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Abstract

Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community
composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to
forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas $1 cm rooted in a 50-ha plot
on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently
rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree
species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree
densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most
comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted
liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of
woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana
species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly
indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for
stems $1 cm diameter and nearly 140% for stems $5 cm diameter, while tree density on BCI decreased 11.5%; a finding
consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density
and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps,
and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and
other neotropical forests.
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Introduction

Lianas (woody vines) are a common plant growth-form in

lowland tropical forests where they affect many aspects of tropical

forest dynamics and function. Lianas reduce tropical tree

recruitment, growth, survival, fecundity, and diversity [1–10]. At

the community level, lianas appear to influence tree species

composition by competing intensely with certain tree species, but

not with others [9,11–13]. At the ecosystem level, lianas have the

potential to substantially alter forest carbon, nutrient, and water

dynamics by decreasing whole-forest carbon sequestration and

storage, redistributing nutrients horizontally across the forest

landscape, and reducing available soil moisture during seasonal

droughts [14–16].

Determining landscape-level distributions and spatial patterns of

lianas is essential to accurately predict the forest areas and

processes on which lianas will have the greatest influence, to assess

the community ecology of lianas, and to provide insights into the

mechanisms that control liana species abundance and distribution

within forests. For example, a highly aggregated liana distribution

would be consistent with the hypothesis that within-forest liana

distribution is driven by treefall gaps [8,17], and thus lianas would

likely have a large effect on gap-phase regeneration, e.g. [9]. Many

liana species colonize gaps primarily via stems that fall with the

gap-making tree and then rapidly propagate through clonal

reproduction [1,3,18,19]. Thus, we would expect the liana species

that can capitalize on treefall gaps should arrive soon after gap

formation, possibly via clonal reproduction, and that most of the

stems within aggregations would be similarly sized. In contrast,

liana species that recruit into the understory (from either seed or

by clonal stems) should colonize more continuously over time,

regardless of canopy openness, and thus we would expect to find

much more variation in stem sizes within aggregations.

Currently, there exists little information on landscape-level liana

distribution and spatial structure, and how the production of

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e52114



clonal stems influences these factors. Most studies of liana ecology

are conducted at relatively small spatial scales (,1 ha; e.g.

[1,2,11,20]) or include only very large lianas ($100 mm diameter;

e.g. [21,22]). Thus, previous studies rarely provide a sample size

large enough to examine how lianas are distributed across the

landscape. Few studies have systematically examined the preva-

lence of clonality of many liana species, and how this mode of

regeneration can dictate liana abundance and distribution within a

forest (but see [23]). Furthermore, few studies have compared liana

and tree spatial distributions, which may differ substantially if the

distribution of each growth form is determined by different

mechanisms. For example, while the distribution of many tree

species within a forest may be influenced by edaphic factors, e.g.

[24,25], within-forest liana distribution may be more strongly

influenced by the occurrence of canopy gaps [8,17,26].

Moreover, the relative abundance and biomass of lianas appear

to be increasing throughout the neotropics [27]. On Barro

Colorado Island (BCI), liana productivity and flower production

has increased substantially compared to trees [28,29], and the

proportion of trees infested by lianas has increased from 32% to

nearly 75% over the past four decades [10]. In 1979, lianas were

censused in ten 0.1 ha plots on the central plateau on BCI [1], in

the area where the BCI 50-ha plot is now located, but until now

we lacked comparable data to examine whether liana density has

increased on BCI. An increase in liana density is likely to have

significant consequences for community and ecosystem level

processes in tropical forests [30].

In this study, we present the most comprehensive spatially

contiguous sampling of lianas ever conducted and we provide the

first full description of the liana community of the BCI 50-ha plot.

We quantified the abundance, diversity, and distribution of all

lianas ($1 cm diameter) rooted in the BCI 50-ha forest dynamics

plot, located in central Panama. We used this dataset to address

the following five questions.

1) What is the contribution of lianas to woody species richness,

stem density, and basal area in the BCI 50-ha plot?

2) What is the spatial structure and distribution of lianas in the

BCI 50-ha plot and how do distributions vary among liana

species?

3) How do liana species vary in their production of clonal

stems, and do liana species with a high propensity for clonal

reproduction have higher stem density and larger mean

stem diameter than species with a low propensity for clonal

reproduction?

4) How do spatial aggregation patterns of liana species

compare to those of trees? Furthermore, how do spatial

aggregation patterns of liana species with many clonal stems

compare to liana species with few clonal stems?

5) Has liana density (both absolute and relative to trees)

increased in the BCI forest over the past 30 years?

Methods

Study Site
The forest of the BCI 50-ha plot is almost entirely old-growth

seasonally moist lowland tropical forest, with a small (,1 ha)

portion of late secondary forest (.100 yrs-old [31]). Mean annual

rainfall is around 2600 mm, with a dry season from December

until May. In 1980–1982, all trees $1 cm diameter were

measured, mapped, identified, and tagged in the 50 ha plot and

have been censused every five years thereafter [32]. Tree data used

in this study are from the 2005 census (published in 2011 on the

CTFS website: https://ctfs.arnarb.harvard.edu/webatlas/

datasets/bci/abundance/). Because this study was conducted on

the Barro Colorado Nature Monument, no specific permits were

required. Descriptions of the geology, climate, flora and fauna of

BCI, as well as the census of the 50-ha plot can be found in

references [32–35].

Liana Census of the BCI 50-ha Plot
From February through December 2007, we tagged, mapped,

measured, and identified all rooted lianas $1 cm diameter using

the census methods described in [35] and [36]. We measured liana

stem diameter 1.3 m from the rooting point and tied a uniquely

numbered aluminum tag to the stem. We mapped the rooting

point of each liana using the existing 20,000 565 m grid markers

to aid in recording the precise location of the stem (within 0.5 m),

and we digitized all maps. We considered each separately rooted

liana that was not connected aboveground to any other liana in

the study to be an ‘‘apparent genet’’ because it appeared to be a

genetically distinct individual [5]. When a single liana had multiple

rooted stems $1 cm in diameter, we considered the largest

diameter stem to be the ‘‘principal stem’’ (and apparent genet),

and each of the smaller stems to be the clonally produced ramets

[5,35,36]. Thus, throughout the manuscript we use the terms

‘‘principal stem’’ and ‘‘clone’’ to distinguish between these two

stem types. Stems that branched within 40 cm of the rooting point

are notoriously difficult to measure accurately [35]; therefore, for

these stems, we measured all branches 1.3 m from the rooting

point and calculated basal area as the sum of the branch basal

areas (follows [5,35,36]). Branches were not considered to be

clones because they did not have a separate root system and were

analogous to the branches of a tree rather than a clonal stem

[5,35,36].

We identified lianas to species in the field using a combination

of stem, leaf, and flower characteristics, and we were able to

identify 98.5% (46,495) of the individuals to species. We were

unable to identify to species 1.5% (688) of the individuals, usually

because we were unable to see the leaves to confirm the species

identity. We were also unable to identify to species 27 individuals

in the genus Smilax (Smilacaceae), so we excluded this genus, along

with the unidentified stems, from all species-level analyses.

Quality Control
During the course of the 10-month census, we reduced errors by

implementing five levels of quality control [35]. 1) All datasheets

were examined weekly for anomalies or missing data and

anomalous data were checked and revised in the field. 2) Two

field supervisors used the maps to locate lianas in each of the 1250

20620 m quadrats to ensure that the liana locations were mapped

correctly. Mapping errors were corrected in the field prior to

digitizing the maps. 3) The field supervisors checked stem

measurement locations for randomly selected lianas in each

20620 m quadrat to ensure that the correct stem measurement

protocol was followed; errors were corrected in the field. 4) The

field supervisors checked the accuracy of the diameter measure-

ments by re-measuring approximately 5% of the lianas in each

20620 m quadrat, thus ensuring that there were no systematic

measurement errors among the field technicians. 5) We quantified

the error rate for our estimate of liana clonal reproduction by

randomly selecting and revisiting 5% (64) of the 1250 20620 m

quadrats and counting and re-measuring all rooted liana ramets

(clones) that were $1 cm diameter and still connected to the

principal stem (3,768 stems total). The mean error rate for

determining clonal reproduction was ,1% at both the quadrat

level (0.89%) and at the individual liana level (0.50%).

Liana Abundance, Diversity, & Distribution on BCI
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Diversity Estimates and Liana Species-area Accumulation
Curves

We calculated liana and tree species richness (number of

species), Fisher’s alpha, Shannon diversity index, dominance, and

evenness for all independently rooted principal stems (Table S1).

We compared relative abundance patterns between lianas and

trees in two ways. First, we constructed frequency distributions of

the log-transformed number of species falling within relative

abundance classes. Second, we constructed rank-abundance

curves for both lianas and trees by plotting log relative abundance

of a species on the y-axis and species rank abundance on the x-

axis.

We determined liana species-area curves across the entire

1000 m6500 m (50 ha) plot by calculating mean liana species

richness for non-overlapping square quadrats ranging in size from

25 m2 (20,000 565 m plots) to 250,000 m2 (two 5006500 m

plots). In total we used 13 quadrant size classes, and for each

quadrat size class we calculated the mean species richness of the

replicate quadrats. We sampled from the southwest corner of the

plot and continued to the northeast corner to preserve the

geographical integrity of liana distribution across the plot [37]. For

quadrat sizes that did not divide evenly across the 50 hectares, the

remaining areas that did not fit into the quadrants (the northern

and eastern edges) were excluded from the analysis (methods

follow [37]). We examined liana accumulation for three different

minimum diameter size classes ($1 cm, $5 cm, and $10 cm),

both including and excluding clonal stems. We determined

species-area curves for the three size classes for both lianas and

trees to compare species accumulation with area sampled between

the growth forms.

Liana Clonality and Relative Abundance
We quantified clonal reproduction of a species as the percentage

of rooted stems $1 cm diameter that were still physically attached

to larger rooted stems in the census. We did not excavate stems to

determine underground connections among stems, and clones

likely decay over time, so our estimates of clonal reproduction are

conservative. We calculated per-species percent clonal reproduc-

tion as the number of clones divided by the sum of the principal

stems and clones for each species. We used Pearson’s correlation to

examine the relationship between a species’ observed percent

clonal reproduction and its log-transformed principal stem density

and mean diameter – testing the hypothesis that liana species

attain high abundance and size due to their ability to reproduce

clonally. We excluded 12 species with very low sample sizes from

this analysis (eight singletons and four species with only two

individuals).

Liana and Tree Species Spatial Distribution Patterns
We analyzed the spatial distribution patterns for the 82 liana

species with more than 65 principal stems. We used 65 as our

threshold abundance because this is the minimum population size

to accurately detect tree habitat associations within the BCI 50-ha

plot [38]. Thus, our analysis provides a consistent comparison with

trees [17,38]. For comparisons between lianas and trees, we

matched each of the 82 liana species with a unique tree species in

the BCI 50-ha plot having the most similar population sizes,

resulting in a total of 44,971 lianas and 44,515 trees. Mean

differences in population sizes between the liana and matched tree

taxa were less than 4%.

To compare aggregation patterns of trees and lianas, we used

Ripley’s K function to assess whether species distributions were

significantly clumped [39], then fit a Poisson cluster model (PCM)

to the species K function following the method of Plotkin et al.

[40]. The PCM treats a species distribution pattern as a function of

the parameters r, an estimate of the density of population clusters

per unit area, and s, an estimate of the mean cluster size

(diameter). To determine whether the propensity of a liana species

to produce clones influenced its spatial pattern across the 50-ha

plot, we correlated the values of r and s with the proportion of

stems that were clones for the 82 most abundant lianas using

Spearman’s rank correlation. We performed these tests both

including and excluding clonal stems from the estimation of the

PCM parameters.

To determine whether the 82 liana species differed in their

within-cluster stem diameter distributions, we analyzed the spatial

correlation of liana diameter distribution through the Kmm function

[41], using the Stoyan’s mark correlation function as a test

function [42] using R (R development core team, 2011). We used

the random labeling null model to test independence in the mark

distribution [43], and the translation correction to address any bias

introduced by edge effects [44]. Empirically derived values of the

Kmm function that were above the upper 95% quantile of the null

model imply that liana stem diameters within clusters were more

similar than expected by chance, suggesting that individual stems

of that liana species recruited at similar times. Values of below the

lower 95% quantile of the null model imply that liana stem

diameters for that species were less similar than expected by

chance, suggesting that the individual stems recruited sequentially

over time. Values of within the 95% quantile bounds of the null

model simulation indicate that there is no within-cluster liana stem

diameter pattern for that species. We tested for stem diameter

differences within aggregations both including and excluding

clones using Wilcoxon rank sum test.

Increasing Liana Density on BCI
To test the hypothesis that liana density has increased on BCI

over the past 3 decades, we compared our data with those of Putz

[1], who, in 1979, sampled all rooted liana stems in 10 randomly

placed 25640 m plots (1 ha total) on the BCI central plateau - the

same general area where the BCI 50-ha plot is located. To make

our sampling comparable with that of Putz [1], we computed the

mean density of all rooted lianas in 500 25640 m plots within the

50-ha plot. We compared the two datasets using a non-parametric

Wilcoxon rank sum test. We compared the number of rooted

stems in the $1 cm and $5 cm size classes to determine whether

lianas were increasing uniformly between these two size-classes.

Since most liana biomass is concentrated in stems $5 cm (see

Results), determining the change in this size class allowed us to

assess directly whether liana biomass is increasing in this forest. To

examine whether lianas have increased relative to trees, we

compared the change in liana density to the change in trees

density (stems $1 cm) in the BCI 50-ha plots from 1982 until 2005

using tree data from the CTFS website.

Results

Liana Density, BA, and Diversity in the BCI 50-ha Plot
Over the 50-ha area there were 47,183 separately rooted liana

principal stems $1 cm diameter (943.7 lianas ha21; Figure 1).

There were 428 large ($10 cm diameter) principal stems (8.6 large

lianas ha21), accounting for less than 1% of all principal stems.

The three largest liana stems in the BCI 50-ha plot were 55.1 cm,

42.8 cm, and 37.0 cm in diameter, and were identified as

Prionostemma asperum (Hippocrateaceae), Entada gigas (Fabaceae),

and Bauhinia guianensis (Fabaceae), respectively. The total basal area

of liana principal stems $1 cm diameter was 36.76 m2

Liana Abundance, Diversity, & Distribution on BCI
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(0.74 m2 ha21). Liana principal stem density decreased predict-

ably with increasing diameter size classes, with the majority of all

stems in the smaller size classes (Figure 2). Half (50.6%) of the total

principal stem basal area (and thus more than half of the estimated

biomass) was contained in stems $5 cm diameter and 17.3% of

the principal stem basal area was contained in stems $10 cm

diameter, even though these size classes constituted only 8.6% and

0.9% of the liana principal stems, respectively (Table 1).

Throughout the BCI 50-ha plot, there were 162 liana species

from 36 families. In comparison, in 2005 there were 299 tree

species from 57 families. More than half of the liana species (83)

were in the five most liana-species-rich families: Bignoniaceae (22

species), Sapindaceae (22), Fabaceae (16) Malpighiaceae (15),

Apocynaceae (9). Eleven plant families had only one liana species

and seven plant families had only two liana species (Table 2). The

most abundant liana species was Coccoloba excelsa (Polygonaceae),

with 9.1% of all principal stems. Hiraea reclinata (Malpighiaceae)

and Maripa panamensis (Convolvulaceae) were the second and third

most abundant species comprising 6.0% and 5.6% of all principal

stems, respectively. The ten most abundant species comprised

nearly half (48.0%) of the total principal stem density and 40.6%

of the total principal stem basal area. Thirty-four species (21% of

all species) were represented by fewer than 10 individuals, and 8

species (,5% of all species) were represented by only one

individual over the entire 50 ha area. Liana dominance hierar-

chies changed slightly at the larger sizes classes, with Prionostemma

asperum (Hippocrateaceae) being the most abundant species at the

$5 cm and $10 cm diameter size classes, and Maripa panamensis

and Entada gigas (Fabaceae) being the second most abundant liana

species at these larger size classes, respectively.

In the context of all woody plants (lianas and trees $1 cm),

liana principal stems constituted 18.5% of total woody plant

density (Figure 2) and 35.3% of the species in the BCI 50-ha plot,

but only 2.2% of the total woody plant basal area (Table 3).

Compared to trees, liana stems were smaller and their frequency

decreased faster with increasing diameter (Figure 2). Liana

Figure 1. The rooted liana stems ($1 cm diameter) in the Barro Colorado Island, Panama 50-ha plot. The plot is 1000 m on the x-axis
and 500 m on the y-axis. Blue circles denote principal stems and orange circle indicate clonal stems that are rooted in the plot but still attached to a
principal stem. Basal area is indicated by the size of the circle, with the largest liana 55.1 cm diameter and the smallest lianas 1 cm diameter.
doi:10.1371/journal.pone.0052114.g001

Figure 2. The number of liana and tree stems (log-transformed
and excluding clonal stems) across 1 cm diameter size classes
in the Barro Colorado Island, Panama 50-ha plot. Error bars
represent 95% confidence intervals, which were calculated by boot-
strapping over 20620 m quadrants.
doi:10.1371/journal.pone.0052114.g002
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diversity, as measured by the Shannon diversity index, was slightly

higher than trees because the lower species richness of lianas was

balanced by higher evenness (Table 3). Indeed, liana rank-

abundance curves had lower y-intercepts, were initially shallower,

and were subsequently steeper than those of trees (Figure 3).

Clonal Reproduction
Clonal reproduction of lianas was surprisingly high; there were

20,264 clonal stems ($1 cm diameter) rooted in the 50-ha plot

and still connected to a principal stem. Adding clonal stems

increased liana density 43% to 67,447 total lianas rooted in the 50-

ha area (1350 lianas ha21; Figure 1). Clonal stems added 12.46 m2

in basal area, which increased liana basal area 34% to 49.21 m2

over the 50 hectares (0.98 m2 ha21), and liana clones were

prevalent even at very large size classes (Figure 2). Rooted liana

density and basal area (including clones) as a percentage of all

woody individuals were 24.5% and 2.9% of all woody stems.

Species varied from zero to 63% in the percentage of all stems that

were clonally derived, and only 3 of the 129 species with more

than 10 individuals lacked rooted clones. There was a weak but

significantly positive correlation between species’ observed percent

clonal reproduction and the relative density of principal stems

(p = 0.03, R2 = 0.03, n = 149). There was a strong significant

positive relationship between species’ observed percent clonal

reproduction and its mean stem size throughout the plot

(p,0.0001, R2 = 0.37, n = 149).

Liana Species-area Patterns
Across the 50-ha plot, mean liana richness was 75 species ha21

based on 1006100 m plots. Liana species richness increased

rapidly to approximately 125 species at 6 ha, and then increased

more gradually up to 50 ha (Figure 4). Approximately seventy

percent of the species were included in the first six hectares;

however, species were still accumulating at the maximum plot size,

suggesting that rare species would continue to accumulate if we

sampled more than 50 hectares. Nonetheless, our census of the

BCI 50-ha plot captured over 90% of liana species reported for the

entire 1600 ha island [33]. The pattern of liana species

accumulation was similar for all three size-classes; however, only

around one-third of the species present in the 50-ha plot reached

the large liana size-class ($10 cm diameter). Species accumulation

curves followed similar trajectories for trees and lianas (Figure 4).

Liana Spatial Distribution Across the BCI 50-ha Plot
Distributions of the 82 most abundant liana species (excluding

clones) were significantly spatially aggregated at the 50 ha scale.

When the population aggregation pattern was further decomposed

into cluster density (clusters per ha) and size (mean cluster area),

we found that lianas had significantly fewer population clusters

than the matched sample of tree species (Figure 5a; Wilcoxon test,

W = 1911, p,0.001; median cluster densities: lianas 0.30 ha21,

trees 0.83 ha21), indicating that lianas had more individuals per

cluster. In contrast, liana and tree cluster size did not differ

(Figure 5b; Wilcoxon test, W = 3490, p = 0.48), although variance

in cluster size was greater for lianas than trees (K-S test, D = 0.27,

p,0.01). Including liana clones did not significantly change our

results for the density of clusters in the plot (Wilcoxon test,

W = 3306, p.0.05) or cluster size (Wilcoxon test, W = 3112,

p.0.05); however, including liana clones increased the number of

lianas within clusters.

To explore the effects of clonal reproduction on liana

aggregation patterns, we examined the relationship between the

proportion of clonal stems per species and the values of r and s
for the 82 most abundant lianas. We found that species with more

clonally derived stems had fewer clusters (Spearman r = 20.28,

p = 0.012) and, when clones were excluded from the analysis,

species with greater clonality also had smaller mean cluster size

(Spearman r = 20.27, p = 0.016). Thus, clonal reproduction

resulted in fewer but more densely packed liana aggregation

patterns.

Similar stem sizes within clusters could indicate that the

individuals of that species recruited at the same time, while a

significant variation in stem sizes could indicate that individuals of

that species colonized sequentially over time. We found that 24 of

the 82 species (29%) had more similar stem diameter sizes per

cluster than expected by chance, whereas 25 species (30%) had

significantly more variation in stem diameters within clusters than

expected by chance (Table 2). The remaining 40% of the species

did not have a significant correlation among stem sizes within

clusters (p.0.05). Including clonal stems did not substantively

change these findings, and only one species (Aegiphila elata) showed

a complete switch in stem size similarity when the clonal stems

were included in the analysis (Table 2). The different stem

diameter organization within clusters (more or less variation than

expected by chance) among species was not correlated with the

Table 1. Size distributions of lianas and trees and shrubs for individuals $1 cm in the BCI 50-ha plot.

Diameter class (cm) Lianas Trees

Principal
rooted stems
(ha21)

clonal rooted
stems
(ha21)

Non-rooted
branches
(ha21)

Total basal
area
(m2 ha21)

Principal stems
(ha21)

Branches plus
clones
(ha21)

Total basal area
(m2 ha21)

1–2 475.1 234.4 54.7 0.122 1479.2 429.2 0.308

2–5 394.7 151.6 13.1 0.417 1695.3 160.9 1.409

5–10 65.3 19.1 0.7 0.300 576.1 114.6 2.759

10–20 8.1 1.4 0.0 0.114 261.7 23.3 4.069

20–30 0.4 0.0 0.0 0.019 72.3 0.2 3.396

30–40 0.1 0.0 0.0 0.013 66.4 0.1 8.940

.50 0.0 0.0 0.0 0.000 16.7 0.0 10.811

Liana data are presented as principal rooted stems, all rooted stems (principal stems plus clones), non-rooted branches, and the sum of the basal area of all three stem
types. Tree data are presented as principal rooted stems, all stems (principal stems plus clones plus branches), and the sum of the basal area of all three stem types.
Lianas were censused in 2007 and the trees in 2005.
doi:10.1371/journal.pone.0052114.t001
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number of individuals of a species nor the percentage of clonal

reproduction (p.0.05).

Increasing Liana Density on BCI
From 1979 until 2007, liana density increased by 75% for stems

$1 cm diameter and by nearly 140% for stems $5 cm diameter.

We found 134.9 (63.7 se) rooted liana stems $1 cm per 25640 m

plot in 2007, significantly more than the 77.3 (610.8) recorded by

Putz in 1979 [1] (P = 0.008). For lianas $5 cm, we found 10.2

(60.3) liana stems per 25640 m plot versus 4.3 (61.3) in 1979

(P,0.001). Thus, lianas have increased an average of 21 stems

$1 cm ha21 year21 and 2.1 stems $5 cm ha21 year21, and

compounding increases of 2.0% and 2.7% per year, respectively

(assuming arithmetically constant rate of increase). In contrast, the

density of trees $1 cm on the BCI 50-ha plot decreased 11.5%

from 235,338 individuals 50 ha21 in 1982 to 208,387 in 2005, an

average decrease of 23 trees ha21 year21, or 0.6% per year. Tree

density peaked in 1990 at 244,059 individuals 50 ha21 and then

decreased more than 14.5% over the subsequent 15 years.

Discussion

Our study represents the largest and most comprehensive

assessment of tropical liana density, diversity, and distribution to

date. Lianas in the BCI 50-ha plot are both abundant and diverse,

and they are increasing in density and biomass, possibly due to

Table 3. Comparison of lianas and freestanding woody plants (trees and shrubs) in their total abundance and community
structure for individuals $1 cm in the BCI 50-ha plot.

Diversity Index
Rooted liana
individuals All rooted lianas Rooted trees & Shrubs

Stem Density 47,185 (18.5%) 67,449 (24.5%) 208,387

Total Basal Area (m2) 36.76 (2.2%) 49.22 (2.9%) 1672.09

Species Richness 162 (35.1%) 162 (35.1%) 299

Fisher’s Alpha 21.19 34.32

Shannon Diversity 4.01 3.96

Dominance 0.031 0.049

Evenness 0.339 0.175

Liana data are presented as both rooted principal stems only (individuals excluding clones) and all rooted stems (principal stems plus clones). Lianas were censused in
2007 and the trees in 2005. The percentage of total woody species are listed in parentheses.
doi:10.1371/journal.pone.0052114.t003

Figure 3. Liana and tree rank-abundance curves over a 50 ha area on Barro Colorado Island, Panama.
doi:10.1371/journal.pone.0052114.g003
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global change [27,30]. Lianas are spatially clumped throughout

the BCI 50-ha plot – more so than trees – which may be due to the

ability of lianas to rapidly colonize treefall gaps, particularly via

clonal reproduction [1,3,17,19]. Furthermore, lianas had higher

community evenness and a lower proportion of rare species than

did the tree community. By studying how liana density, BA, and

species richness change across large spatial scales, and how these

patterns differ from those of trees, we gain insight into where and

when lianas will have the largest effect on trees, as well as the

processes governing community assembly of woody tropical plants.

BCI Liana Community Compared to Other Forests
In the BCI 50-ha plot there were a total of 67,447 rooted lianas

(1350 ha21 including rooted clones; 944 ha21 excluding clones)

and 162 species, constituting 24.5% of the woody stems and

35.3% of the woody species (75 species ha21). In relation to other

forests, liana density and species richness on BCI was moderate.

For example, liana density and diversity was much higher at

Yasunı́ National Park in Ecuador, where there were around 1600

rooted lianas ($1 cm diameter) and approximately 180 species in

an area totaling one hectare subsampled throughout a 30 ha area

[45]. If the accumulation in liana individuals and species with area

at Yasunı́ is similar to that of BCI, we would expect approximately

80,000 individuals and 390 species in the Yasunı́ 50-ha plot. Tree

diversity is also high at Yasuni (.1,100 tree species in the 50-ha

plot), and thus lianas composed around 25% of the woody species

at Yasuni. In a highly seasonal forest in lowland Bolivian Amazon,

liana density was exceedingly high, with 2471 lianas ha21 ($2 cm

diameter), yet was less species-rich than BCI (51 species ha21;

[11]). In contrast, mean liana density on BCI was 21% higher

(including only principal stems) than in the ever-wet forest of La

Selva Biological Station in Costa Rica, which had 777 lianas

($1 cm diameter) ha21 and 60 species in 0.78 ha [20]. The

relatively moderate liana density and basal area on BCI is

consistent with global multi-forest comparisons showing that liana

density and basal area [26,46], as well as species richness [47],

tend to increase with increasing seasonality and decreasing mean

annual rainfall.

Clonal Reproduction
Clonal reproduction was common in the liana community of

BCI. Adding clonal stems to principal stems increased rooted liana

density and BA by 43% and 34%, respectively. Our estimate of

clonal reproduction is conservative because connections among

liana ramets may be underground or may decay after the ramet

becomes established, e.g. [1,5,48]. Thus, we likely considered

many lianas to be apparent genets when they were actually clones

that had lost their attachment to the parent stem or whose

attachment to the parent stem was not visible.

The frequency of clonal reproduction was highly variable

among liana species. Both common and rare liana species

displayed evidence of varying levels of clonal reproduction, with

some common species exhibiting extremely high levels of clonal

reproduction (.50% of stems being clonal) and other common

species exhibiting very low levels of clonal reproduction (,5% of

stems being clonal). The significant positive correlation between

observed clonal reproduction and species principal stem density

suggests that clonal reproduction is generally an advantageous

strategy for lianas; however, the very low R2 indicates that it not a

strong predictor of stem density for a given species. In contrast, the

strong positive correlation between clonal reproduction and mean

stem diameter indicates that stems of species that produced many

clones tended to be larger than species that produced few clones.

This latter relationship may be driven by rapid growth of clonal

stems, which could gain an advantage from resources supplied by

the maternal stem or, alternatively, larger stems may simply have

more resources to produce clonal stems.

The degree of clonal reproduction can influence liana

population structure. For liana species with a high propensity for

clonal reproduction, all apparently distinct individuals could

theoretically belong to a single giant clone. Although few studies

have examined liana population structure over large distances

using genetic techniques, e.g. [49], observational studies have

shown that liana stems can extend long distances from their root

systems by growing laterally from tree crown to tree crown

throughout the forest, extending more than 500 m from their

initial rooting point in extreme cases [1]. When a tree falls, the

lianas in that tree’s crown are commonly pulled into the gap,

where they resprout vigorously, create new root systems [1,3,50],

and eventually climb back up to the forest canopy far from the

principal rooting point [5,19]. Repeated cycles of lianas climbing

to the forest canopy, growing laterally away from their root

systems, falling to the forest floor, and then resprouting and

growing back to the forest canopy may allow genetically identical

liana stems to spread slowly through the forest over large spatial

and temporal scales.

Liana Distribution and Spatial Structure within the 50-ha
Plot

Lianas were spatially clumped in the BCI 50-ha plot - a pattern

that could be driven by the strong colonization and regeneration

responses of lianas to common forest disturbances, such as the

Figure 4. Liana and tree species-area curves for three size
classes over 50 ha on Barro Colorado Island, Panama. Triangles
represent trees and circles represent lianas. Panel A is based on
untransformed data and panel B is based on transformed data.
doi:10.1371/journal.pone.0052114.g004
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formation of treefall gaps. Because lianas respond rapidly to

disturbance [1,3,50,51], treefall gaps may be the foci of liana

recruitment [8,9], and this type of small-scale disturbance may

explain the clumped distribution of lianas throughout the forest.

The clumped distribution pattern may be strongly influenced by

highly clonal liana species (Table 1), which had much higher stem

density per cluster and may be more disturbance adapted than less

clonal species [52]. Consequently, the distribution of liana species

within a forest may be driven largely by treefall gaps [3,8,26,53],

and liana species with a high frequency of clonal reproduction may

be responsible for the pattern of densely packed liana aggregations

throughout the forest. Furthermore, by killing canopy trees [10],

lianas create the very niche that promotes their regeneration,

which may largely explain how liana diversity is maintained in the

forest.

Contrasting patterns of stem diameter size among liana species

within aggregations may also be related to disturbance and may

indicate different liana colonization strategies. We hypothesize

that the presence of many similar-sized individuals within

aggregations indicate a one-step colonization strategy, in which

most stems of a liana species, including clones that were

subsequently separated from the parent stem, recruit at one time,

presumably in the high light environment of a treefall gap [3]. In

contrast, liana species with a wide variation in stems sizes within

Figure 5. Spatial clustering parameters for 82 liana species with .65 apparent genets (filled bars), and for a sample of 82 tree
species with similar population sizes (open bars) in the Barro Colorado Island, Panama 50-ha plot. Parameters are: a) r, the density of
individuals within clusters; and b) s, the mean cluster size.
doi:10.1371/journal.pone.0052114.g005
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aggregations colonize via a consecutive-step strategy, in which

individuals recruit over a longer time span. This latter pattern may

be indicative of more shade-tolerant species that recruit under a

closed canopy.

Determining differences in colonization strategies among liana

species may provide insight into the mechanisms driving liana

increases in neotropical forests [27]. For example, if liana increases

are driven by increasing disturbance, we would expect more

disturbance-adapted and highly clonal liana species to increase in

abundance. In contrast, if other mechanisms such as increasing

aridity, nitrogen deposition, hunting, or elevated atmospheric CO2

are responsible for liana increases [27,30], we may expect that

both disturbance-adapted and highly shade-tolerant liana species

will increase in abundance. If, as we hypothesize, the variation in

stem size within aggregations is a good indicator of shade-

tolerance, then species-specific patterns of liana stem-size distri-

bution throughout the forest and within aggregations provide

useful data for testing hypotheses to explain the observed increases

in liana abundance and biomass in tropical forests.

Increasing Liana Density on BCI
By comparing our data to those collected nearly 30 years earlier,

we found that liana density on BCI increased 75% for stems

$1 cm diameter and nearly 140% for stems $5 cm diameter – a

finding that is consistent with other metrics of increasing lianas on

BCI. For example, the amount of liana leaf litter compared to that

of trees on the BCI 50-ha plot increased 40% from 1986 until

2002 [28]. Liana flower productivity also increased faster than that

of trees during this same period [29]. The percentage of trees that

carried (and presumably competed with) lianas increased from

32% in 1967–1968 to 75% in 2007, and the number of trees with

severe liana infestation in their crowns (.75% crown coverage by

lianas) increased 65% from 1996 to 2007 [10]. Because trees with

severe liana infestation have twice the probability of mortality of

trees with lesser or no liana infestation [10], liana increases will

result in decreased tree growth and survival, which will lead to

decreased forest-wide carbon storage [16,30]. Our data, combined

with previous studies, confirm that lianas are increasing on BCI,

and thus the effects of lianas are also likely to be increasing at this

site.

Liana increases are not unique to BCI. Over the past three

decades, lianas have increased dramatically relative to trees

throughout the neotropics, and there are now more than ten

published studies to support this emerging pattern [27]. In

addition to Panama, lianas have been reported to increase in

forests in Bolivia [54], Brazil [55], Costa Rica [19,56], French

Guiana [22], and in subtropical forests in South Carolina, USA

[57]. The relative increase in liana density and biomass represents

an important structural and compositional change in neotropical

forests.

Lianas may be increasing on BCI and in other neotropical

forests due to elevated rates of disturbance [58], which would

contribute to an increasingly aggregated pattern of lianas. Lianas

respond rapidly to disturbance with high rates of colonization and

growth [1,3,8,50,51], and thus disturbance is currently one of the

leading explanations for liana increases [27]. Lianas may also be

increasing due to increasing aridity and the occurrence of El Niño

droughts, e.g. [56,59,60]. Lianas peak in abundance in highly

seasonal forests [26,46] and on drier soils within the BCI forest

[17]. The driver of this pattern may be the ability of lianas to grow

during seasonal droughts when competing trees grow far less

[26,62,63]. This dry season growth advantage hypothesis [26] is

consistent with the increase in the proportion of drought-tolerant

trees on BCI over the past 25-years [64]; see also [56]. Liana

increases could also be explained by higher nitrogen deposition

and atmospheric CO2 [30,65], and the combination of increasing

aridity, disturbance, nitrogen deposition and atmospheric CO2 all

may operate synergistically to favor lianas over trees [27,30].

Future research that combines characterization of liana life history

strategies with data on changes in individual species abundances

and spatial patterns could help distinguish among these putative

hypotheses to explain the increase in lianas on BCI and in other

neotropical forests.
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51. Londré RA, Schnitzer SA (2006) The distribution of lianas and their change in

abundance in temperate forests over the past 45 years. Ecology 87: 2973–2978.
52. Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests.

Trends in Ecology and Evolution 17: 223–230.

53. Schnitzer SA, Carson WP (2000) Have we missed the forest because of the trees?
Trends in Ecology and Evolution 15: 367–377.

54. Foster JR, Townsend PA, Zganjar CE (2008) Spatial and temporal patterns of
gap dominance by low-canopy lianas detected using EO-1 Hyperion and

Landsat Thematic Mapper. Remote Sensing of Environment 112: 2104–2117.
55. Benı́tez-Malvido J, Martı́nez-Ramos M (2003) Impact of forest fragmentation on

understory plant species richness in Amazonia. Con Bio 17: 389–400.

56. Enquist BJ, Enquist CAF (2011) Long-term change within a Neotropical forest:
assessing differential functional and floristic responses to disturbance and

drought. Global Change Biology 17: 1408–1424.
57. Allen BP, Sharitz RR, Goebel PC (2007) Are lianas increasing in importance in

temperate floodplain forests in the southeastern United States? For Ecol Manag

242: 17–23.
58. Phillips OL, Baker TR, Arroyo L, Higuchi N, Kileen TJ, et al. (2004) Pattern

and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of
the Royal Society of London Series B 359: 381–407.

59. Phillips OL, Aragao LEOC, Lewis SL, Fisher JB, Lloyd J, et al. (2009) Drought
sensitivity of the Amazon rainforest. Science 323: 1344–1347.

60. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, et al. (2010)

A global overview of drought and heat-induced tree mortality reveals emerging
climate change risks for forests. For Ecol Manag 259: 660–684.

61. Phillips OL, Vasquez Martinez R, Arroyo L, Baker TR, Killeen T, et al. (2002)
Increasing dominance of large lianas in Amazonian forests. Nature 418: 770–

774.

62. Cai Z-Q, Schnitzer SA, Bongers F (2009) Seasonal differences in leaf-level
physiology give lianas a competitive advantage over trees in a tropical seasonal

forest. Oecologia 161: 25–33.
63. Zhu S-D, Cao K-F (2009) Hydraulic properties and photosynthetic rates in co-

occuring lianas and trees in a seasonal tropical rainforest in southwestern China.

Plant Ecology 204: 295–304.
64. Feeley KJ, Davies SJ, Perez R, Hubbell SP, Foster RB (2011) Directional

changes in the species composition of a tropical forest. Ecology 92: 871–882.
65. Mohan JE, Ziska LH, Schlesinger WH, Thomas RB, Sicher RC, et al. (2006)

Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated
atmospheric CO2. Proceedings of the National Academy of Sciences of the USA

103: 9086–9089.

Liana Abundance, Diversity, & Distribution on BCI

PLOS ONE | www.plosone.org 16 December 2012 | Volume 7 | Issue 12 | e52114


