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Natural killer (NK) cells are the predominant innate lymphocyte subsets that mediate 
anti-tumor and anti-viral responses, and therefore possess promising clinical utilization. 
NK cells do not express polymorphic clonotypic receptors and utilize inhibitory receptors 
(killer immunoglobulin-like receptor and Ly49) to develop, mature, and recognize “self” 
from “non-self.” The essential roles of common gamma cytokines such as interleukin 
(IL)-2, IL-7, and IL-15 in the commitment and development of NK cells are well estab-
lished. However, the critical functions of pro-inflammatory cytokines IL-12, IL-18, IL-27, 
and IL-35 in the transcriptional-priming of NK cells are only starting to emerge. Recent 
studies have highlighted multiple shared characteristics between NK cells the adaptive 
immune lymphocytes. NK  cells utilize unique signaling pathways that offer exclusive 
ways to genetically manipulate to improve their effector functions. Here, we summarize 
the recent advances made in the understanding of how NK cells develop, mature, and 
their potential translational use in the clinic.
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iNTRODUCTiON

Experiments aimed at characterizing T cell-mediated cytotoxicity inadvertently uncovered the exist-
ence of a naturally occurring cytotoxic lymphocyte with intrinsic and innate anti-tumor properties 
(1). These original observations were made in the 1960s (2, 3) and, within 10  years, researchers 
began to explore a previously uncharacterized innate lymphocyte population known today as 
natural killer (NK) cells (4–7). As their name suggests, NK cells are “naturally” cytotoxic and, in 
contrast to cytotoxic T cells, do not require prior antigen exposure to mediate their anti-tumor effects  
(4, 7). NK cell activity was first observed in human peripheral blood mononuclear cells (8, 9) and 
rodent splenocytes (5, 6); however, these large granular lymphocytes are known to reside in multiple 
lymphoid and non-lymphoid tissues including the bone marrow (BM), lymph nodes (LNs), skin, gut, 
tonsils, liver, and lungs (10). In this review, we summarize the established and emerging themes of 
NK cells related to their development, maturation, effector functions such as cytokine production 
and anti-tumor cytotoxicity, role in the clearance of viral and bacterial infections, and the clinical 
utilization of donor-derived or genetically modified NK cells.

DeveLOPMeNT AND FUNCTiONAL MATURATiON OF NK CeLLS

Natural killer cells were initially thought to develop exclusively in the BM. However, recent evidence 
in humans and mice suggests that they can also develop and mature in secondary lymphoid tissues 
(SLTs) including tonsils, spleen, and LNs (11). The cellular progenitors and intermediate populations 
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FiGURe 1 | Murine bone marrow niche where natural killer (NK) cells develop. Quiescent hematopoietic stem cells (HSCs) from a hypoxic microenvironment, within 
the perivascular region proximal to sinusoidal vessels, are induced by hormonal and cytokine cues. Upon unique stimulations [such as stem cell factor (SCF); 
Fms-like tyrosine kinase-3 ligand (Flt3L)], the self-renewing multipotent HSCs commit to becoming common lymphoid progenitors (CLPs). Non-hematopoietic 
stromal cells [mesenchymal stromal cells (MSCs), fibroblastic reticular cells] that produce interleukin (IL)-7 or IL-15 play pleiotropic roles in programming CLPs into 
distinct lymphoid lineages including NK cell progenitors (NKPs). MSCs also produce another common gamma chain receptor (γcR)-binding cytokine, IL-21 that may 
help with the expansion of the NKPs. CXCL12-abundant reticular (CAR) cells generate CXCL12, which stimulates NKPs via CXCR4 to functionally mature the NKPs 
or immature NK cells (iNKs) into established Mature NK (mNK) cells subsets. mNK cells traffic to secondary lymphoid organs via the sinusoidal blood vessels. Other 
cell types, pericytes, megakaryocytes, adipocytes, canopy cells, osteoblasts, osteoclasts, and osteocytes help form the niche and other supporting systems.
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that give rise to NK cells are defined by the differential expression 
of lineage-specific surface markers (12). Although these markers 
are often different between humans and mice, the developmen-
tally regulated expression of critical transcription factors, such as 
the T-box transcription factors T-bet and Eomesodermin, control 
NK cell-specific qualities in both species (13).

Natural killer cells represent 5–20% of circulating lymphocytes 
in humans (14). The percentages of NK cells among lymphocytes 
ranges between about 2–5% in the spleens and BMs of inbred 
laboratory mice (15) and about twice that number in wild-caught 
mice (16). They are distinguished by their unique functions and 
expression of surface antigens. NK  cells lack the clonotypic 
T  cell receptor (TCR) of T and NKT  cells and its associated 
signal-transducing adaptor, CD3ε. In humans, subsets of NK cells 
express the activating Fc receptor, CD16 and most express CD56 
[neural cell adhesion molecule (NCAM) or Leu-19] (17, 18). In 
C57BL/6 mice, NK cells are identified by the presence of NK1.1 
(NKR-P1C) and NCR1 (NKp46/CD335), as well as CD49b (DX5, 
Integrin VLA-2α), are common NK cell markers in other mouse 
backgrounds (19, 20). NK  cells are most similar to a group of 
lymphocytes known as innate lymphoid cells (ILCs) (21). ILCs 
are further categorized into three distinct groups and are present 
in both humans and mice (11, 21). NK cells are related to group 
1 ILCs as both produce interferon-gamma (IFN-γ) and tumor 
necrosis factor (TNF)-α upon stimulation (22). However, unlike 

Group 1 ILCs, NK  cells have cytolytic functions that resemble 
those of CD8+ cytotoxic T lymphocytes (22).

Developmental Stages of Murine and 
Human NK Cells
In mice, the NK cells develop in specialized BM niches (Figure 1). 
The hematopoietic niche is most often localized in the perivas-
cular regions proximal to sinusoidal vessels. The multipotent 
self-renewing hematopoietic stem cells (HSCs) are regulated by 
an integrated cytokine milieu as part of the endocrine, autocrine, 
and paracrine signaling. HSCs contain transient self-renewing 
and long-term quiescent populations. HSCs give rise to all leu-
kocytes and red blood cells. A branch of which constitutes the 
common lymphoid progenitor (CLP). CLPs give rise to Pro-B, 
Pre-T, innate lymphoid cells (ILCs), lymphoid tissue inducers, and 
CD122+ Pre-T/early NKP lineages. The cellular origin of NK cells 
in humans and mice can be traced back to oligopotent CLP (23). 
Expression of interleukin (IL)-7 receptor-alpha (IL-7Rα, CD127) 
in Lin−CD244+ cells mark the earliest step in the transition of 
CLPs into the lymphoid lineage. A subset of this early progenitor 
defined as pre-NK cell precursors (Pre-NKPs) expresses the IL-2 
receptor β chain (CD122) to become NKPs (24) (Figure 2).

Expression of the activation receptor complex NKG2D/
DNAX-activating protein of 10  kDa (DAP10) defines Stage A 
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FiGURe 2 | Developmental origin of murine natural killer (NK) cells in the bone marrow (BM). Murine NK cells develop in the BM. A subset of multipotent HSCs 
commits to becoming oligopotent common lymphoid progenitors (CLPs). CLPs give rise to Pro-B, Pre-T, innate lymphoid cells (ILCs), lymphoid tissue inducers, and 
CD122+ Pre-T/early NK cell progenitor (NKP) lineages. Expression of NKG2D by the CD122+ NKPs mark the earliest transition of NKPs into committed immature 
NK cells (iNK, Stage A). This is followed by the expression of NK1.1 and NCR1 (Stages B and C). Expression of CD51 (Integrin αV) and CD49b (DX5, Integrin 
VLA-2α) defines the initial stage of mature NK (mNK) cells. Expression of CD43 (Leukosialin), CD11b (Mac-1), and the acquisition of distinct sets of Ly49s define the 
terminal stage of mNK cells (Stage E). mNK cells migrate into secondary lymphoid organs following the expression of Killer cell Lectin-like Receptor G1 (KLRG1) 
(Stage F) at least in part by a subset. Additional functional classifications of mNK cells are made using CD27 and CD11b.

3

Abel et al. Immunobiology of NK Cells

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1869

(Figure  3) of immature NK (iNK) population (25, 26). NKP 
maintenance and progression to the iNK cell stage requires the 
activation of transcription factors including an inhibitor of DNA 
binding 2 (Id2) (27–29) and E4-binding protein 4 (30, 31). By 
the iNK stage, NK  cells express receptors including, NKG2A, 
DNAM-1 (CD226), NK1.1 (Stage B), and NCR1 (Stage C) as 
well as the cell adhesion molecules, L-selectin (CD62L) and 
Leukosialin (CD43) (32). Expression of CD51 (Integrin αV) and 
CD49b (DX5, Integrin VLA-2α) defines the initial stage (Stage 
D) of mature NK (mNK) cells. Terminally mNK cells are identi-
fied based on the expression of CD43 (Leukosialin) and CD11b 
(Mac-1). The acquisition of distinct sets of Ly49 receptors also 
define mNK  cells (Stage E) that are functionally licensed (33). 
In C57BL/6 mice, these inhibitory or activating Ly49s include 
Ly49A, Ly49C/I, Ly49G or Ly49D, and Ly49H, respectively. 
mNK  cells migrate into secondary lymphoid organs following 
the expression of Killer cell Lectin-like Receptor G1 (KLRG1) 
(Stage F) at least in part by a subset (10, 34). NK cells that have 
reached terminal maturation are fully functional; however, evi-
dence suggests that their capabilities with regards to anti-tumor 

cytotoxicity and inflammatory cytokine production may not be 
acquired equally (35, 36).

Functional NK cell maturation can be defined by the differ-
ential surface expression of CD27 and CD11b (Mac-1) whereby 
NK  cells develop consecutively through a three-stage program 
(37). NK cells begin expressing neither receptor, known as the 
double-negative population, and progress to CD27+CD11b− 
(Stages B, C, and D), double-positive (DP, Stages E), and the 
CD27−CD11b+ (Stage F) NK  cells, which are considered the 
most mature (33, 37). Lack of signaling molecule PLC-g2 but not 
PLC-g1 significantly reduced the terminal maturation of NK cells 
(38). mNK cells express the activation receptor, CD49b (33), and 
acquire KLRG1, an inhibitory receptor and marker of terminal 
maturation (39, 40). Interestingly, DP NK  cells have increased 
effector responses compared to CD27−CD11b+ NK cells, which 
suggests the acquisition of regulatory mechanisms during the 
NK cell maturation process (36).

Human NK cells have been shown to mature in the BM and 
secondary lymphoid organs such as LNs (11, 41). Lin−CD34+CD1
33+CD244+ HSCs differentiate into CD45RA+ lymphoid-primed 
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FiGURe 3 | Distinct developmental stages of murine NK cell progenitors (NKPs), immature NK cells (iNKs), and mature NKs (mNKs). Lineage negative (Lin−) 
Sca+CD117+ hematopoietic stem cells (HSCs) differentiate into common lymphoid progenitors (CLPs) (Lin−ScaLowCD117LowFlt3+). Expression of IL-7 receptor-alpha 
(IL-7Rα) (CD127), CD27, and CD244 mark the full commitment of CLPs into pre-NK cell precursors (Pre-NKPs). Committed NKPs transition from Pre-NKPs to 
refined-NKPs (rNKPs) by expressing IL-2Rβ (CD122). Expression of NKG2D marks the conversion of rNKPs into iNK cells. Natural killer (NK) cells progressing 
through the iNK stages express NK1.1 and NKG2A/C followed by NCR1 (Stage A through C). Terminal maturation of iNK cells into mNK cells is defined by the 
acquisition of distinct sets of Ly49s that help to identify distinct subsets (Stage D). NK cells that have reached terminal maturation downregulate CD27 and express 
CD11b (Stage E) followed by Killer cell Lectin-like Receptor G1 (KLRG1) (Stage F) by a subset of matured NK cells.
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multipotential progenitor in Stage 1 (LMPP, Figure 4). CD34 is 
a highly glycosylated cell membrane protein and a marker for 
stemness that facilitates the adhesion of stem cells to the extracel-
lular matrix (42). CD133 is a glycoprotein known as Prominin-1 
(43, 44) and CD244 (2B4) is a SLAM family member (45). By 
expressing CD38 (cyclic ADP ribose hydrolase) (46), CD7 (Ig fam-
ily, co-stimulatory molecule) (47), CD10 (neutral endopeptidase) 
(48), and the cytokine receptor CD127 (IL-7Rα), LMPPs transi-
tion into CLPs with potential to make lineage commitments into 
Pro-B, Pre-T, NKPs, or other innate lymphoid cells (ILCs) (49). 
Expression of CD122 (IL-2Rβ) marks the irreversible fate deci-
sion of CLPs into NK lineage. The appearance of CD56 (NCAM) 
indicates a final transition of iNK into mNK cells. It is also sug-
gested that iNK cells can directly give rise to CD56dim population 
(dotted arrow) that is yet to be validated (50) (Figure 4).

Distinct stages through which human NK  cells develop are 
less understood compared to that of the murine counterparts 
(51). Recent work has helped to demarcate a total of six stages of 
human NK cell development (Figure 5) based on their both BM 
and LN development (11, 41). CD3ε−CD7+CD127+ cells mark 
the earliest stage of committed NKPs (Stage 2a). CD7, whose 
expression persists throughout development and in mNK cells is 
a cell membrane protein that recruits PI(3)K via a YEDM motif 
in its cytoplasmic tail (52). Although discrete subsets of CD7-
expressing (low and high) CD8+ T cells (53) have been described, 
similar distinctions are yet to be identified in NK cells. Expression 
of IL-1R, a receptor for IL-1β defines Stage 2b. Expression of acti-
vation receptors including NKG2D (CD314, C-type lectin-like, 

KLRK1), CD335 (Natural cytotoxicity receptor, NCR1, NKp46), 
and CD337 (NCR3, NKp30) marks the transition of NK cells from 
Stage 2b to Stage 3. Human NKG2D uses only DAP10 adaptor 
protein, compared to mouse NKG2D that uses both DAP10 and 
DNAX-activating protein of 12 kDa (DAP12). NCR1 uses CD3ζ 
and FcεRγ while NCR3 utilizes CD3ζ as their adaptor complexes. 
Stage 4 of human NK cell development is sub-divided into two 
parts based on the expression of the activating receptor NKP80 
(KLRF1, type II transmembrane protein) (54, 55). The primary 
distinction of NK cells in the Stage 4a is that they express abundant 
amounts of CD56 (CD56bright). These NK cells are NKP80− and 
express the maximal levels of NKG2D, CD335, CD337, inhibitory 
NKG2A [CD159a, contains two immunoreceptor-based tyrosine 
inhibitory motifs (ITIMs)] and CD161 (NK1.1, KLRB1, NKR-
P1A). At Stage 4b, human NK cells become positive for NKP80 
and maintain their CD56bright status.

Downregulation of CD56bright expression to become CD56dim 
in most and the expression of immunoglobulin superfamily 
member CD16 (FcγRIII) in a subset of NK cells defines Stage 5 
(Figure 5). Similar to the CD27/CD11b classification in mouse, 
expression levels of CD56 provides a functional classification of 
human NK cells. Most human NK cells in the peripheral blood 
are CD56dim (56). CD56bright NK cells are considered less mature 
and reside primarily in SLTs while the CD56dim subset represents 
the majority of NK cells in circulation (57). Most of the iNK cells 
transition into a minor CD56bright population (~5%) that convert 
into major CD56dim (>90%) population. The downregulation of 
CD56 during human NK cell maturation is strongly associated 
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FiGURe 4 | Developmental origin of human natural killer (NK) cells. In human, the primary organ where NK cells mature is still under active investigation. There is 
ample evidence that NK cells can mature from the lymph nodes (LNs). Lin−CD34+ hematopoietic stem cells (HSCs) differentiate into CD45RA+ lymphoid-primed 
multipotential progenitor (LMPP). By expressing CD38, CD7, CD10, and the cytokine receptor CD127 (IL-7 receptor-alpha), LMPPs transition into common 
lymphoid progenitors (CLPs) that have the potential to make lineage commitment into Pro-B, Pre-T, NK cell progenitors (NKPs), or other innate innate lymphoid cells. 
Expression of CD122 (IL-2Rβ) marks the irreversible fate decision of CLPs into NK lineage. The appearance of CD56 (neural cell adhesion molecule) indicates a final 
transition of immature NK cell (iNK) into mature NK cells. Most of the iNK cells transition into a minor CD56bright population (~5%) that convert into major CD56dim 
(>90%) population. It is also suggested that iNK cells can directly give rise to CD56dim population (dotted arrow) that is yet to be validated.
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with the acquisition of anti-tumor cytotoxicity as CD56bright 
NK cells are potent producers of inflammatory cytokines, while 
the cytolytic function of human NK cells resides primarily in the 
CD56dim population (58, 59). Terminal maturation (Stage 6) of 
CD56dim NK cells are defined by the expression of CD57 (HNK-1, 
Leu-7). Additional classification such as “antigen-experienced” 
or “adaptive” CD2+ NK cells is defined by a higher expression of 
NKG2C (KLRC2, CD159c) (60–63).

Role of Common Gamma Chain Cytokines 
in the Development of NK Cells
Cytokines are essential inflammatory mediators that control 
multiple aspects of NK cell biology. NK cells express cytokine 
receptors early in their development (26) and require signaling 
through the common gamma (γc) chain for their development, 
homeostasis, and function (64). The γc chain (CD132) is a 40 kDa 
type I transmembrane glycoprotein that serves as the signaling 
subunit for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 (65). Although 
these cytokines display some functional redundancy, their cell-
specific functions during an immune response are determined 
by the expression of distinct receptor complexes (Figure  6). 
For instance, IL-4, IL-7, IL-9, and IL-21, bind to high-affinity 
receptor complexes consisting of a cytokine-specific alpha-chain 
and the γc (64). These receptors have no intrinsic kinase activity, 

so signal transduction in response to γc cytokines is initiated by 
receptor-associated Janus kinases (JAKs) which phosphorylate 
different STAT molecules in a cytokine-dependent manner (66, 
67).

Interleukin-2 and IL-15 are functionally related members the 
γc family of cytokines with respect to their receptor interactions as 
both can signal through complexes consisting of the γc and IL-2Rβ 
chains (68) resulting in the activation of STAT1 and STAT5 via 
JAK-1 and JAK-3, respectively (69). However, cellular affinity for 
either IL-2 or IL-15 is altered by the expression of high-affinity 
heterotrimeric complexes containing IL-2 or IL-15-specific alpha 
subunits (64). IL-2Rα (CD25) is expressed on activated NK cells 
and substantially increases their affinity for IL-2 which drives 
their proliferation and production of lytic molecules such as per-
forin and Granzyme B (70). Given that NK cells are found near 
T cell areas in SLTs (10), T cell-derived IL-2 may facilitate a vital 
functional crosstalk between innate and adaptive lymphocytes 
during an infection (71).

Although NK cells require γc signaling, as evidenced by the 
significant reduction in NK cell number and functional impair-
ment in mice lacking the γc chain (γc

−/−) (72, 73), IL-15 is unique 
in this regard. Mice lacking IL-15, IL-15Rα, or IL-2Rβ have 
similar phenotypes to γc

−/− mice with respect to NK cell deficien-
cies (74–76), and transgenic overexpression of IL-15 in mice 
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FiGURe 5 | A common schema of human natural killer (NK) cell development in the bone marrow and lymph nodes. A total of six distinct developmental stages 
have been described with Stages 2 and 4 having additional bifurcations. Similar to the mouse, human NK cells express CD244 (2B4) throughout the developmental 
process starting at Stage 1 (pre-NK cell precursors). CD117 (c-Kit) and the low levels of interleukin (IL)-1R1 expressions define the Stage 2a and Stage 2b, 
respectively (NK cell progenitors). A higher expression of IL-1R1 defines the Stage 3 [immature NK cell (iNK)], and the expressions of NKG2D, CD335 (NKp46), 
CD337 (NKp30), and CD161 (NK1.1) are initiated. Stages 4a and 4b defines an entry of iNKs into mature nks, and are differentiated by the expression of NKp80 at 
the Stage 4b. Expressions of NKG2D, CD335, CD337, and CD161 reach their maximal levels at Stage 4. Most important of all, CD56 expression peaks (CD56bright). 
Significant differences between Stage 4b and Stage 5 are defined by a decrease in the expression of CD56 (CD56dim) in most and initiation of the expression of 
CD16 (FcγRIIIA) and killer immunoglobulin-like receptor (KIR) (CD158) in a subset of NK cells. Stage 6 defines the generation of “adaptive” or “memory-like” NK cells 
following “antigen” exposure, and it is identified by the high levels of NKG2C.
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results in increased NK cell generation (77). It was determined 
that IL-15-mediated proliferation of mouse T cells was depend-
ent on the presence of IL-15Rα on surrounding cells (78) which 
revealed a trans-presentation mechanism that is not required for 
IL-2-mediated proliferation. For this to occur, soluble IL-15 binds 
to IL-15Rα on the surface presenting cells which trans-present 
this complex to apposing NK cells expressing IL2-Rβ/γc heterodi-
mers (79). IL-15 can be trans-presented by dendritic cells (DCs) 
and macrophages as well as non-hematopoietic cells including 
stromal cells and epithelial cells (80). The importance of IL-15 
trans-presentation for NK cell survival in vivo was demonstrated 
with adoptive transfer experiments that showed normal NK cells 
were unable to survive in IL-15Rα-deficient mice while NK cells 
lacking IL-15Rα persist in IL-15Rα-sufficient recipients (81). 
IL-21R utilizes IL-21Rα and the γc (82). IL-21 synergizes with 
IL-2 to augment the expression of NKG2A, CD25, CD86, CD69, 
Perforin, and Granzyme B and thereby augmented cytotoxicity 
(83). These cytokines that use the γc-based receptors are the 
obligatory link between NK cells and the cells that produce them. 
For example, T helper cells that produce IL-21 can regulate the 
expression levels of activation receptors or cytolytic contents in 
NK cells. Similarly, DCs that produce IL-15 plays an essential role 
in the proliferation and priming of NK cells (discussed in detail 
elsewhere in this review).

educating NK Cells to Distinguish “Self” 
From “Non-Self”
Functional differences between NK cells is also a consequence of 
the NK cell education process through which NK cells interact 
with self-major histocompatibility complex (MHC)-I (84). Initial 
observations concerning hybrid resistance to NK cell-mediated 
transplant rejection demonstrated that F1 hybrid mice reject 
transplanted BM from either parent while they do not reject 
transplants from other F1 mice (85, 86). These studies, along 
with others utilizing β2-microglobulin-deficient mice, further 
revealed that the underlying mechanistic basis of this rejection 
was dependent on MHC-I surface expression (87). The NK cell 
receptors that interact with MHC-I belong primarily to the killer 
immunoglobulin-like receptor (KIR) family in humans and the 
lectin-like homodimeric Ly49 receptor family in mice, and it is 
through these receptors that MHC-I regulates NK cell function 
(84). The molecular basis of NK  cell education is still under 
debate and, based on the “missing-self” hypothesis of NK cell acti-
vation, it was initially thought that self-tolerance was exclusively 
due to inhibitory receptor signaling upon MHC-I engagement 
when interacting with normal cells (88). However, there exists a 
relatively small population of NK cells that do not express self-
reactive inhibitory receptors under normal conditions, and these 
cells are hypofunctional upon stimulation (89).

The use of transgenic mouse models has led to the prevailing 
theories that attempt to explain the NK cell education process. 
In 2005, Yokoyama and colleagues termed the widely accepted 
model of NK cell education as “licensing” (90) which proposes 
that phosphatase activation in response to the ITIMs found 
in inhibitory receptors ultimately controls NK  cell respon-
siveness. Thus, licensed NK  cells are deemed functionally 

competent and are self-tolerant due to the interaction between 
inhibitory receptors and MHC-I while unlicensed NK  cells, 
represented by those that do not express self-MHC-I-specific 
inhibitory receptors, are tolerant because they are functionally 
incompetent (84).

To further explain how NK cells become educated or “licensed,” 
Raulet and Vance proposed the NK cell “arming” and “disarming” 
models (91). In the “arming” model of NK cell education, NK cells 
are deemed functionally mature through self-MHC-I-specific 
inhibitory receptor interactions which are sufficient to drive 
the NK cell education process. This may seem counterintuitive 
given that these receptors are known to be exclusively inhibitory; 
however, their designation as such was described with respect to 
NK cell effector functions (91). Thus, inhibitory receptors may 
possess alternative functions in terms of NK cell education, and 
it has been demonstrated that signaling through these receptors 
is likely more complicated than previously appreciated (92). 
The “disarming” model proposes that chronic stimulation of 
NK cells that lack self-MHC-I inhibitory receptors are rendered 
hyporesponsive to stimulatory receptor activation potentially 
through a process similar to anergy in T or B cells (91). While 
these processes are thought to control NK cell responsiveness pri-
marily during development, new interpretations of these models 
suggest that they may be altered under disease conditions and 
function as a rheostat to set the threshold of NK cell activation in 
the periphery (93, 94). Overall, the molecular mechanisms that 
regulate NK cell education have yet to be described though it is 
clear that the NK cell education process dictates their functional 
capabilities.

Signaling in NK Cells: Role of  
Germline-encoded Activation Receptors
Natural killer cells do not express clonotypic receptors. However, 
they mediate strong anti-tumor cytotoxicity and generate sig-
nificant quantities of pro-inflammatory cytokines (95). Lack 
of variable clonotypic receptors is compensated by multiple 
germline-encoded NK  cell activation receptors (NKRs) such 
as NKG2D, NCR1, NCR2, NCR3, NKG2C, CD244, Ly49D, and 
Ly49H. Expression of more than one NKR that recognize self 
or pathogen-derived ligands endows NK  cells with inherent, 
innate abilities to mediate effector functions. Due to the expres-
sion of multiple activation receptors, NK cells have to follow a 
distinct developmental program to obviate misrecognition of 
“self” leading to autoimmune responses. The varied nature of 
NKRs and the absence of signaling domains in their cytoplasmic 
tails necessitates the association and recruitment of receptor-
associated adaptor molecules for signal transduction (96). 
The adaptor molecules that propagate NKR signaling includes 
FcεRIγ, CD3ζ, and the DAP12 which signal via immunoreceptor 
tyrosine-based activation motifs (ITAMs) contained within their 
cytoplasmic domains. NKRs that utilize these signaling adaptors 
include CD16, NCR1, Ly49D, Ly49H, and NKG2D (97–101). 
However, Ly49H and NKG2D can also signal via the YINM 
motif present within the adaptor, DAP10 (101–103). NK  cell 
activation through these receptors occurs by interacting with 
distinct cellular and foreign ligands present on diseased cells 
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and form the basis for the NK cell-mediated immune response 
in multiple contexts.

NKG2D is a homodimer forming C-type lectin-like type II 
transmembrane glycoprotein that is highly conserved from 
mice to humans (104). NKG2D is constitutively expressed on 
NK  cells (105) and recognizes stress-inducible ligands that are 
structurally related to MHC-I (104). These ligands include ULBPs 
(106–108), MIC-A (109), and MIC-B (110, 111) in humans, and 
H60 (112–115) (a, b, and c), Rae-1 (α-ε) (115–117), and Mult1 
(118, 119) in mice (120). NKG2D signaling is mediated through 
DAP10 and DAP12 via YINM and ITAM tyrosine-based signal-
ing motifs, respectively. DAP10 recruits and activates the p85α 
subunit of PI(3)K (121) and recruits Grb2 (105) while DAP12 
recruits ZAP70 and Syk to initiate NKG2D-mediated NK  cell 
activation (105, 122).

These receptor-proximal signaling molecules activate the 
CBM signalosome containing Carma1, Bcl10, and Malt1, as 
well as Akt and the MAPKs, Erk1/2, Jnk1/2, and p38 (123–125). 
NK cell activation through NKG2D results in the mobilization 
of lytic granules as well as cytokine production via activation of 
transcription factors including activator protein-1 (AP-1) and 
NF-κB (123, 124). Pharmacological or genetic inhibition of these 
pathways causes deficiencies in NK  cell-mediated cytotoxicity 
and pro-inflammatory cytokine production (126, 127). Pro-
inflammatory cytokine production from NK  cells expressing a 
catalytically inactive form of PI(3)K-p110δD910A, was significantly 
reduced while anti-tumor cytotoxicity was only moderately 
impaired (128–131). This finding substantiates the notion that 
the signaling molecules required for NK cell effector functions are 
not mutually exclusive (124) and further investigation is required 
to fully elucidate the molecular mechanisms that regulate NK cell 
effector functions in response to NKG2D-mediated stimulation.

NK CeLL eFFeCTOR FUNCTiONS

Natural killer cells mediate their immunomodulatory effects 
through two critical effector functions. First, NK  cells are 
cytotoxic lymphocytes that can directly lyse cells that have 
undergone a malignant transformation or have become infected 
with a virus or other intracellular pathogen (22). The cytolytic 
function of NK cells can initiate through a variety of processes, 
including degranulation and death receptor ligation, and is 
critical for the clearance of diseased and dysfunctional cells (132, 
133). Second, NK  cells can produce a variety of inflammatory 
cytokines in response to activation receptor stimulation as well as 
inflammatory cytokine-induced activation signaling (134, 135). 
These NK  cell effector functions are essential components of 
the immune response and are the primary mechanisms through 
which NK cells mediate protective immunity.

The Mechanisms That Facilitate NK Cell 
Cytotoxicity
The molecular mechanisms that regulate NK cell cytotoxicity have 
been well described and can be divided into three main processes: 
(1) target cell recognition, (2) target cell contact and immuno-
logical synapse (IS) formation, and (3) NK cell-induced target cell 
death. Distinct mechanisms have been described for how target 
cells are recognized by NK  cells and how they deem diseased 
cells appropriate for destruction (Figure  7). Once recognized, 
NK cells directly interact with the target cell of interest through 
the formation of a lytic IS which facilitates NK cell-induced target 
cell death through two essential mechanisms (136).

The first mechanism involves the activation of death receptors 
present on the surface of the target cell which initiates the extrin-
sic apoptotic pathway (137). These receptors include TNF-related 
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apoptosis-inducing ligand-receptor (TRAIL-R) and Fas (CD95) 
which are activated by their cognate ligands, Fas ligand (FasL) 
(CD95L) and TRAIL, present on NK  cells (133). The surface 
expression of death receptors can be induced on target cells by 
NK cell-derived IFN-γ (138), and their activation initiates many 
pro-apoptotic signaling programs (139, 140). The death receptor 
superfamily is characterized by the utilization of a cytoplasmic 
death domain which enables these receptors to activate the 
apoptotic machinery including initiator caspases-8 and 10 (141, 
142). Initiator caspases promote a cascade of IL1β-converting 
enzyme (ICE) superfamily proteases, including caspase-3 (143), 
and induce mitochondrial damage and cytochrome C release 
resulting in the formation of the apoptosome (144). The apopto-
some amplifies initiator caspase-mediated substrate cleavage 
and, along with caspase-3-induced DNA fragmentation via 
caspase-activated DNase activation (145), results in cell death via 
apoptosis (146).

The primary mechanism of NK  cell-mediated cytotoxicity 
involves the directed release of lytic molecules to the target cell 
(147). NK cells store these molecules in cytolytic granules that 
are delivered to the target cell through membrane fusion at the 
IS (136). This process requires cytoskeletal reorganization events 
including actin polymerization at the IS (148, 149) as well as 
polarization of the microtubule organizing center toward the tar-
get cell (150). Polarized lytic granules travel along microtubules 
and, once at the IS, fuse with the target cell membrane and release 
enzymes that facilitate that activation of the intrinsic apoptosis 
program within the target cell (136, 151). The molecules con-
tained within lytic granules include the 60–70-kDa pore-forming 
glycoprotein, perforin (152), class of serine proteases known as 
granzymes (133), FasL (CD178), TRAIL (CD253), and granuly-
sin (153). Granzyme B and perforin are a critical component of 
NK cell lytic granules and is classified as an apase that cleaves 
peptides after aspartic acid residues (133). Once inside the 
target cell, Granzyme B can trigger apoptosis through caspase-
dependent and independent mechanisms. Granzyme B activates 
caspase-dependent apoptosis at multiple points in the apoptotic 
pathway by directly cleaving the apoptotic initiator caspase-8 as 
well as caspase-3 (154, 155). Granzyme B can also induce apop-
tosis in a caspase-independent manner and induce cytochrome 
C release from the mitochondria through the proteolytic cleavage 
of the pro-apoptotic protein, Bid (156).

NK Cell-Mediated Pro-inflammatory 
Cytokine Production
Natural killer cells are potent producers of pro-inflammatory and 
immunosuppressive cytokines. However, the release of inflamma-
tory cytokines is distinct from cytotoxic granule secretion (157) 
and NK cells utilize activation-induced signaling components to 
differentially regulate these two functions (124). Although NK cells 
can produce a wide-range of cytokines depending on the inflam-
matory environment (158, 159), NK cells primarily produce Th1-
type cytokines when responding to tumor ligands and intracellular 
pathogens (160, 161). These include IFN-γ, TNF, and granulocyte/
monocyte colony-stimulating factor (GM-CSF) which facilitate 
the activation of T cells as well as other innate immune mediators 

such as DCs, macrophages, and neutrophils (162, 163). NK cells 
also produce chemotactic cytokines (chemokines) including CCL3 
(MIP-1α), CCl4 (MIP-1β), CCL5 (RANTES), XCL1 (lympho-
toxin), and CXCL8 (IL-8) which can attract effector lymphocytes 
and myeloid cells to inflamed tissues (164).

Transcriptional activation of cytolytic molecules and inflamma-
tory cytokines is a highly regulated process mediated by a variety 
of transcriptional regulators in NK  cells. Many of these tran-
scription factors, such as T-bet, are lineage defining and become 
activated early in NK cell development (13). Cytokine-induced 
activation of transcription factors, such as signal Transducers and 
Activators of Transcription (STAT) 4 and 5, occurs in response to 
IL-12 and IL-2 + IL-15 signaling, respectively (165). NKRs also 
initiate inflammatory transcriptional programs upon activation. 
These include the c-Fos and c-Jun heterodimer, AP-1, nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB), 
and nuclear factor of activated T cells (124, 166, 167) which bind 
promotor regions and promote inflammatory cytokine gene 
transcription (168, 169).

Role of Pro-inflammatory Cytokines that 
Provide a “Third Signal” to NK Cells
A variety of cells generate a number of inflammatory mediators 
to sensitize and prime NK cells. Among these DCs play a central 
role (170). A complex interplay between DCs and NK  cells is 
defined as one of the critical steps for the sensitization of NK cells 
(171). Given DC generate critical cytokines such as IL-15, IL-12, 
IL-23, IL-27, and IL-18, the crosstalk with NK cells determines 
the pathophysiological outcome of an ongoing immune response 
(172). Priming with type-1 IFN-α/IFN-β results in the expres-
sion of IL-15Rα and generation of IL-15 from plasmacytoid DCs 
(171). Multiple cell types including NK  cells produce type-1 
IFNs by which they can prime DCs (173). The trans-presentation 
of IL-15 by IL-15Rα to IL-15Rα/IL-2Rβ/IL-2Rγ complex on 
NK cells initiates multiple cellular tasks including proliferation 
and transcriptional reprogramming (81, 174). The IL-12 family of 
heterodimeric cytokines includes IL-12, IL-23, IL-27, and IL-35 
which mediate diverse functions in NK  cells (Figure  7) (175). 
IL-27 has both activating and inhibitory functions (176, 177) and 
IL-35 is an immunosuppressive cytokine produced exclusively by 
regulatory T cells (178). IL-12 and IL-23 are both produced by 
pathogen-activated macrophages and DCs and share a common 
component of their heterodimeric receptors, IL-12Rβ1 (175). 
Although the function of IL-23 in NK cells remains under debate, 
the role of IL-12 in NK cell activation is well established (175). 
IL-12 is a combination of the p40 and p35 alpha and beta subu-
nits, respectively, and binds the IL-12 receptor (IL-12R) complex, 
IL-12Rβ1/IL-12Rβ2 (179). IL-12R signaling is propagated by 
Tyrosine kinase 2/JAK-2 and activates the transcriptional regula-
tor, STAT4 (180).

Interleukin-12 signaling synergizes with those of other 
cytokines, including IL-2, IL-15, and IL-18 significantly enhances 
IFN-γ production by NK cells (181). IL-18 is a member of the 
IL-1 cytokine family and signals via the IL-18 receptor (IL-18R) 
through the signaling adaptors, myeloid differentiation primary 
response 88, and IL-1R-associated kinase (182, 183). IL-18 
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alone is not sufficient to induce IFN-γ production; however, 
the expression of IL-18R is induced by IL-12-mediated activa-
tion in lymphocytes (184) and IL-18 signaling synergizes with 
IL-12-mediated stimulation. Specifically, STAT4 activation by 
IL-12 enhances Ifng gene transcription while IL-18R signaling 
simultaneously induces the promoter binding activity of AP-1 
and activates p38 MAPK to promote Ifng transcript stability and 
IFN-γ protein production (185, 186).

NK CeLLS iN HeALTH AND DiSeASe

To date, the diverse functions of NK  cells in mammalian 
immunity is not fully understood. However, accumulating data 
collected from patients with rare disorders characterized by 
NK cell deficiency have shed light on their relevance to human 
health (187) and studies using genetically modified mouse 
models have generated intriguing ideas with regards to their 
pro-inflammatory and immunosuppressive functions (188). 
NK  cells produce and respond to inflammatory stimuli and 
are most well known for their roles in anti-viral immunity and 
tumor immunosurveillance; however, NK cells are also involved 
in a variety of autoimmune disorders as drivers of pathologic 
inflammation (189). Emerging evidence also demonstrates that 
NK cells can regulate anti-inflammatory programs, such as tissue 
repair (190, 191). Whether NK cells act as primary innate effec-
tors or accessory cells as part of the adaptive immune response 
appears to be context-dependent, but their contribution as first-
line responders and essential inflammatory mediators is well 
established. Importantly, how the crosstalk between NK cells and 
lymphocytes (αβ-TCR+ T, γδ-TCR+ T, NKT, and B cells), myeloid 
cells (monocytes, macrophages, and DCs), or non-immune cells 
(epithelial or endothelial cells) enumerate a productive immune 
response is far from fully understood.

NK Cell Functions During viral and 
Bacterial infections
Natural killer cells are critical for defense against a wide variety 
of pathogens. Pattern recognition receptors (PRRs) recognize 
pathogen-associated molecular patterns and are essential com-
ponents of the NK cell-mediated innate immune response (192). 
Activation of NK cells through PRRs elicit the production of TNF 
and IFN-γ which contribute to antibacterial defense (192, 193). 
NK  cells also contribute to antifungal immunity by direct and 
indirect mechanisms (194). First, NK cells can directly damage 
fungal membranes through the targeted release of cytotoxic 
granules containing the membrane disrupting protein, perforin 
(195). They can also facilitate the antifungal host response 
through direct phagocytosis as well as the production of inflam-
matory mediators (196). Specifically, the production of GM-CSF 
by NK  cells is critical for controlling C. albicans infection by 
promoting the fungicidal activity of neutrophils (197). However, 
the direct contribution of NK  cells to microbial immunity has 
best been described with regards to their discrete actions against 
intracellular pathogens.

Intracellular pathogens have evolved a variety of mechanisms 
to evade the host immune response including subversion of 

the MHC immunosurveillance system (198). MHC molecules 
are highly polymorphic within a population and are encoded 
by human leukocyte antigen (HLA) genes in humans and, H-2 
in mice (199). MHC molecules can be divided into two major 
classes, MHC class I (MHC-I) and MHC class II (MHC-II). 
MHC-I molecules bind, and present endogenous peptides to 
cytotoxic CD8+ T cells and subversion of this immunosurveillance 
mechanism results in an insufficient adaptive immune response 
(200). MHC-II is abundantly expressed on antigen-presenting 
cells (APCs) and facilitates the presentation of exogenous pep-
tides to CD4+ helper T cells (201). Nearly all somatic cells express 
endogenous peptides on their surface in the context of MHC-I, 
and this allows the immune system to sample the intracellular 
environment (201). The peptide–MHC-I complex also defines the 
immunological “self” condition and maintenance of this system 
is essential for both immune tolerances as well as the rejection of 
“non-self” cells (Figure 8) and tissues that express distinct MHC-I 
haplotypes (202).

Natural killer cells possess unique mechanisms to contain 
intracellular pathogens including viruses and some species of 
bacteria by lysing infected cells, releasing them and exposing 
them to adaptive cell-mediated immunity (203, 204). NK cells 
also produce inflammatory cytokines, such as IFN-γ to contain 
viral or bacterial growth (205–207). For example, hemagglutinin, 
a sialic acid receptor expressed by the influenza virus, serves as 
an activating ligand for NCR1 (208, 209). The murine cytomeg-
alovirus (MCMV)-encoded membrane glycoprotein, m157, is 
recognized by the Ly49H receptor expressed in C57BL/6-derived 
NK cells (210). NK cells from other mouse backgrounds, such as 
129/SvJ and BALB/c, do not express Ly49H, or another resistance 
factor, which renders them susceptible to MCMV as they are 
unable to mount a specific NK cell-mediated immune response 
to the virus (211–213). NKG2D has also involved in NK  cell-
mediated anti-viral immunity as evidenced by multiple observa-
tions in which human and mouse CMV proteins downregulate 
cellular stress ligands that activate NK cells through this receptor 
(214–217).

Natural killer cells have the unique ability to identify infected 
cells without direct engagement of the MHC-I complex (12, 218). 
Therefore, intracellular pathogens that evade CD8+ T  cells by 
interfering with MHC-I surface expression remain vulnerable to 
NK cell-mediated immunity (219). In terms of anti-viral immu-
nity, NK  cells and CD8+ T  cells have long been considered to 
represent the innate and adaptive arms of the immune response, 
respectively (220). However, the separation of these cells with 
regards to their contributions to adaptive immunity has recently 
been reconsidered due to the discovery of NK cells that exhibit 
immunological memory (160, 221). Although they do not 
utilize clonotypic receptors, such as the TCR, a relatively small 
population of memory NK cells has been described as long-lived 
effectors capable of rapid recall responses (222).

The formation of memory NK  cells has been extensively 
investigated in mice infected with MCMV and studies using this 
system have been critical in defining the molecules that mediate 
this phenomenon (222–225). A vaccination study using antigens 
from viruses including, influenza, vesicular stomatitis virus, and 
human immunodeficiency virus type 1 also showed memory-like 
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receptors [killer cell immunoglobulin-like receptor (KIR) or Ly49] let the NK cells know that they are interacting with normal cells and contain their activation. (B) 
“Missing-self”: recognition of target cells that either does not express MHC-I or reduce them below optimal levels can induce NK cell activation. (C) “Induced-self”: 
recognition of activating ligands that are expressed on target cells by the germline-encoded receptors such as NKG2D (H60, mouse; MIC-A/B, human), Ly49H 
(murine cytomegalovirus-derived m157, mouse), NCR1 (a number of viral proteins) can overcome MHC-I-mediated inhibitory signaling resulting in NK cell activation. 
(D) “Non-self”: recognition of transplanted tissue by NK cells, where the donor tissue expresses either allogeneic or haploidentical MHC-I.

11

Abel et al. Immunobiology of NK Cells

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1869

NK cell responses in mice (226) and NK cells exhibited enhanced 
protection against secondary infections with vaccinia virus and 
herpes simplex virus type 2 (227, 228). Collectively, these stud-
ies provide compelling evidence demonstrating the functional 

relevance of NK cell memory as a universal anti-viral immune 
mechanism. Observations in humans have also suggested the 
ability of human NK cells to form memory (229, 230); however, 
the full contribution of memory NK cells to anti-viral immunity 
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and potential implications this may have on vaccine development 
has yet to be determined.

Natural killer cells also recognize bacteria and bacterial 
products either directly or from infected cells and professional 
APCs (Figure  9) (231). Recent work has shown that NK  cells 
can directly release granzymes proteases to initiate disruption 
of electron transport, generate superoxide anion, and inacti-
vate bacterial oxidative defenses causing the death of Listeria 
monocytogenes, Escherichia coli, and Mycobacteria tuberculosis 
(232–234). In addition, NK cells using Granzyme B mediated the 
killing of facultative anaerobic bacteria such as L. monocytogenes 
by cleaving essential proteins that are required for protein transla-
tion (aminoacyl tRNA synthetases and ribosomal proteins), fold-
ing (protein chaperones), and protein degradation (Clp system) 
(235). Indirect killing and containment of L. monocytogenes (236, 
237), Staphylococcus aureus (238), Lactobacillus johnsonii (239), 
Mycobacterium tuberculosis (240), and Mycobacterium bovis 
bacille Calmette-Guérin (241) by NK cells have been described. 
Mechanisms by which NK  cells mediate indirect clearance of 
bacteria are complex. Substantial evidence suggests that interleu-
kins including IL-12 and IL-18 from monocytes and DCs play 
a central role (242–244). Role of other inflammatory cytokines 
such as IL-27 and its cooperation with IL-18, IL-6, and IL-12 
during the clearance of bacterial infections have been identified; 
however, the precise mechanisms by which NK cells evoke the 
anti-microbial responses are yet to be elucidated (245, 246).

Anti-Tumor Functions and the Clinical 
Utilization of NK Cells
The vital role of NK  cells in tumor immunosurveillance was 
recognized soon after their initial characterization (247, 
248). NK  cells can detect changes in surface expression of 
self-MHC-I molecules on autologous cells which distinctively 
qualifies them to detect cells that have undergone malignant 
transformation (Figure  8) (218, 248). Genomic mutations 
that arise during the transformation process are reflected by a 
variety of phenotypic changes which alter the expression of cell 
surface molecules, including downregulation of the inhibitory 
“self” MHC-I (200, 249). The activity of NK cells against this 
“missing-self” condition has been well described (250, 251) 
and serves as a critical mechanism through which NK  cells 
facilitate anti-tumor immunity. Transformed cells also express 
increased numbers of stress-induced molecules on their surface 
which can be recognized by specific NK  cell receptors, such 
as NKG2D (120, 252). This concept, known as “induced self” 
(Figure 8) recognition (253, 254), explains why NK cell does 
not kill normal cells, such as erythrocytes, that do not express 
MHC-I on their surface but retain cytotoxic activity against 
MHC-I sufficient tumors (255). Elicitation of NK cell function 
is determined by the relative strength of activating and inhibi-
tory receptor signaling and this concept, known as “altered 
balance,” ultimately controls NK cell activity under normal and 
disease conditions (256).

Decades of research in rodents have demonstrated the 
importance of NK cells in tumor clearance (14, 117, 247, 248). 
In humans, an 11-year follow-up study showed that low NK cell 

cytotoxic activity was correlated to an increased risk of cancer 
(257) and the presence of tumor-infiltrating NK cells is a positive 
prognostic marker for multiple malignancies including colorectal 
carcinoma (258), gastric carcinoma (259), and squamous cell 
lung cancer (260). Results from multiple studies demonstrate 
that NK cells have promise as a cancer immunotherapeutic for 
the treatment of hematological malignancies including acute 
myeloid leukemia and acute lymphoblastic leukemia (261–263). 
Allogenic NK cell therapy has proven effective in the clinic and, 
unlike T  cell-based interventions, NK  cell transfusion carries 
a relatively low risk of adverse off-tumor effects such as graft-
versus-host disease (GvHD) (264).

Autologous NK cells may be inhibited by “self” MHC-I, thus 
limiting GvT effects in the absence of exogenous cytokines or 
antibodies (265, 266). Therefore, allogeneic NK cells along with 
hematopoietic stem cell transplant has been explored as a poten-
tial treatment for patients with high-risk solid tumors (263, 267, 
268). Using non-myeloablative conditioning regimens to provide 
potent immune suppression without toxicity, the burden of cure 
then relies on the ability of transplanted donor cells to provide 
a GvT effect. Precedence in using low-intensity conditioning 
before transplanting allogeneic stem cells has been reported in 
Ewing sarcoma (269–271), osteosarcoma (272, 273), germ cell 
tumors (274), rhabdomyosarcoma (275–277), neuroblastoma 
(278–280), Wilms tumor (281), and CNS tumors (282), sug-
gesting that alloreactive donor NK cells infiltrate heterogeneous 
solid tumors and cross the blood–brain barrier. A sizeable 
reduction in tumor burden has been observed (269). Using HLA-
haploidentical family donors (parents and siblings), matched by 
only one HLA haplotype to the patient, have not only shown 
favorable outcomes in patients with solid tumors (263, 267, 
283) but are also readily available and highly motivated donor 
sources. Thus, using HLA-haploidentical donors to augment GvT 
may be an effective strategy in patients undergoing allogeneic 
hematopoietic stem cell transplantation (HCT) for treatment of 
solid tumors (263, 284).

Regulatory Functions of NK Cells
Most functions of NK  cells are analogous to either CD8+ T or 
Th1 cells, including the production of pro-inflammatory cytokines 
(IFN-γ, TNF-α, and GM-CSF) and mediating cytotoxicity against 
infected or tumor cells (95). However, in addition to these, recent 
reports suggest NK  cells also play regulatory functions (285, 
286). NK cells mediate regulatory functions of other cell types 
including myeloid [DC (246, 287–290), monocytes (291–293), 
and macrophages (246, 294–296)] or lymphoid [T (297, 298) and 
B (299–301) cells] via cytokines production or through direct 
cell–cell contact in a receptor–ligand interaction-dependent 
manner. As part of the innate immune responses, effector func-
tions of NK cells during the early phase is expected to dictate the 
threshold, direction, and the outcome of an immune response. 
These NK  cell-mediated regulatory functions are predicted to 
occur during viral, bacterial, or protozoan infections, anti-tumor 
immune responses, unexpected immuno-pathological outcomes 
such as GvHD, and autoimmune diseases (302). Few of the 
examples are described below. A unique innate immunoregula-
tory function for the smaller CD56bright subset of human NK cells 
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FiGURe 9 | Natural killer (NK) cells in health and disease. As the largest lymphocyte population representing innate immunity, NK cells perform diverse functions. 
Through their ability to mediate killing and to produce soluble factors, NK cells perform multitudes of immunological functions. Counter-clockwise: bidirectional 
interactions between NK cell and dendritic cells (DCs)/macrophages result in priming. Activated DCs and macrophages generate interleukin (IL)-15, IL-12, IL-18, 
IL-35, IFN-α, IFN-β, IL-27, IL-1β, and IL-23. These, in turn, activate NK cells to be primed, proliferate, and to produce inflammatory factors and chemokines such as 
interferon-gamma (IFN-γ), granulocyte/monocyte colony-stimulating factor (GM-CSF), tumor necrosis factor (TNF)-α, CCL3, CCL4, and CCL5. In addition, IFN-γ 
from NK cells can increase the MHC class I expression and the transcription of genes encoding immuno-proteasomal subunits in these professional antigen-
presenting cells and thereby augmenting T cell priming and activation. Similarly, virus-infected cells produce IFN-α, IFN-β, and IL-1β and present either “stress-
induced” self-ligands or viral proteins on the cell surface that activate NK cells. A reduction in graft-versus-host disease (GvHD) is mediated through the production 
of IL-10 by the CD56brightCD16Neg NK cell subset and augmentation of GvT is potentiated via direct tumor killing by CD56dimCD16Pos NK cell subset. In addition, 
production of IL-22 by NK subsets may help the regeneration of epithelial cells in the mucosal tissues. Irrespective of these observations, the mechanisms by which 
NK cells are activated to respond during active GvHD/GvT is not fully understood. Genetic manipulation of NK cells has helped to improve the effector functionality 
and the longevity of human NK cells in vivo. Stable integration of gene encoding IL-15 into the genome of NK cells promotes sustained proliferation via an artificial 
autocrine loop. Similarly, integration of gene encoding IL-12 makes this cytokine abundantly available within the microenvironmental milieu and thereby augment the 
effector functions of NK cells, specifically, the production of IFN-γ. Augmented expression of NK cell activation receptors (NKRs) including NKG2D and NCR1 by 
genetic engineering increases the anti-tumor cytotoxicity of NK cells. Other studies have shown the expression of single chain variable fragment that forms the core 
ectodomain of chimeric antigen receptor (CAR) to augments the tumor-targeted killing of NK cells. These genetically modified NK cells provide exciting newer 
opportunities for cell-based therapies. The bidirectional interaction between NK and T cells results in the regulation of adaptive immunity. IL-2 produced by CD4+ 
Th1 cells play a vital role in the proliferation and expansion of NK cells. Although in vitro experiments consistently have provided support toward this notion, the 
in vivo evidence is far from convincing. However, the inflammatory factors produced by NK cells have a significant impact on both CD8+ and CD4+ T cells. 
Expression of “self” ligands for NKG2D by T cells results in the recognition and killing of T cells by NK cells during GvHD and anti-viral responses. In addition, a 
cleaved soluble form of these ligands (MIC-A/B) is present in the serum of cancer patients. This, in turn, plays an important role in containing the effector functions of 
T cells via direct binding to the NKG2D receptor expressed on T cells. NK cells recognize bacteria-infected cells (such as epithelial cells) either using toll-like 
receptors (TLR) or by activated through soluble factors including aryl hydrocarbon receptor (Ahr). This results in the production of IFN-γ and IL-22 that helps with the 
reduction in bacterial load and regeneration of epithelial cells, respectively. NK cells can also directly mediate the lysis of bacteria using granzymes and perforin.
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(CD56brightCD16dimNKG2A+KIR−) was proposed due to their 
inherent ability to produce significant amounts of IL-10, and IL-13 
along with IFN-γ, TNF-α, and GM-CSF compared to that of the 
more substantial CD56dimCD16+ subset (58). An Il-27-stimulated 
CD56brightCD16dimNKG2A+KIR− subset was able to suppress the 

proliferation of autologous CD4+ T cells in patients with multiple 
sclerosis through a cytotoxic mechanism involving perforin 
(303) or by the release of Granzymes (304, 305). Importantly, 
CD56brightCD16dimNKG2A+KIR− subset through their ability 
to produce adenosine and by the restricted expression of the 
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ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (CD203a/
PC-1) and the nucleotide-metabolizing ectoenzyme CD38 (an 
NAD+ nucleosidase) was able to inhibit the proliferation of 
autologous CD4+ T cells (306).

Regulatory role of NK  cells during GvHD is highly contro-
versial (307). GvHD is one of the major complications and 
limiting factor in allogeneic HCT (308). Studies in both mouse 
and human lead to either suppressing or promoting rejection 
of HCT by NK cells. Furthermore, persistence or expansion of 
NK cells following HCT resulted in rejection and severe GvHD 
(309) while allograft-derived donor NK cells helped the engraft-
ment of HCT by suppressing GvHD (310–313). Mechanistically, 
NK cells can help to contain GvHD through distinct mechanisms 
including the killing of professional APCs and thereby control-
ling the proliferation and expansion of graft-specific T cell (314, 
315). In addition, NK cells were able to directly lyse graft-specific 
T cells following the expression of activating ligands of NKG2D 
on these T cell (316, 317). Expression of both mouse (316, 318) 
(H60a, H60b, H60c, Rae-1, and Mult-1) and human (319–321) 
(MIC-A, MIC-B, and ULBPs) activating ligands of NKG2D on 
stimulated T  cells has been reported in a number of models. 
Also, shedding of these murine and human activating ligands 
has been demonstrated to employ a critical negative regulatory 
function on both T (322–324) and NK (325, 326) cells. These 
findings provide an exciting new avenue in understanding an 
inherent regulatory interaction between NK  cell and APCs or 
T cells and thereby potential clinical utilization. Irrespective of 
the recent advances, the precise functions and associated mecha-
nisms by which NK cells contribute to an immune-suppressive 
or immune-sufficient tumor microenvironment is far from fully 
defined. Similarly, the complex interplay of cytokines and ILs 
that are derived from and regulating the functions of NK and 
professional APCs during viral or bacterial infections is yet to 
be fully appreciated. Furthermore, defining the interactions 
between conventional NK cells (ILC1) and ILC2 or ILC3 can help 
to formulate better immunotherapeutic approaches to infections 
associated with mucosal tissues.

NK Cells and CAR Therapy
Recent efforts to improve the clinical efficacy of NK cell immu-
notherapy has led to the development of genetically engineered 
NK cells that express a chimeric antigen receptor (CAR). Primary 
NK cells and NK cell lines can be engineered to express CARs 
which redirect the anti-tumor specificity of NK  cells on an 
antigen-dependent basis (327). Through the manipulation of 
signaling motifs critical for lymphocyte activation, CARs are also 
designed to utilize specific intracellular signaling molecules which 
can further refine NK cell function and optimize their therapeutic 
potential (328, 329). Interestingly, the use of a clonal cell line 
derived from a human NK cell leukemia, known as NK-92, has 
been genetically modified to express fully functional CARs and 
these cells have shown great promise with regards to their safety 
and efficacy in recent clinical trials (327, 330, 331). Moreover, 
the use of irradiated cell lines may provide a fast and affordable 
off-the-shelf option for a personalized cellular immunotherapy 
treatment (332, 333) and are quickly rising to the forefront of 
cell-based cancer immunotherapies (Figure 9).

SUMMARY AND FUTURe OUTLOOK

Natural killer cells possess promising potentials as a therapeutic 
tool to treat a number of maladies including malignancies (334). 
However, irrespective of their comparable ability in mediating anti-
tumor cytotoxicity to that of CD8+ T cells, the clinical utilization 
of NK cells remains far from practical. In-depth understanding of 
NK cells at the single-cell transcriptomic landscape, methods to 
expand them in  vitro without phenotypic and functional skew-
ing, and detailed analyses of their in vivo longevity are central to 
facilitate the clinical utilization. NK  cells regulate their effector 
functions utilizing both activating and inhibitory receptors (335, 
336). Irrespective of our decades-long understanding, the precise 
intracellular signaling mechanisms by which NK cells discrimi-
nate the “self” from “missing-self” or “non-self” are still elusive. 
Emerging evidence suggests that mNK cells possess the ability to 
produce both pro-inflammatory to anti-inflammatory cytokines 
(159). However, the temporal regulation of these discrete functions 
is not yet fully understood. NK cells can be primed in response to 
a wide panel of ILs and other immunomodulatory factors (132, 
158, 337). Our knowledge related to transcriptomic definitions of 
priming for an individual or combination of these priming factors 
is limited. NK cell subsets are comprised of a highly heterogeneous 
population (338). A pioneering study utilizing a novel technique 
known as mass-cytometry (CyTOF) determined that there are 
between 6,000 and 30,000 distinct NK cell phenotypes within a 
given individual based on unique combinations of 35 cell surface 
antigens (339). Studies on the genome-wide chromatin accessibil-
ity for regulomes provided similarities in regulatory circuitries of 
transcriptional programs between ILCs (ILC1 includes conven-
tional NK cells) and CD4+ T helper subsets (340). However, the 
functional plasticity of subsets of NK cells yet to be fully appreci-
ated. Controversies related to “adaptive” and “memory” character-
istics of NK cells should be resolved by defining transcriptomic, 
genetic, and epigenetic alterations between naïve and “antigen-
experienced” NK  cells. Collectively, the future holds promising 
challenges to decipher new knowledge which will facilitate the 
utilization of NK cells for better therapeutic outcomes.
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