Application of the vaccine
with various immunostimulatory adjuvants could promote the
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activation of T cells toward antigens released by RT. Thus,
Chakraborty et al. in the preclinical study demonstrated that
combination of the local radiation (single 8Gy irradiation)
with a recombinant vaccine and fowlpox viruses containing
the human CEA gene, the murine ICAM-1, leukocyte function
associated antigen 3 genes, and B7-1 could elicit a tumor-
specific CD4+ and CD8+ T cell responses in the mouse
model of MC38 colon adenocarcinoma (123). Subsequent
randomized phase II clinical trial utilized RT with poxviral
vaccine encoding prostate-specific antigen (PSA) and the
co-stimulatory molecule B7.1 showed a development of T-
cell specific response to multiple tumor-associated antigens
(including MUC-1, PSMA, PSCA, PAP) (124). Intriguingly,
in the presented study the designed vaccine against a single
antigen could induce immune responses with formation de novo
of T cell specific for antigens not presented in the vaccine.
This indicates that a vaccine treatment could augment the
RT-induced tumor killing that could have a potential role in
metastatic tumors eradication due to the induction of polyclonal
immune response.

Alternative for vaccination to promote cross-priming of
tumor infiltrating lymphocytes (TILs) could be an application
for denritic cells (DCs). Few clinical trials reported of the
successful combination of intratumoral delivery of DCs and RT
(125–127). Thus, combination of 45Gy RT with intra-prostatic
administration of DCs resulted in prostate CD8+ T cell increase
in the TILs of the localized prostate cancer in HLA-A2(+)
patients (126). Similar results were reported for the cohort of
soft tissue sarcoma patients when 9 patients (52.9%) developed
tumor-specific immune responses and 12 of 17 patients (70.6%)
were progression free after 1 year (127). To further boost DC
activation other immunostimulators could be applied including:

(i) TLR2 agonists [e.g., protein-bound polysaccharide (PSK)
from Basidoiomycete coriolus versicolor, IMM-101 (heat
killed Mycobacterium obuense), arabinomannan extracted
from Mycobacterium tuberculosis strain Aoyama B (Z-
100)] (128–133)

(ii) TLR3 agonists [e.g., poly-ICLC (synthetic double stranded
RNA)] (134, 135)

(iii) TLR7 agonists (e.g., imiquimoid) (136)
(iv) TLR9 agonists (e.g., CpG DNA PF-3512676) (137)
(v) Cytokines (e.g., GM-CSF, fms-like tyrosine kinase-3 (flt-

3) ligand) (138).

Although these stimulators demonstrated promising therapeutic
potential in preclinical and early phase clinical trials, a phase III
trial of the immunomodulator Z-100 for stage IIB-IVA cervical
cancer (JGOG study) showed a trend for improvement on OS,
although the statistical power was less than anticipated because
survival rates were unexpectedly higher for both arms (133).

Among other immunostimulators, the application of
cytokines might improve the effector function of the TILs.
Several clinical trials demonstrated the potency of the various
cytokines (e.g., IFN-α, TNF-α, IL-2) combined with RT in
pancreatic cancer, melanoma, renal cell carcinoma (139–144).
However, employed cytokines induced severe toxicities in

the patients that significantly limited the application of these
adjuvants in clinical trials.

CONCLUSIONS

Reported clinical trials combining immunotherapy and RT
demonstrated a therapeutic potency in treatment of various
cancer types due to the augmentation of the immune-mediated
responses. However, the observed effects were modest because of
immunosuppressive effects. Cells of the tumor micromilieu (e.g.,
TAMs, MDSCs, Tregs, etc) significantly hamper T cell activity
in the tumor. Presumably editing tumor microenvironment
could further improve the existing treatment schemes. One
approach could be based on application of modulators of certain
suppressive cells. Thus, cyclophosphamide when applied in
low doses can selectively deplete Tregs and thereby improve
anti-tumor immune responses (145). More recently tadalafil,
the phosphodiesterase (PDE)-5 inhibitor, was shown to impair
MDSCs functions and enhance antitumor immunity in advanced
melanoma (146) and head and neck squamous cell carcinoma
patients (HNSCC) (147). Indeed stable disease melanoma
patients displayed higher numbers of CD8+ T cells in the
center of metastasis compared to patients with progressed
disease (146).

Immune checkpoint inhibitors, particularly inhibitors of
PD-L1/PD-1 axis, can also enhance effector cell function and
data from preclinical and clinical trials showed significant
improvement in overall survival of patients of several
types of cancers. Recent studies demonstrate that two
pathways, i.e., mutational loads-IFNγ pathway and DNA
damage signaling pathway, are involved in the regulation
of PD-L1 expression in tumors. Although the signaling of
PD-L1 expression in tumors is comprehensively regulated,
particularly in combination with RT, the understanding of
the mechanism underlying PD-L1 expression in response
to DNA damage would be important to provide the basis
for the combined therapies and promote personalized
immuno-radiotherapy. In conclusion, immuno-radiotherapy
is highly promising, particularly for non-responders to
inhibitors of PD-L1/PD-1 pathway. Introduction of new
radiotherapeutic technologies, such as heavy ion particle
or proton therapy, might further improve the effects
of immunotherapy.
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