
February 2018 | Volume 9 | Article 351

Review
published: 13 February 2018

doi: 10.3389/fendo.2018.00035

Frontiers in Endocrinology | www.frontiersin.org

Edited by: 
Stefan N. Constantinescu,  

Ludwig Cancer Research, Belgium

Reviewed by: 
Sandra Pellegrini,  

Institut Pasteur, France  
Lily Huang,  

University of Texas Southwestern 
Medical Center, United States

*Correspondence:
Andrew J. Brooks  

a.brooks@uq.edu.au

Specialty section: 
This article was submitted to 

Molecular and Structural 
Endocrinology,  

a section of the journal  
Frontiers in Endocrinology

Received: 24 July 2017
Accepted: 29 January 2018

Published: 13 February 2018

Citation: 
Dehkhoda F, Lee CMM, Medina J 

and Brooks AJ (2018) The Growth 
Hormone Receptor: Mechanism of 
Receptor Activation, Cell Signaling, 

and Physiological Aspects.  
Front. Endocrinol. 9:35.  

doi: 10.3389/fendo.2018.00035

The Growth Hormone Receptor: 
Mechanism of Receptor Activation, 
Cell Signaling, and Physiological 
Aspects
Farhad Dehkhoda, Christine M. M. Lee, Johan Medina and Andrew J. Brooks*

The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, 
QLD, Australia

The growth hormone receptor (GHR), although most well known for regulating growth, 
has many other important biological functions including regulating metabolism and 
controlling physiological processes related to the hepatobiliary, cardiovascular, renal, 
gastrointestinal, and reproductive systems. In addition, growth hormone signaling is an 
important regulator of aging and plays a significant role in cancer development. Growth 
hormone activates the Janus kinase (JAK)–signal transducer and activator of transcrip-
tion (STAT) signaling pathway, and recent studies have provided a new understanding 
of the mechanism of JAK2 activation by growth hormone binding to its receptor. JAK2 
activation is required for growth hormone-mediated activation of STAT1, STAT3, and 
STAT5, and the negative regulation of JAK–STAT signaling comprises an important step 
in the control of this signaling pathway. The GHR also activates the Src family kinase 
signaling pathway independent of JAK2. This review covers the molecular mechanisms 
of GHR activation and signal transduction as well as the physiological consequences of 
growth hormone signaling.

Keywords: growth hormone, growth hormone receptor, Janus kinase 2, Src family kinase, insulin-like growth 
factor 1, suppressor of cytokine signaling

iNTRODUCTiON

The growth hormone receptor (GHR) is a member of the class I cytokine receptor family, which 
includes more than 30 receptors such as the prolactin receptor (PRLR), erythropoietin receptor 
(EPOR), thrombopoietin receptor (TPOR), granulocyte-macrophage colony-stimulating factor 
receptor, interleukin-3 receptor, interleukin-6 receptor, and interleukin-7 receptor (1, 2). GHR 
has been considered the archetypal class I cytokine receptor as it was the first cytokine receptor 
to be cloned and have its extracellular domain (ECD) crystal structure solved (3). GHR is a 638 
amino acid long homodimeric receptor with one cytokine receptor homology domain (CRH), 
a single-pass transmembrane domain, and cytoplasmic intracellular domain (ICD) (Figure 1). 
With the exception of GHR, all members of the class I cytokine receptor family contain a WSXWS 
motif in the ECD. The WSXWS motif is important for expression and stability of the receptor 
and comprises a consensus sequence for C-mannosylation. For the IL-21R, the WSXWS has been 
shown to be mannosylated at the first tryptophan where the sugar chain appears to form structur-
ally important interactions that bridge the two fibronectin domains (4, 5). GHR has in place of the 
WSXWS a similar sequence of YGeFS that has an analogous function in expression and stability 
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FiGURe 1 | The growth hormone receptor domain organization.
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of the receptor (1). Cytokine receptors lack an intrinsic protein 
tyrosine kinase (PTK) activity and therefore rely on binding 
non-receptor PTKs for their signal transduction. Within the 
ICD of all class I cytokine receptors is a proline-rich Box1 motif 
that is located a short distance from the cell membrane. A less 
conserved Box2 sequence consisting of acidic and aromatic 
residues is located a short distance C-terminal of the Box1 (1). 
The Box1 motif acts as a binding site for a cognate Janus kinase 
(JAK) of which there are four family members, JAK1, JAK2, 
JAK3, and TYK2 that can bind to specific receptors (Table 1). 
For GHR, the only JAK family member that binds the receptor is 
JAK2. GH binding to GHR results in activation of JAK2, which 
subsequently phosphorylates multiple tyrosine residues on the 
ICD of the receptor (Figure 2) (6, 7). This provides a scaffold 
for binding of STAT5a and STAT5b, which are subsequently 
phosphorylated by JAK2 upon receptor docking (Figure 3) (8). 
GHR also activates STAT1 and STAT3 via JAK2; however, these 
STATs do not appear to require binding to the phosphorylated 
receptor. Other signaling pathways such as the Ras/extracellular 
signal-regulated kinase (ERK) and PI 3-kinase/Akt are also acti-
vated by GHR (7, 9). The consequence of these GH-mediated 
cellular signaling pathways in a diverse range of cell types is 
responsible for the large range of physiological processes regu-
lated by GH.

GHR STRUCTURe AND ACTivATiON 
MeCHANiSM

The crystal structure of GH bound to the GHR ECD showed that 
one GH molecule bound two GHR molecules (3). Biophysical 

studies demonstrated that GH binds initially to a single recep-
tor through its “site 1” motif and then subsequently binds to the 
second receptor via its “site 2” interactions (41, 42). The major 
energy contributor residues of the hormone–receptor complex 
were identified as residues in the receptor hydrophobic patch, 
where tryptophan104 and tryptophan169 contributed significantly 
to site 1 interactions. In addition, tryptophan104 plays a key role 
in the weaker site 2 interaction (43, 44). These studies suggested 
GH binding causes receptor dimerization, which induces 
intracellular signal transduction. This dimerization-induced 
activation model was supported by a study using a hybrid recep-
tor of the GHR ECD fused to the base of the CRH domain of 
granulocyte colony-stimulating factor receptor (G-CSFR) with 
the remaining fibronectin type III homology domains (FNIII), 
transmembrane, and ICD. Monoclonal antibodies to the GHR 
ECD activated the hybrid receptor whereas monovalent frag-
ments did not; however, the additional FNIII domains may have 
influenced these data (45). In addition, of eight antibodies that 
were effective agonists for the GHR/G-CSFR hybrid, only one 
antibody acted as an agonist with weak activity on full-length 
GHR, suggesting that receptor dimerization alone is not suf-
ficient for activation (46). Later studies using site 2-modified 
GH antagonists, which would be predicted to bind only GHR 
monomer, appeared to bind GHR dimers expressed on cell 
membranes, thus demonstrating the existence of GHR dimers 
before GH binding (47). Subsequent studies confirmed that 
GHR dimers exist on the cell surface, and that dimers form in 
the endoplasmic reticulum. It was also shown that the extracel-
lular region is not required for maintaining receptor dimers, 
although the lower FNIII domain may define receptor-dimer 
specificity (48–52). Data supporting the GHR preformed dimer 
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TAble 1 | Class I cytokine receptors and their Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling partners.

Receptor group Receptor Partner JAK/s Activated STAT/s Reference

Homomeric receptors Growth hormone receptor JAK2 STAT1, STAT3, and STAT5 (10, 11)
EPOR JAK2 STAT1, STAT3, and STAT5 (12–14)
Prolactin receptor JAK2 STAT1, STAT3, and STAT5 (15–17)
Thrombopoietin receptor JAK2 and TYK2 STAT1, STAT3, and STAT5 (18–20)
G-CSFR JAK1 and JAK2 STAT1, STAT3, and STAT5 (21, 22)
OBR JAK2 STAT3, STAT5, and STAT6 (23, 24)

βc Heteromeric receptors IL-3Rα JAK2 STAT5 and STAT6 (25–27)
IL-5Rα JAK2 STAT1, STAT3, and STAT5 (28, 29)
GMRα JAK2 STAT1, STAT3, and STAT5 (30, 31)

GP130 heteromeric IL-6Rα JAK1, JAK2, and TYK2 STAT1 and STAT3 (32, 33)
IL-11Rα JAK1, JAK2, and TYK2 STAT1 and STAT3 (34, 35)
LIFR JAK1 and JAK2 STAT1 and STAT3 (36)

γc Heteromeric receptors IL-2Rα JAK1 and JAK3 STAT3 and STAT5 (37)
IL-4Rα JAK1 and JAK3 STAT6 (38, 39)
IL-7Rα JAK1 and JAK3 STAT3 and STAT5 (40)

Example receptors shown for each receptor group.

FiGURe 2 | Activation of the growth hormone receptor (GHR) by growth hormone. In the inactive homodimeric GHR, (A) the Janus kinase (JAK) 2 kinase domain 
(KD) is inhibited in trans by interaction with the pseudokinase domain from the JAK2 bound to the opposing receptor within the homodimer. GH binding to the GHR 
extracellular domain (b) results in conformational changes that cause the transmembrane domains to transition from a parallel interaction to a left-handed crossover 
interaction. These structural changes cause a separation of the intracellular domains to the Box1 and Box2 motifs and the associated JAK2 molecules. The 
movement of the associated JAK2s dissociates the inhibitory interaction of the pseudokinase from the KD and brings the two JAK2 KDs in close proximity resulting 
in trans phosphorylation and activation.
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conclusion were performed independently by more than one 
group using multiple techniques including co-immunoprecip-
itation, FRET, BRET, and fluorescence anisotropy (48–51). By 
analyzing the FRET efficiency with FRET reporters placed at 
the C-termini of full-length GHR and C-terminal truncations, 
it was found, in general, that the dimeric-GHR ICDs are posi-
tioned at a greater distance apart, the further they are from the 

transmembrane domain (50). This has been illustrated clearly 
for the closely related receptor PRLR where a recent full-length 
structure has been produced, which includes a molecular model 
of the ICD (53).

Crystallographic studies comparing the unliganded ECD of 
GHR to the ligand-bound form showed no major change in over-
all structure; however, a 7–9° of rotation between upper and lower 
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FiGURe 3 | The Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signaling pathway initiated by the activated growth hormone receptor. 
Activated JAK2 phosphorylates tyrosines on the intracellular domain of the receptor. Inactive-STAT5 dimers bind these phosphorylated tyrosine residues on the 
receptor, and the STAT5 is subsequently phosphorylated by JAK2 forming different active-STAT5 dimers that are translocated to the nucleus, bind DNA, and act as 
transcription factors. STAT1 and STAT3 are phosphorylated and activated by JAK2. Active STAT1 and STAT3 form homodimers or heterodimers, are translocated to 
the nucleus, bind DNA, and act as transcription factors.
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FNIII-type domains of the CRH module was observed, which was 
small compared with the ligand-induced conformation change 
shown for the ECD of RTKs (50). It was also evident that ligand 

binding did not change FRET efficiency of GH receptors with 
N-terminal reporters confirming lack of major conformational 
change in the ECDs upon GH binding (50).
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JANUS KiNASe 2

Most members of the JAK family are widely expressed in many 
cell types, except JAK3 whose expression is restricted to cells 
of the hematopoietic lineage (54). While JAK1 and JAK2 are 
involved in diverse physiological actions such as hematopoiesis, 
immunity, development, and growth (1, 55, 56), JAK3 and Tyk2 
are predominantly involved in homeostasis of immune system 
(57, 58).

Janus kinases are relatively large proteins ranging from 120 to 
140 kD (~1,150 amino acids) (59). The N-terminal half of these 
proteins comprises N-terminal band 4.1, ezrin, radixin, moesin 
(FERM) domain followed by Src homology 2 (SH2) domain, 
which were primarily defined as Janus homology (JH) domains 
3–7 (60). These domains play the major role in binding of JAKs to 
the cytoplasmic tails of their cognate cytokine receptors (61–63). 
The first evidence demonstrating the role of the N-terminus of 
JAK2 in receptor interactions was shown using JAK2 mutants, 
lacking the 239 N-terminal residues that rendered the JAK2 
mutant incapable of binding GHR or the membrane proximal 
region of the common β chain (64, 65). This was further supported 
by studies showing that the FERM and SH2 domains of JAK1 
are essential for association to oncostatin M receptor (OSMR), 
and that this binding is also required for upregulating surface 
expression of the OSMR (66, 67). Truncation studies showed that 
the membrane proximal 61 amino acids of GP130 are sufficient 
for signal transduction (68), and later it was shown for GHR that 
the membrane proximal 20 residues (which includes the Box1 
motif) of the ICD is sufficient for JAK2 binding, but not sufficient 
for GH-induced activation of JAK2 (69). Until recently, little was 
known about the mechanism of receptor–JAK association or how 
JAKs gain specificity to their cognate receptors. Previous studies 
have shown that the Box1 motif, although required for JAK bind-
ing, is not sufficient to determine the specificity for a particular 
JAK to associate with its cytokine receptor, and that additional 
sequences in the receptor play an important role in specificity 
since JAK1 and JAK2 were shown to have different preferences for 
GHR, EPOR, and GP130 chimeras (70). The first crystal structure 
of a JAK bound to residues of a receptor ICD was shown for the 
FERM–SH2 of TYK2 in complex with the Box2 region of the 
interferon-α receptor 1 (IFNAR1) (71). This study revealed that 
the TYK2 FERM–SH2 domains form a clover shaped structure 
with the SH2 being the forth leaf. The structure showed the 
FERM domain has a canonical three-lobe structure (F1–F3), and 
the SH2 has a preserved SH2-like structure despite lacking the 
highly conserved arginine residue in the phosphotyrosine bind-
ing site (71, 72). Interestingly, the SH2 domain coordinates the 
interactions with IFNAR1 to form the initial connections with the 
receptor peptide in the C-terminus. Further insights regarding 
cytokine receptor recognition by JAKs emerged when the crystal 
structure of JAK1 bound to peptides derived from the IL-10 
receptor (IL10RA) and interferon lambda receptor (IFNLR1) 
was solved (73). These studies showed the Box1 peptide bound 
to the F2 domain of the FERM while the Box2 peptide was not 
resolved in the structure. In addition, the binding kinetics of the 
IFNLR1 Box1 and Box2 showed that Box1 alone has a strong 
affinity while Box2 alone had no detectable interaction; however, 

the full Box1–Box2 peptide had a significantly enhanced affinity 
over Box1 alone, which was proposed to be due to the increased 
complex stability from the hydrophobic JAK1–Box2 interaction 
(73). Although neither of these recent structures showed simul-
taneous interactions between the JAK molecule and both Box1 
and Box2 sequences, geometrically both sequences are capable of 
binding to single JAK protein (73, 74). The crystal structure of the 
JAK1 FERM–SH2 bound to peptides from IL10RA and IFNLR1 
gave a provocative suggestion that the Box1 peptide bound to the 
FERM domain extends away from the FERM domain to interact 
with the SH2 domain of the neighboring JAK1 molecule in the 
crystal lattice. Further studies would be needed to determine 
if Box1–Box2 sequences can have relevant interactions with 
two JAKs simultaneously, although it was suggested that this 
may have been due to a crystal artifact (73). More recently, a 
crystal structure of the JAK1 FERM–SH2 has been solved with 
a continuous IFNLR1 Box1–Box2 peptide suggesting that lack 
full Box1–Box2 peptide in previous structures may have been a 
crystal artifact (75). Recently, a JAK2 FERM–SH2 structure has 
been solved; however, this structure is not in complex with any 
receptor sequence (76).

The C-terminal half of JAK proteins comprises a pseudokinase 
domain (PKD) followed by a kinase domain (KD), also known 
as JH2 and JH1, respectively (77). The KD is a typical tyrosine 
KD and is catalytically active, whereas the adjacent PKD is cata-
lytically inactive and lacks critical residues despite containing a 
canonical kinase fold (78). The PKD is believed to regulate kinase 
activity, and its deletion in JAK2 and JAK3 was shown to increase 
basal activity of the kinase (64, 79–81). Biochemical studies 
have reported co-immunoprecipitation of JH1 and JH2 of JAK2, 
and that the pseudokinase acts to inhibit the kinase activity of 
JAKs (60, 79, 82). Furthermore, recent studies have shown that 
the PKD of JAK2, unlike the other members of the JAK family, 
exhibits some catalytic activity via autophosphorylation of two 
critical residues in the JH2–SH2 linker region, Ser523 and Tyr570, 
which play an important role in regulating the activity of the KD 
(82, 83).

MeCHANiSM OF JAK2 ACTivATiON bY 
THe GHR

Recent studies have made major strides in elucidating the 
mechanism of JAK2 activation by GHR (84). Activation of the 
receptor by GH binding was found to result in an increase in 
distance between the Box2 motifs of the intracellular receptor 
domains. This revelation required a new model for JAK2 activa-
tion by cytokine binding whereby in the cytokine free receptor, 
the JAK2 KD is inhibited by a JAK2 PKD in trans (Figure 2). In 
this model, the KD from one JAK2 molecule bound to a Box1–
Box2 motif from one receptor is inhibited by interacting with 
the PKD from a different JAK2 molecule bound to the opposing 
receptor within the receptor homodimer. Upon GH binding, 
there is a structural change in the ECD that changes the recep-
tor transmembrane domain interaction from a parallel form to 
a left-handed crossover interaction. This structural transition 
leads to a separation of the ICD, at least to the Box1–Box2 motif, 
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and dissociates the JAK2 kinase-pseudokinase trans interaction 
and brings the KDs in proximity allowing trans phosphorylation 
and activation (1, 51).

Currently, there is no crystal structure available for the JAK2 
pseudokinase-kinase to allow observation of the interaction 
interface between each domain; however, crystal structures for 
the individual pseudokinase and KDs have been solved (83, 85). 
The pseudokinase-kinase crystal structure has presently been 
solved for only one JAK family member, Tyk2 (86). However, 
the functional Tyk2 interface was only inferred from the crystal 
structure as there were three significant potential interaction 
faces identified in the crystal lattice. It could not be determined 
directly in this structure as to how the pseudokinase and KDs 
were joined via the interdomain linker as this linker sequence was 
not resolved in the crystal structure. The potential dimer interface 
with the largest buried surface area was excluded from detailed 
analysis as the distance between the termini of each domain was 
too great to allow each domain to be linked by the interdomain 
linker peptide (86). However, for a trans-inhibition interaction 
model, there would be no requirement for each domain to be 
linked (87), therefore perhaps this interface with the largest 
buried surface area may have some biological relevance. The 
interface with the second largest buried surface area in the Tyk2 
crystal lattice did place the C- and N-termini in close enough 
proximity to be linked by the interdomain linker, and this inter-
face was investigated in detail and mutational data did support 
the biological significance of this interaction surface. There are 
a number of activating mutations identified for the JAK2 PKD; 
however, the location of these mutations suggests there may be 
two interaction interfaces that are involved in regulating the 
KD (88). For the Tyk2 pseudokinase-kinase crystal structure, a 
number of JAK-activating mutations were found to lie directly 
in the proposed domain interface while a second surface of 
activating mutations was found peripheral to the proposed dimer 
interface, which includes the position for the JAK2 V617F muta-
tion commonly identified in myeloproliferative neoplasms (89). 
Interestingly, some JAK2-activating mutations including V617F 
have been shown to require interaction with a cytokine receptor 
for their activity, suggesting that these mutations only disrupt 
inhibition of the pseudokinase when the JAK2 is bound to a 
receptor (90–93). Intriguingly, this supports previous suggestions 
that the JAK2 pseudokinase interaction and inhibition of the KD 
is different between the receptor bound JAK2 and the receptor 
free JAK2 (90). Molecular modeling of the proposed JAK2 trans-
inhibition interaction of the PKD with the KD placed the V617F 
in proximity to the activation loop of the KD; however, further 
direct functional and structural data supporting this interaction 
are currently not available. Although functional data support-
ing a trans-inhibition model were obtained when constitutive 
activation of JAK2 was shown with a JAK2 construct where the 
pseudokinase and KDs were swapped and this construct showed 
significant cytokine-independent activation only in the presence 
of wild-type JAK2 (51).

As the GHR ICD is intrinsically disordered with a number 
of transient secondary structures (94), the C-termini are likely 
a long distance apart in the inactivated receptor homodimer in 
a similar manner as illustrated in a recent full structural model 

of the PRLR (53). Studies using FRET reporters placed at the 
C-terminus of GHR have shown a transient increase in FRET 
shortly after GH addition (95). These data likely represent the 
flexible receptor ICD interacting with the activated JAK2 KDs 
and being phosphorylated upon multiple tyrosine residues, which 
subsequently interact with downstream signaling molecules and 
negative regulators of signaling.

SiGNAl TRANSDUCeRS AND 
ACTivATORS OF TRANSCRiPTiON (STATs)

The STATs are important components of the signaling cascades 
triggered by various cytokines (Table  1). STATs were initially 
identified as cytokine-induced transcription factors in interferon 
treated cells (96–98). To date, seven different members of the 
STAT family have been identified which includes STAT1–4, 5a, 
5b, and 6. STAT5a and 5b are encoded by two different genes 
with high-sequence homology, except for regions in the N- and 
C-termini (99). In addition, posttranslational modification and 
proteolytic cleavage have shown to produce additional forms of 
STAT1 and STAT3 (100). Although the STAT family members 
are activated via various cytokines, STAT2 and STAT6 are pre-
dominantly activated by IFN-α and IL-4, respectively (101). STAT 
proteins contain six domains, including an N-terminal domain, 
coiled coil domain, DNA-binding domain, linker domain, SH2 
domain, and transactivation domain (98). Each STAT member 
can be activated by a JAK via phosphorylation of a conserved 
tyrosine. Activated STATs translocate to the nucleus where 
they act as transcriptional regulators. Although STAT members 
including STAT1, 3, and 5 are activated by JAK2 following GH 
induction (Figure  3), STAT5 is the predominant transcription 
factor that delivers GH-induced cell proliferation and actions. 
Activated STAT5 forms homodimers, whereas active STAT1 and 
STAT3 form both homodimers and STAT1–STAT3 heterodimers 
(Figure 3) (7, 102, 103).

GHR-MeDiATeD SRC FAMilY KiNASe 
(SFK) SiGNAliNG

Src family kinases are non-receptor tyrosine kinases, which 
comprise nine members, namely, Src, Lck, Hck, Fyn, Blk, Lyn, 
Fgr, Yes, and Yrk, all of which share a common multidomain 
topology consisting of consecutive SH3, SH2, and SH1 KDs and 
a “unique” region located close to the N-terminus, which dif-
ferentiates each member of the family. The regulation of SFKs is 
accomplished through mechanisms involving phosphorylation, 
dephosphorylation, and complex intramolecular interactions 
that lead to SH3 and SH2 domain displacement (104, 105). 
Members of the SFKs are essential for the regulation of immune 
system function and cellular homeostasis (106). Lyn is a unique 
member of this family because it acts both as a signal amplifier 
and also as a signal inhibitor while others are known to only 
play a single role (107). The major functions of Lyn have been 
attributed to signaling of hematopoietic growth factor receptors 
and blood cell development as it is expressed in all blood cells 
except T lymphocytes (108).
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FiGURe 4 | The Src family kinase (SFK) signaling initiated by the activated growth hormone receptor (GHR). SFKs are activated by GH binding to GHR. This 
signaling pathway activates ERK1/2 that regulates cytosolic targets and gene transcription.
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Studies have shown that GH can activate SFKs independent 
of any JAK2 activation (Figure 4) (109). The SFK member Lyn 
was found to be associated with the membrane proximal 150 
residues of the cytoplasmic domain of human GHR, and Lyn 
was still shown to be activated by GH when using JAK2-deficient 

γ2A cells. Furthermore, it was reported that a mutant of the GHR 
Box1, resulting in loss of GHR-mediated JAK2–STAT signaling, 
still responded to GH stimulation through the activation of SFKs 
and ERK1/2 (109, 110). These studies suggested that this novel 
SFK-dependent pathway involves the activation of PLCγ, and a 
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subsequent release of inositol 1,4,5-triphosphate (IP3) and diacyl-
glycerol which leads to an increase in the cytoplasmic calcium ion 
concentration-activating Ras guanine nucleotide exchange factor 
RasGRP1. This process results in RAS activation and initiation of 
the ERK1/2 signaling pathway (109). Related studies using growth 
hormone as a ligand confirmed that this JAK2-independent 
pathway can activate ERK1/2 through the activation of Ras-like 
small GTPases, RalA, and RalB in NIH-3T3 cells and through the 
activation of Rap1 and Rap2 (111, 112). Mutations introduced in 
a loop of the GHR ECD that alters GH-induced conformational 
changes resulted in impaired ERK1/2 activation but not JAK2 and 
STAT5 activation. It was shown that GHR interacts with Lyn (an 
SFK), and that a deficiency in Lyn activation was responsible for 
the impaired ERK1/2 activation (109). These studies revealed that 
the extent of JAK2 or SFK signaling is regulated by conformational 
changes in the ECD. Interestingly, exon 3 deleted GHR, which 
results in the deletion of 22 amino acids in the ECD exhibits altered 
ERK signaling, but normal STAT5 and AKT signaling. This study 
highlighted the physiological importance of altering the signaling 
strength of these pathways as exon 3-deleted GHR individuals 
were found to be of higher stature with extended lifespan (113). 
Studies on closely related cytokine receptors have demonstrated 
SFK activation for TPOR, EPOR, and PRLR upon ligand binding 
(114–117). In addition, in a similar manner as shown for GHR, 
studies illustrate that structural changes in the ECD of EPOR and 
TPOR alter the extent of JAK2 and SFK signaling independently 
(118–120). The strength of JAK2 or SFK may also be significantly 
affected by different expression levels of each kinase in different 
cell types (109). Evidence also suggests JAK2 may not be the only 
PTK responsible for the tyrosine phosphorylation of STAT5 fol-
lowing GH stimulation, and that SRC may be taking this role in 
certain cell types and cytokine receptor systems (115, 121, 122).

NeGATive ReGUlATORS OF JAK–STAT 
SiGNAliNG

Negative regulation of cytokine receptor signaling is critical to the 
correct function of cytokine receptors as dysregulated negative 
regulation of signaling can lead to disease states. Negative regu-
lators of JAK–STAT signaling can be grouped into three main 
families, and this includes the suppressor of cytokine signaling 
(SOCS) protein family, protein tyrosine phosphatase (PTP), and 
protein inhibitor of activated STAT (PIAS). Apart from these 
protein families, the SH2-domain containing LNK (SH2B3) 
adaptor protein has been shown to be an important negative 
regulator in the JAK–STAT pathway. These negative regulators 
act in different ways to suppress JAK–STAT signaling. They can 
target JAKs, STATs, and/or receptors and may also involve other 
proteins of the proteasomal degradation pathway (123). The 
various mechanisms that are used by these signal regulators in 
modulating JAK–STAT signaling will be focused on below.

Suppressor of Cytokine Signaling
The SOCS protein family consists of SOCS1–7 and CIS. SOCS 
genes are translated as a result of cytokine-induced activation 
as part of the JAK–STAT negative feedback loop. SOCS proteins 

bind JAKs or their receptors and act by (i) abolishing the kinase 
ability of JAK, (ii) abolishing the ability of JAK to bind to the 
receptor, (iii) blocking STATs from being recruited to the recep-
tor, and (iv) mediating the ubiquitination of JAKs and STATs for 
degradation (124).

SOCS1–3 and CIS have been shown to negatively regulate 
GH-mediated signaling (Figure  5). SOCS2 appears to be the 
major SOCS-negative regulator of GH signaling as socs2−/− mice 
are 30–40% larger than WT littermates while other SOCS knock-
outs (KOs) do not significantly affect size (124, 125). The SOCS 
proteins contain a conserved SOCS box (126, 127) that is located at 
the C-terminus which facilitates ubiquitin-mediated proteasomal 
degradation of their associated target proteins (128). As the SOCS 
box comprises (i) BC box that interacts with elongin B and C and 
the (ii) Cul box that recruits Cullin 5, these protein complexes can 
associate with the RING-box protein 2 and other components to 
form the E3 ubiquitin ligase complex (128–130). Interestingly, the 
crystal structure of the SOCS2–Elongin B/C complex revealed 
that the C-terminus of the SOCS box and the N-terminus of the 
extended SH2 subdomain (ESS) can interact and maintain the 
stability of the SH2–SOCS box domain interaction (131). This 
finding shows that all three domains of SOCS2 (N-terminal ESS, 
SH2, and SOCS box) can undergo conformational changes and 
work together to channel their substrates to ubiquitin-mediated 
degradation. Many of the functional studies on SOCS proteins 
have focused on SOCS1 and SOCS3. These are the only SOCS that 
contain the kinase inhibitory region (KIR) at their N-terminal 
domain. The KIR is able to bind and block the catalytic cleft of 
JAK thereby inhibiting the ability of JAK kinase to phosphorylate 
its substrate and consequently inhibiting signaling (132–134). 
The importance of SOCS2-mediated degradation of GHR has 
recently been underscored by a study showing that this was the 
key mechanism that causes an increased risk of developing lung 
cancer in individuals that carry an SNP in GHR resulting the in 
the amino acid change P495T in the GHR ICD. This amino acid 
change was shown to cause a structural change that impaired 
binding of SOCS2 resulting in reduced degradation of GHR and 
extended signaling in response to GH (135).

Protein Tyrosine Phosphatases
Tyrosine phosphatases, as their name suggests, act to inhibit sign-
aling by dephosphorylating their substrate. There are four groups 
of PTPs (based on their substrate recognition): (i) non-receptor 
PTPs such as SHP1 and SHP2, (ii) receptor tyrosine phosphatases 
such as CD45, (iii) dual-specificity phosphatases, and (iv) low 
molecular weight phosphatases (136). According to their subcel-
lular localization, PTPs can affect either JAKs or STATs. Those that 
are located on the membrane or in the cytoplasm will act on JAKs 
whereas those that are localized to the nucleus act on STATs. Both 
the non-TM PTPs and receptor protein tyrosine phosphatases 
are cysteine based and recognize only tyrosine phosphorylated 
residues and not serine or threonine residues (137, 138).

Several PTPs have been implicated in regulating GH signaling 
including SHP1, SHP2, PTP-1B, and PTP-H1 (139–144). The well-
studied SHP1 (PTPN6; also known as HCP, PTP1C, SH-PTP1, 
and Hcph) is generally expressed in hematopoietic cell lineages 
whereas SHP2 (PTPN11; also known as PTP1D, SYP, SH-PTP2, 
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and SH-PTP3) has ubiquitous expression. Both SHP1 and SHP2 
have high sequence and domain homology whereby they contain 
two SH2 domains at their N-terminal region, denoted as N- and 
C-SH2 domains, and a PTP catalytic domain. They also possess a 

C-terminal tail with tyrosine residues that can be phosphorylated 
to regulate PTP activity (145, 146). Interestingly, SOCS1 can aid 
SHP1 in downregulating JAK–STAT signaling via the erythro-
poietin and PRLR. It has been proposed that the activation of the 
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receptor by ligand binding recruits SHP1 to the JAK2–receptor 
complex and results in the phosphorylation of the C-terminus of 
SHP1 where the phosphorylated residues act as docking sites for 
the Grab2/SOCS1 complex to bind (147). SOCS1 is subsequently 
released and then binds to JAK2 to inhibit its kinase activity (147). 
This proposed mechanism suggests that negative regulators can 
associate with each other to regulate signaling.

Mouse studies with deficiency of SHP1 or SHP2 highlight the 
importance of these phosphatases. The motheaten phenotype is 
due to a splicing mutation in SHP1 causing an absence of detect-
able protein and mice that have severe disorders of hematopoietic 
cells resulting in death within 3 weeks after birth (148). Mice with 
a targeted deletion within the N-terminal SH2 domain result in 
embryonic lethality (149). Mutation of SHP2 accounts for more 
than half of the cases of Noonan syndrome, characterized by 
proportional short stature, facial dysmorphia, and heart disease 
(150). These mutations in SHP2 result in hyperactive phosphatase 
activity, notably with elevated basal activity and result in inhibi-
tion of GH-induced insulin-like growth factor-1 (IGF-1) produc-
tion (143, 151). SHP2 has been shown to associate with a specific 
phosphorylated tyrosine residue in GHR with high affinity and 
mutation of this tyrosine to phenylalanine results in prolonged 
GH activation of STAT5 (140). Studies have shown an intriguing 
regulation of GHR signaling by IGF-1R, which suggested that 
IGF-1R positively regulates GH-mediated signaling by prevent-
ing PTP-1B suppression of GH activation of STAT5 (144).

Protein inhibitor of Activated STATs
Protein inhibitor of activated STATs are constitutively expressed, 
and, similar to SOCS, are involved in the negative feedback 
loop of cytokine-induced JAK–STAT signaling. Different PIAS 
proteins affect different STAT transcription factors. PIAS proteins 
may affect signaling by (i) inhibiting the DNA-binding activity 
of STATs, (ii) substrate SUMOylation, or (iii) recruit other tran-
scriptional co-repressors. While PIASs are able to associate with 
STATs, they are also able to regulate other transcription factors 
including SMADs, androgen receptor, c-JUN, and p53. The PIAS 
family of transcriptional co-regulators consist of PIAS1, PIASxα, 
PIASxβ, PIAS3, PIAS3L (PIAS3β), PIASy, and PIASyE6. Although 
PIAS proteins are known as negative regulators of JAK–STAT 
signaling, their specific role in GH-mediated signaling is not well 
studied.

lNK
The LNK adaptor protein is also involved in inhibiting down-
stream JAK–STAT signaling. LNK is encoded by the SH2B3 
gene and is part of the family of SH2-containing adaptor protein 
that includes SH2B (or SH2B1) and APS (or SH2B2). However, 
these adaptor proteins have different functions as the binding of 
SH2B or APS to JAK2 enhances its kinase activity whereas LNK 
binding to JAK2 inhibits its kinase activity (152). LNK is mainly 
expressed in hematopoietic cells and is known to be important 
for regulating a number of signaling pathways mediated by the 
TPOR (MPL), erythropoietin receptor (EPOR), stem cell factor 
receptor (KIT and SCFR), macrophage colony-stimulating fac-
tor receptor (CSF1R and C-FMS), and platelet-derived growth 
factor receptor (PDGFRB). Although LNK has been shown to be 

expressed in a range of tissue including muscle, brain, testis, and 
hematopoietic cells (153), its ability to regulate GHR signaling is 
currently not clear.

PHYSiOlOGiCAl ASPeCTS OF GH/iGF-1 
AXiS

The effects of cellular signaling from GHR activation are respon-
sible for a vast array of important physiological roles. Growth 
hormone is secreted by the anterior pituitary gland and not only 
has a role in increasing bone length, bone density, and muscle 
mass during childhood and adolescence but also importantly 
in the regulation of metabolism of lipids, carbohydrates, and 
body water throughout life (Figure 6) (154). The effects of GH 
are exerted by binding to the GH receptors on target cells, which 
in turn stimulates the production and secretion of IGF-1 from 
many tissues, mainly the liver (155). Since 1957 when IGF-1 and 
IGF-2 were identified and first designated as “sulfation factors” 
(156), the interest in the study of these molecules that structur-
ally resembled proinsulin increased, especially when IGF-1 was 
found to be the mediator of the anabolic and mitogenic activity 
of GH (157). IGFs were first named as somatomedins due to 
their concentration dependence by GH regulation. A subsequent 
isolation and amino acid sequence determination of two homo-
geneous polypeptides from purified non-suppressible insulin-like 
activity factors (158–160) established the current designation of 
these molecules as insulin-like growth factors (IGFs) 1 and 2 
(161). IGF-1 is a 70 amino acid peptide with a molecular weight 
of 7,649  Da. It has the ability to bind to the insulin receptor, 
although with low affinity. Most IGF-1 is secreted by the liver 
and acts as an endocrine hormone, although it can be secreted by 
many other tissues (162). One of the main roles for which IGF-1 
has promoted subsequent research is its involvement in growth 
and its relation to growth hormone. Exogenous IGF-1 was shown 
to stimulate growth when administered to hypophysectomized 
rats (163, 164). Furthermore, children with IGF-1 deficiency-
primary GH insensitivity or children with Laron syndrome who 
were treated with biosynthetic IGF-1 (165) showed increases in 
their serum alkaline phosphatase and serum procollagen and 
IGF-binding protein-3 (IGFBP-3) (165–167). This treatment was 
subsequently widely used in other parts of the world (168, 169). 
In terms of efficacy, GH and IGF-1 both stimulated linear growth 
but some variables including the greater growth deficit in infants 
with Laron syndrome than those with isolated growth hormone 
deficiency, insufficient IGF-1 dose, or the IGF-1 dependency on 
the GH-linked stem cell population of prechondrocytes made 
GH more efficient in terms of linear growth stimulation (170, 
171). However, IGF-1 was shown to be an important growth-
related hormone that has a GH-independent growth stimulating 
effects that in some cases acts synergistically with GH (172). On 
the other hand, as described later, GHR signaling has been shown 
to have growth promoting effects independent of IGF-1.

GH/iGF-1 in insulin Sensitivity and Obesity
The anti-insulin action of GH is very well established (173) as 
liver, skeletal muscle, and adipose tissue develop insulin resistance 
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induced by GH administration (174–177). Liver IGF-1-deficient 
mice show a reduction of around 75% in circulating IGF-1 levels 
and as a consequence due to the lack of negative feedback, these 
mice have about a fourfold increase in GH production. These 
liver IGF-1-deficient mice were crossed with mice that express 
a mutant GH that acts as an antagonist, and the resulting mice 
showed improved insulin sensitivity and decreased blood glucose 
and insulin levels (175). An important function of GH besides 
the control of growth is to provide a mechanism to cope with 
periods of food deprivation. In this way, GH stimulates lipolysis 
and provides free fatty acids and glycerol as substrates for energy 
metabolism and also inhibits insulin-induced suppression of 
hepatic gluconeogenesis counteracting insulin action (178). 
IGF-1 binds mainly to IGF-1 receptors located in the skeletal 
muscle and/or hybrid insulin/IGF-1 receptors, and it has been 
postulated as the mediator of enhanced insulin action as it binds 
insulin receptors with very low affinity (179). The interaction 
between IGF-1 and GH effects has made it difficult to determine 
whether IGF-1’s effect is due to the enhancement of insulin action 
or the suppression of GH secretion (180). Some studies suggested 
phosphatidylinositol 3-kinase as the key enzyme involved in the 
regulation of glucose uptake into cells by GH (175, 181, 182) 
while others found this mechanism to be of low significance as 
these experiments have not been replicated in humans (176, 177).

GH receptors and IGF-1 receptors are abundant on not only 
adipocytes but also preadipocytes, fibroblasts, various immune 
cells, and endothelial cells (183–188). The connection between 
GH and energy metabolism is not just restricted to the promotion 
of lipolysis or the prevention of the lipogenesis (189, 190) but GH 
together with IGF-1 plays a crucial role in preadipocyte prolifera-
tion, differentiation, and senescence (191–194). Moreover, GH 
action alters the level of adiponectin and leptin in the circulation, 
and these adipokines can at the same time, control the GH/IGF 
axis by modulating GH output from the pituitary gland (195). 
Furthermore, GH was found to induce the so-called “browning” 
of adipocytes by increasing the amount of beige adipocytes in the 
white adipose tissue and as a consequence, decreasing the store of 
excess lipid as white adipocytes, which may function as a protec-
tive mechanism against obesity (196). In obesity, the spontaneous 
(197, 198) and stimulated (199) pulsatile patterns of GH secretion 
governed by the hypothalamus are blunted, and the accumula-
tion of abdominal adiposity, particularly visceral adipose tissue 
mass, was found to be a stronger negative determinant of GH 
secretion than other factors including age, sex, or generalized 
obesity (200–202). In relation to GHR expression, its level was 
found to be influenced by nutritional status (203). For instance, 
white adipose tissue from obese women showed to have a lower 
expression of total GHR mRNA compared with those from lean 
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women, and the expression of GHR mRNA was also found to 
be higher in visceral white adipose tissue than in subcutaneous 
white adipose tissue in the lean women group (204).

GH/iGF-1 in Muscle and bone
The significance of the GH/IGF-1 axis in the muscular system 
was highlighted when it was found that calcineurin (CaN), 
a calcium-calmodulin-dependent protein phosphatase that 
activates slow isoform of troponin I and myoglobin genes, 
was regulated by IGF-1 and that inhibiting CaN blocked IGF-
mediated hypertrophy of cultured skeletal muscle cells (205). In 
addition, as shown using an animal model of congestive heart 
failure (CHF), GH prevented the atrophy and the shift from 
slow-twitch fibers to fast-twitch and more fatigable glycolytic 
fibers which works as an adaptation mechanism of the skeletal 
muscle to a low cardiac output characterizing the muscle atrophy 
as a common sign of patients with advanced CHF (206). GH has 
been shown to promote the cell growth of the skeletal muscle 
by facilitating the fusion of myoblasts with nascent myotubes, 
and that IGF-1 expression in myotubes is not regulated by 
GH (207). On the other hand, IGF-1 has been implicated in 
skeletal muscle hypertrophy, attenuation of age-related skeletal 
muscle atrophy, and restoring and improvement of muscle mass 
when virally delivered (208). The diversity of actions of both 
components of this axis in promoting the growth of skeletal 
muscle increases the bases to explain their synergistic effect in 
the development of cardiac diseases characterized by hyperplasic 
and hypertrophic muscle fibers. GH was also found to promote 
an increase in mitochondrial oxidative capacity and abundance 
of several mitochondrial genes when acutely administered (209) 
while exogenous administration of IGF-1 was associated with 
a reduced susceptibility of dystrophic muscles to contraction-
induced injury (210). In addition to the roles of the GH/IGF axis 
in pathological conditions of the muscular system, studies have 
reported an important role of the GH/IGF axis in physiological 
conditions of the tendon and skeletal muscle. Both circulating GH 
and IGF increase in response to exercise (211, 212) and although 
the IGF-1 response to exercise is not as pronounced as the GH 
one, it is not necessarily a consequence of GH release (213, 214) 
as it was shown by the fact that IGF-1 can rise in response to 
exercise in patients with pituitary insufficiency (212). Circulating 
GH consistently increases after high-intensity exercise in adult 
males (215), and its level was related to the central effort in the 
brain to perform exercise (216). In the same way, local levels of 
IGF-1 were also induced in the muscular tissue subjected to both 
long- and short-term loading (217–219).

In relation to the bone, IGF-1 is an important mediator of the 
effects of GH and modulates bone growth through its paracrine 
action in the growth plate (220) as it was demonstrated that the 
selective deletion of the igf1 gene in the liver and a consequent 
decrease in systemic IGF-1 did not affect the animal’s body and 
femoral growth (221). However, a targeted disruption of igf1 
expression in mouse chondrocytes reduced bone length (222). 
GH may act directly on skeletal cells having IGF-1-independent 
effects on bone growth (223, 224). In this regard, IGF-1 effects are 
produced by the enhancement of the function of mature osteo-
blasts (225) and promotion of osteoblast differentiation (226) and 

bone formation (227–229). Furthermore, higher levels of IGF-1 
are associated with higher bone mineral density in adult obese 
individuals (230).

GH/iGF-1 Role in liver Disease
The liver has important roles related to the function of the GH/
IGF-1 axis besides the production and secretion of IGF-1 induced 
by GH. It also has a role in the production of IGFBP-3 by Kupffer 
cells (231, 232). IGF-binding proteins (IGFBPs) antagonize the 
activity of IGFs due to their high affinity to the IGF-1 receptor 
(227). Of the six IGFBPs, IGFBP-3 is the major binding protein 
for IGF-1 that modulates its biological effects (233). More than 
80% of the circulating IGF-1 forms a complex with IGFBP-3 and 
the acid-labile subunit (ALS), which prolongs the half-life of 
serum IGF-1 (227, 234). Furthermore, IGFBP-3 levels are directly 
and indirectly modulated by GH and IGF-1 (232, 235) and are 
altered by nutritional deficiencies and liver function (236, 237).

Chronic liver disease (CLD) has been shown to correlate with 
high IGFBP-1 and low IGFBP-3, with IGFBP-3 being a major 
limiting factor for the reported low circulating IGF-1 levels 
(237). A similar observation was reported showing a significant 
relation between cirrhosis and circulating and venous ALS levels, 
which were decreased in relation to liver dysfunction (238). In 
non-alcoholic fatty liver disease (NAFLD) and advanced fibrosis, 
it was shown that the levels of GH, IGF-1, and IGFBP-3 varied 
according to the severity of the steatosis, which differed from the 
variation in samples taken from patients with hepatitis C virus-
related CLD (239). The same study reported that patients with 
NAFLD and advanced fibrosis had high levels of GH and low lev-
els of IGF-1 and IGFBP-3 (239). However, patients with NAFLD 
have significantly lower levels of serum GH in comparison with 
controls (240). This is not the case in cirrhotic patients where 
GH levels in serum were reported to be elevated (237) as the GH 
secretion rate was found to be increased (241). On the other hand, 
as IGF-1 and IGFBP-3 are regulated by GH secretion, the lack of 
negative feedback in cirrhotic patients with low levels of IGF-1 
may be the cause of the exaggerated secretion of GH (239).

GH/iGF-1 in Aging and Age-Related 
Diseases
Circulating GH/IGF-1 levels peak in the second decade of life (242, 
243) with this axis being the main regulator of postnatal growth 
while modulating other important physiological processes as well 
(244). Subsequently, secretion of GH and IGF-1 rapidly declines 
to very low levels in people aged 60 years or more, an event that 
was named “somatopause” (242, 245). This fact supported related 
studies that led to the belief that recombinant human GH was a 
potent antiaging agent. However, it was later found that while the 
effects on body composition from rhGH treatment were minor, 
adverse effects were significant and include the development 
of diabetes mellitus (246). On the other hand, decreasing GH/
IGF signaling in various species including mice extended their 
lifespan (247), which was also related to a reduced risk of several 
age-related diseases including cancer (248). In a study of people 
with GHR deficiency, individuals showed IGF-1 deficiency and 
appeared to be protected against age-related diseases (249). It 
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is interesting to note that although KO mice for GH receptor/
GH binding protein and for GH-releasing hormone showed an 
extended longevity (250, 251), this effect was not observed when 
using targeted deletion of the GH receptor in the liver, muscle, 
or adipose tissue (Table 3) (252). As low levels of GH/IGF were 
also reported to delay puberty and reproduction in KO models, it 
seems feasible that this axis may be working by shifting a “biologi-
cal timer” and delaying aging as a consequence, which may defer 
as well the arrival of age-related diseases (253). In contrast to the 
animal models of the absence of GHR signaling, humans with 
GHR deficiency do not live longer; however, the interpretation 
of this is complicated by a high rate of deaths caused by alcohol 
toxicity, liver cirrhosis, convulsive disorders, and other non-age-
related deaths such as accidents (249). A recent study investigating 
a common polymorphism resulting in exon 3-deleted GHR and 
resulting in increased GH sensitivity found that this polymor-
phism also correlated with a striking increase in life span in males 
of around 10 years (113).

As GH/IGF signaling induces growth mechanisms, inhibiting 
this signaling should suppress cell proliferation and a reduction 
in the cancer risk; however, other important mechanisms that 
may be affected by this process include a decrease in immune 
responses and reduced favorable metabolic adjustments 
(266). Moreover, being the process of aging characterized by a 
low-grade inflammation that is linked to several age-related 
diseases (267), the inhibition of the mechanisms that lead to it 
may consequently affect the development of these pathologies. 
According to these data, using GH antagonists or somatostatin 
analogs should slow aging (268). Currently, these drugs are being 
used for the treatment of acromegaly. Although these drugs show 
beneficial effects, such as somatostatin analogs, which normalize 
IGF-1 levels in around 45% of treated patients as is the case for 
lanreotide (269), they have also been reported to inhibit insulin 
secretion triggering the development of diabetes mellitus and 
aggravating the insulin resistance found in acromegalic patients 
(268, 270). Moreover, they have shown to produce other major 
adverse effects on the gastrointestinal tract (271). Therefore, it 
becomes necessary to understand the process of aging as a whole 
to detect the best target for treating age-related diseases.

GHR iN CANCeR

GH and its specific receptor, GHR, are involved in multiple bio-
logical and physiological actions contributing to cell proliferation 
and differentiation. Dysregulation of GH–IGF-1 axis can amplify 
the synergistic effect of GH and IGF-1 to promote uncontrolled 
cell proliferation, cell movement, angiogenesis, and suppress 
apoptosis to increase risk of neoplasia (272). The excessive 
production of GH and associated complications has been studied 
long before its broader role in human health was discovered. 
Acromegaly is an endocrine condition, which is manifested with 
excess secretion of pituitary GH accompanied by an elevated level 
of circulatory IGF-1 (273). This is usually associated with high 
mortality and morbidity, mostly due to cardiovascular and/or 
respiratory diseases, renal failure, and elevated risk of multiple 
cancers especially colorectal cancer (274–277). A review of over 
300 case–control and cohort studied used final height as an 

indication of GH–IGF-1 action and found that individuals over 
175 cm have a 20% higher chance of developing prostate cancer, 
a 22 and 20–60% higher chance of breast and colorectal cancers, 
respectively, when compared with individuals below 160 cm (278, 
279). Also, another study of 14-year-old females found that girls 
in the top fifth of height have an adjusted relative risk of over 1.5 
for breast cancer, exceeding BMI and age of menarche as exam-
ined risk factors in the study (280). In addition, meta-analysis of 
published research investigating the association of IGF-1–IGF-2 
and their binding proteins IGFBP-1–6 with prostate cancer 
confirmed that elevated circulating level of IGF-1 positively 
correlates with higher prostate cancer risk (281). On the other 
hand, this study found no or little evidence for the association of 
IGF-2, IGFBP-1, -2, and -3 with increased prostate cancer risk. In 
stark contrast, GHR-deficient individuals show a lack of deaths 
from cancer (249). A recent meta-analysis showed that increased 
height associated with an increased risk of lung cancer (282). The 
link between GHR signaling and lung cancer has been shown in 
two independent genetic studies that identified an SNP in GHR 
that correlated with an increased risk of lung cancer (283, 284). 
Recently, a study showed that functional consequence of this 
GHR SNP was an impaired interaction with SOCS2 resulting in 
an extended signaling following GH stimulation (135).

The link between acromegaly and increased risk of certain 
diseases especially colorectal cancers is well established, and 
there is a consensus on this issue even though there are some 
studies reporting contradictory results (285). However, the extent 
of this association is unclear since some studies have reported a 
7.6-fold increase in the rate of colorectal cancers in acromegalic 
patients compared with control groups (275), whereas another 
study has reported as low as twofold increased risk of colorectal 
cancer in acromegalic patients (286, 287). Furthermore, a recent 
study investigating the prevalence of malignancies among 160 
acromegalic patients over the period of 32  years using mam-
mography, colonoscopy, thyroid, and prostate ultrasonography 
found thyroid cancer as the most frequent cancer (n = 17, 10.6%) 
followed by breast and colorectal cancers (288).

GH has been prescribed for children with GH deficiency since 
late 1950s using hormone extracted from the pituitary gland 
(289), and it was successfully produced in 1985 using recom-
binant DNA technology and approved to be administered for 
treatment of various disorders (290). However, in the past couple 
of decades, there has been a growing debate on GH treatment and 
its diabetogenic effects, impaired skeletal growth, and increased 
risk of de novo or recurrent cancers (272). Long-term survival of 
childhood cancer patients who have gone under total body or cra-
nial irradiation in preparation for bone marrow transplantation 
or as a part of treatment for brain tumors or acute lymphoblastic 
leukemia are at higher risk of developing GH deficiency (285, 
291). Although some initial studies reported recurrent brain 
tumors as a frequent cause of death in children treated with GH 
(292), a study that followed 180 children treated with GH who 
had brain tumors concluded that there was not a substantial trend 
in relative risk of recurrence with cumulative time for which GH 
treatment had been administrated and GH does not result in 
elevated risk of recurrent brain tumors (293). However, the study 
also suggested continued surveillance based on the rising trend 
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TAble 3 | Growth hormone receptor (GHR) conditional knockout (KO) mice.

GHRfl conditional GHR KO effects

Alb-cre: liver-specific GHR 
deletion

Greater than 90% reduction in circulating 
insulin-like growth factor-1 (IGF-1), however no 
effect on total body or bone growth. Increased 
IGF-1 mRNA in skeletal muscle. Liver steatosis, 
insulin resistance, glucose intolerance, increased 
circulating free fatty acids, leptin, resistin, and 
adiponectin (257–260)

RIP-cre: β cell deletion Impaired glucose-stimulated insulin secretion (261)

MCK-cre: postnatal skeletal 
muscle deletion

Protection against high-fat diet-induced metabolic 
deterioration, sex-dependent effects as male 
mice show improved fasting glucose, insulin, and 
glucose tolerance while female mice were not 
altered (258, 262, 263)

mef-2c-73k: skeletal muscle 
deletion

Impaired skeletal muscle development, insulin 
resistance, and glucose intolerance (264)

Fabp4-cre: adipose tissue 
deletion

Increase in adipose tissue and decreased 
circulating adipsin (258, 265)

TAble 2 | Growth hormone receptor (GHR) transgenic mice.

GHR knockout/mutations effects on signaling

Ghr−/− (GHR knockout) No GH-mediated signaling (254, 255)

GhrBox1−/− (mutation of prolines in 
the Box1 motif)

No janus kinase–signal transducer and 
activator of transcription (STAT) signaling but 
Src/ERK signaling can occur (110)

Ghr391 (truncation at residue 391) STAT5-signaling deficient (255, 256)

Ghr569 (truncation at residue 
569 and amino acid mutation of 
residues Y539/545 to F539/545)

STAT5 activation markedly impaired  
(255, 256)
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in mortality relative risks with longer follow-ups. Initial studies 
had reported leukemia incidences in children treated with GH 
replacement in Japan (294, 295); however, later follow-up studies 
were unsuccessful in establishing a link between GH therapy and 
leukemia when patients with existing risk factors were excluded 
(296). Another comprehensive study from Genentech’s National 
Cooperative Growth Study examined 40,000 children undergo-
ing GH therapy with prolonged follow-ups and compared them 
to age-matched general public without known leukemia risk 
factors and showed a comparable incidence of leukemia for GH 
recipients (297, 298).

Growth hormone receptor has in some settings been observed 
to have a high degree of localization to the nucleus (272), and this 
nuclear localization has been shown to be induced by GH (299, 
300). This nuclear localization has particularly been observed in 
proliferating cells including a range of different cancers such as 
colorectal carcinoma, melanoma, uterine cervical neoplasms, 
breast cancer, and hepatocellular carcinoma. Nuclear localized 
GHR has been observed in a number of species such as pig (300), 
rat (299), and fish (301). By targeting the GHR to the nucleus by 
fusing a nuclear localization signal to the receptor, it was found 
in the absence of GH that several genes known to be involved 
in oncogenesis were upregulated, and further studies provided 
evidence that the GHR can bind to a transcriptional regulator 
(299, 302). Studies also suggest that autocrine GH production 
may play an important role in cancer (272).

GH SiGNAliNG MOUSe MODelS

Gene KO (Table 2) and targeted mutant GHR mouse models 
(Table 3) have enabled us to better understand the role of GH 
signaling in postnatal growth and development. Hepatocytes 
generate the majority of circulating IGF-1 that is found in the 
blood. As IGF-1 expression is induced as a result of GH binding 
to GHR, hepatic IGF-1 levels are predominantly regulated by GH 
that is produced by the pituitary. The Somatomedin hypothesis 
states that postnatal growth that is induced by GH is mediated 
by hepatic IGF-1 (previously known as Somatomedin C or sul-
fation factor) in an endocrine manner (156). However, studies 
have shown that postnatal growth is actually mediated by IGF-1 
in an autocrine/paracrine manner instead (303). To elucidate 
this, mice that were deficient of hepatic igf1 using the Cre–loxP 
system were generated (303). These mice have markedly reduced 
circulating IGF-1 levels (approximately 80% reduction), a slight 
reduction in body length while body mass was maintained (221, 

304). By contrast, igf1 KO in the whole mouse led to mice with 
dramatically reduced body mass and length (305–307). However, 
several organs were relatively larger, e.g., liver, brain, kidney, and 
heart (307, 308). The increase in liver size (liver:body weight 
ratio) could be explained by the increase in circulating GH as 
a result of the lack of the IGF-1-mediated negative feedback 
mechanism, where circulating IGF-1 produced by the liver can 
regulate secretion of GH and consequently the size of the liver 
(164, 309–311). In summary, this study showed that although 
most circulating IGF-1 is derived from hepatocytes, it is not the 
main IGF-1 that is required for postnatal growth and develop-
ment (303).

GH deficiency leads to reduced bone mineral density, but 
administration of GH is able to subvert this effect (312, 313). 
Previously, growth has been thought to be directly mediated by 
IGF-1, instead of GH (156). Studies using ghr KO mice showed 
significantly decreased body mass as well as smaller liver and 
brain mass/size than control mice (250, 310, 314–319) and growth 
delay (250, 254). Complete igf1 KO mice also demonstrated a 
similar phenotype (305–307). However, this resulted in perinatal 
lethality of most mice whereas those that survived were only 
approximately half the size of the control mice (320). Consistent 
with this observation, patients with IGF1 gene deficiency are 
growth retarded (321).

In mice that have combined KO of ghr and igf1, the growth 
deficiency is significantly more severe than in each individual KO 
(322), indicating that GH has growth mediating effects that are 
independent of IGF-1. Studies have shown that GH is capable 
to directly induce growth. When GH is infused locally into one 
leg of a hypophysectomized (GH-deficient) rat, that leg grows 
significantly longer than the other (323). Interestingly, in socs2 
KO mice, GH was shown to promote linear growth by local 
mechanisms independent of IGF-1 (324).

Postnatal growth of mice has been shown to rely on signaling 
mediated by JAK2 and STAT5, downstream from the GHR (110, 
255, 256). Mice with ghr Box1 deletion by substitution of each 
proline in the Box1 to alanine (which eliminates JAK2 binding 
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and signaling, while still allowing signaling to occur via the 
SFK–ERK1/2 pathway) have obstructed growth with a similar 
phenotype observed in mice with ghr KO (109, 110). A similar 
growth phenotype is also observed in mice with a truncated ghr 
(at amino acid position 391), which eliminates all GH-mediated 
STAT5 signaling while still allowing for JAK2, STAT1, and STAT3 
activation (110). These mouse models demonstrate the crucial 
involvement of JAK2 and STAT5 in regulating postnatal growth 
by GH. However, they also show that GH-mediated SFK signaling 
does not play a significant role in regulating growth. Nevertheless, 
it is possible that the relative levels of JAK2 or SFKs in certain 
cell types may be a determinant as to which kinase would be 
dominant for signaling (110).

CONClUDiNG ReMARKS

Although we have learnt a vast amount on the molecular mecha-
nism of GHR activation, signaling, physiological aspects, and 
roles of GH signaling in disease states, there is still much to learn. 
In particular, this is due to the wide range of physiological roles 
that GH has, making it an important player in many biological 

conditions and diseases. At the molecular and cellular level, the 
activation and role of SFK signaling is still currently not well 
understood. As our knowledge of the molecular signaling nature 
of GHR increases, our ability to specifically target the receptor 
and its signaling pathways for a diverse range of therapeutic 
purposes should also increase.
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