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Within days after birth, rapid surface colonization of infant skin coincides with significant functional changes.
Gradual maturation of skin function, structure, and composition continues throughout the first years of life.
Recent reports have revealed topographical and temporal variations in the adult skin microbiome. Here we
address the question of how the human skin microbiome develops early in life. We show that the composition
of cutaneous microbial communities evolves over the first year of life, showing increasing diversity with age.
Although early colonization is dominated by Staphylococci, their significant decline contributes to increased
population evenness by the end of the first year. Similar to what has been shown in adults, the composition of
infant skin microflora appears to be site specific. In contrast to adults, we find that Firmicutes predominate on
infant skin. Timely and proper establishment of healthy skin microbiome during this early period might have
a pivotal role in denying access to potentially infectious microbes and could affect microbiome composition
and stability extending into adulthood. Bacterial communities contribute to the establishment of cutaneous
homeostasis and modulate inflammatory responses. Early microbial colonization is therefore expected to
critically affect the development of the skin immune function.
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INTRODUCTION
The importance of the human skin microbiome in skin health
and in the overall well-being of the individual has recently
been started to be appreciated (Gao et al., 2007; Costello
et al., 2009; Grice et al., 2009; Peterson et al., 2009). Most of
this work has focused on adult skin, and little attention has
been given so far to skin microbiology during the first weeks
to years of life (Leyden, 1982; Dominguez-Bello et al., 2010).
The time of birth marks a significant change for the skin of the
newborn as it undergoes transitions from an aqueous and
mostly sterile environment of the womb to a gaseous one
with constant microbial interaction. During the first days after
birth, rapid surface colonization coincides with significant
skin barrier function changes. Reduction in transepidermal
water loss, skin pH, and sebaceous activity, and increase in
water content (Chiou and Blume-Peytavi, 2004) are some of
the changes implicated in creating an environment con-
ducive to the colonization of some bacterial species and
prohibitive to others. Changes in skin barrier and water-
handling functions together with high rates of surface

expansion and epidermal cell proliferation continue through
the first months to years of life (Nikolovski et al., 2008;
Stamatas et al., 2010). During this time of development,
infant skin has been shown to differ from adult skin in
structure, function, and biochemical composition (Stamatas,
2010). Recent reports describe the topographical and
temporal differences in the adult skin microbiome (Gao
et al., 2007; Costello et al., 2009; Grice et al., 2009; Peterson
et al., 2009) and point to its relative stability over time for the
same individual (Costello et al., 2009; Grice et al., 2009).

Here we try to answer whether the infant skin microbiome
is distinct from that of adult, given the particular differences
in skin structure and function. Further, we examine whether
the infant skin microbiome evolves along with the structural
and functional development of infant skin and whether it
varies across body sites.

RESULTS
We first assessed the overall bacterial richness and diversity
of infant skin (Supplementary Table S1 online and Supple-
mentary data online). When the data from three skin sites
were combined (arm, buttock, and forehead), the number of
operational taxonomic units (OTUs) of bacteria was not
found to significantly change with age. However, within each
age group, differences were detected in the number of OTU
across the three skin sites. Although there were no differences
in OTU across body sites in the 1- to 3-month-olds, we
identified fewer OTU on the arm relative to the buttock and
forehead in the 4- to 6-month-olds, and to the buttock in the
7- to 12-month-olds. Although the number of genera in an
area does not significantly change over the first year, the
relative abundance of the community (evenness) significantly
increases with age. An indication of microbiome stabilization
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in infants may be demonstrated by this increased diversity
evenness in the microbial populations on the skin over the
first year of age.

Taxonomic composition analysis revealed, in decreasing
order, Bacilli, Clostridia, and Actinobacteria as the most
abundant classes within all infant skin samples. Differences
for the relative amounts were seen as a function of age and
body site (Supplementary Table S2 online). In contrast to
adult skin where Proteobacteria, Actinobacteria, and Firmi-
cutes dominate in that order (Gao et al., 2007; Grice et al.,
2008, 2009; Costello et al., 2009), infants are colonized
predominantly by Firmicutes, followed in abundance by
Actinobacteria, Proteobacteria, and Bacteriodetes. The dif-
ference in the colonization of adults versus infants is more
likely due to the state of development, in terms of structure
and composition of infant skin, which may represent a
distinct environment for microbial colonization.

The class information was also evaluated through dual
hierarchical clustering in which the top 17 classes were
assessed without (Figure 1a) and with (Figure 1b) body site
groups as clustering parameters. The dendrograms indicate that
the buttock site has higher levels of Clostridia (phylum
Firmicutes), whereas the arm and forehead samples show
heightened levels of the Bacilli class of Firmicutes. Samples
taken from the forehead have higher levels of the Actinobacter-
ia class as compared with the other two groups, demonstrating
similarity with adult sebaceous sites (Grice et al., 2009).

The ability of samples to separate by skin site was assessed
by the UNIFRAC-based principal component analysis (PCA,
Figure 1c). The data indicate some cluster overlapping within
the groups, suggesting common bacteria on the arm, buttock,
and forehead. However, the samples taken from the buttock
are highly divergent from samples taken from the arm and
forehead. There is noticeable overlap between the clusters of
the arm and the forehead samples, suggesting similarities
between these skin environments.

Analysis of the major microbial populations at the genus
level as a function of age (Figure 2) shows that in the two
youngest infant groups (1–3 and 4–6 months), there is a
predominance of Streptococci and Staphylococci, which
account for up to 40% of the total skin microbiome, with over
23 other genera making up the remaining population. Thus,
25 genera with predominance 41% make up on average
80–85% of the total population. As the infant ages, the
abundance of the low predominance genera (o10%)
increases, whereas levels of Staphylococcus, and Strepto-
coccus statistically decrease, suggesting an expansion in
diversity and development of the human skin microbiome.

In further support of the idea of a still-developing
microbiome, our data showed that the bacterial genera found
on the arm, forehead, and buttock changes as a function of
age (Figure 3 and Supplementary Table S3 online). Hier-
archical clustering at the genus level demonstrates the
evolution of skin microflora with age at the sampled sites
(Supplementary Figure S1 online). Although the total number
of bacteria genera remained the same with age, distance-
based redundancy analysis at the genus level showed that the
population evenness significantly increased in all sampled

sites. On the arm and forehead, the abundance of Staphylo-
cocci significantly changes with age (Figure 3a and b, and
Supplementary Table S3 online), which may explain in
part the changes in population evenness. The population
structure significantly changed with age for the buttock site
(Figure 3c and d).

DISCUSSION
Skin microbiome is known to depend on the local ‘‘micro-
environment’’ of the skin site. In adults, there are differences
in the bacterial population composition, diversity, and
evenness between sites that are relatively more sebaceous,
moist, or dry (Grice et al., 2009). Infant skin water-handling
processes undergo a maturation process over the first year of
life (Nikolovski et al., 2008). It has been shown, for example,
that stratum corneum of infant is relatively better hydrated
than adult. It is, therefore, expected that the microbiome of
infant skin would resemble closer that of the relatively more
moist skin sites in adult. Indeed, the overall relatively higher
abundance of Staphylococcus in infant compared with adult
skin agrees with the data reported for moist adult skin sites
(Grice et al., 2009). Moreover, adult sebaceous sites were less
diverse, less even, and less rich than other sites (Grice et al.,
2009). We find that this is in agreement with the data of our
youngest group (Supplementary Table S1 online) when
sebaceous activity may still be present, because of influence
of maternal hormones, but reduces drastically beyond the
first weeks of life (Henderson et al., 2000).

Immediately after birth, bacterial communities on infant
skin have been reported to be undifferentiated across body
sites (Dominguez-Bello et al., 2010). Our results indicate that
site-specific evolution of such communities appears to
begin within the first 3 months of life. In contrast to what
has been found in adult skin, namely that the microbiome is
established and maintained over time (Gao et al., 2007; Grice
et al., 2009), microflora differences between body sites in
infants, coupled with the measured increase in population
evenness with age, indicate that the infant skin microbiome is
unstable. This instability may present the opportunity for
aberrant skin development if the normal establishment of
commensal microbiota goes awry.

Despite limited sebum production in infants (Agache
et al., 1980), Propionibacteria were detected in the top five
most predominant genera in infant forearm and forehead
samples. Although the study participants did not have any
skin conditions, it is interesting to note that the observed
increase in Propionibacteria in the forehead samples at ages
4–6 months correlates with the period in which infantile acne
begins to appear (Hello et al., 2008). We have found that the
buttock area is unique in its microflora. Notably, we detected
the genus Finegoldia predominantly on the buttock, which is
a newly described, protease-elaborating commensal bacte-
rium that because of its abundance on the buttock skin could
have a role in the development of irritation in the diaper area
(Goto et al., 2008). Early colonization of Clostridium and
other gut-derived and/or anaerobic bacteria, particularly on
the youngest infants and coupled with a significant increase
in Bacteroides with age, is likely driven by the proximity to
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the gastrointestinal tract and the fact that there is a diaper
covering the area that may change the oxygen potential, pH,
and water-holding capacity of the skin (Visscher et al., 2000).
This hypothesis is further supported by the fact that in
agreement with published data of infant stool microbiota
(Palmer et al., 2007), we detected early aerobic colonizers

(Staphylococcus, Streptococcus, and Enterococcus) and other
variable or transient taxa such as Prevotella, Veillonella, and
Clostridiaon at the buttock site. This observation, and the less
likely competition from other skin microbiota during the early
development of the buttock skin, could explain the microbial
populations specific to this site.
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Figure 1. Hierarchical clustering of infant skin samples taken from arms, foreheads, and buttock (a) taken together and (b) analyzed by sampled site. The most

predominant 17 classes were chosen to be used in hierarchical clustering to assess the relationships between samples. (c) UNIFRAC-based principal component

analysis demonstrates clustering according to body site. Each point corresponds to samples from a single location for each study participant. The percent

variability for each principal component shown is PC1: 42.97%, PC2: 13.09%, and PC3: 8.29%. Clr, cluster; Loca, location.
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It has been recently reported that the skin microbiome of
newborns within 24 hours after birth correlates strongly with
the mode of delivery; the microbiome of infants delivered
vaginally is close to the one of mother’s vagina and the one of
infants delivered by Cesarean section relates to that of the
mother’s skin (Dominguez-Bello et al., 2010). Our data did
not show any significant classification distinction with regard
to mode of delivery, whether the samples were taken from
infants of all ages tested or from the youngest group tested
(1–3 months). This observation leads us to believe that the
newborn skin microbiome is dynamic enough that initial
differences (within 24 hours of delivery as described in the
Dominquez-Bello et al., 2010) arising from mode of delivery
disappear within a month of life.

Infant skin is known to be sensitive and prone to inflam-
matory conditions such as eczema and diaper dermatitis, and
infections such as candidiasis. Of particular importance is the
recent increase in the incidence of infantile atopic dermatitis
(Mancini et al., 2008). Beyond their role in pathogenic
infection, bacterial communities contribute to cutaneous
homeostasis by directly affecting inflammatory responses (Lai
et al., 2009). For example, Staphylococcal species have been
found to modulate inflammatory responses through specific
lipoteichoic acid mediators and are involved in homeostatic
control of skin inflammation (Lai et al., 2009). Erythema
toxicum neonatorum, a common rash of healthy newborn
infants, particularly associated with Staphylococcus spp.,
triggers the local skin immune system and a systemic acute
phase response in the first day after birth (Marchini et al.,
2005). Interestingly, Staphylococcus may have a role in
promoting early immune response and their subsequent
decline may be an orchestrated response that the skin and/
or the bacteria themselves conduct to facilitate microbiome
and immunity development. Infant adaptive immunity con-
tinues to develop during early life (Holt and Jones, 2000), and
the evolution of our skin microbiome may induce maturation
of the immune system by providing the epitopes to train the

adaptive immune system (Marchini et al., 2005) or even a
direct form of defense (Cogen et al., 2008, 2010). Proteases
secreted by certain species that colonize the skin can also
affect its barrier function (Hirasawa et al., 2010) and it
remains to be seen whether the skin microbiome has a role in
educating keratinocytes for the formation of an adequate skin
barrier during the time of functional development with
obvious consequences to skin immunity. Interestingly, it has
been proposed that immune pathways in the skin, as in the
gut, are linked to the development of allergy (Spergel and
Paller, 2003; Callard and Harper, 2007) or asthma (Benn
et al., 2002).

Although microbial colonization of the human skin begins
immediately after birth (Dominguez-Bello et al., 2010), we
demonstrate here that it is not fully established within the first
few weeks or even months of life, but rather evolves over the
first year and likely beyond. Timely and proper establishment
of a healthy skin microbiome (commensal genera) has a
pivotal role in denying access to transient, harmful, and
potentially infectious microbes. Thus, this early period could
affect long-term microbiome stability. Microbial colonization
of infant skin is expected to critically affect the development
of the skin immune function and perhaps the maturation of
other skin barrier functions, as well as the development
of the systemic immune system.

MATERIALS AND METHODS
Sample collection

A total of 31 healthy infants ranging in age from 3 to 52 weeks were

recruited for this study. The infants were equally distributed among

three age groups (1–3, 4–6, and 7–12 months of life). These groups

were selected based on previous data on the maturation process of

infant skin properties (Nikolovski et al., 2008), with the addition of a

younger group (1–3 months). In addition, samples were taken from

five mothers to serve as internal adult microbiome controls. There

was a relatively equal distribution of male and female infants. All

infants and mothers were Caucasian and reside in New Jersey.

Swabs were taken between December 2008 and January 2009 from

three skin sites: lower volar forearm, forehead, and buttock (center of

the gluteal area). Infants had no presence of preexisting or dormant

dermatological skin conditions including diaper dermatitis. The

study was performed with an independent Institutional Review

Board approval and following the Declaration of Helsinki Principles.

A parent or legal guardian signed a written informed consent before

the start of the study.

In order to normalize the routines of all subjects, mothers were

instructed to bathe themselves and their infants with the same

mild baby cleanser (Johnson’s Head-to-Toe Baby Wash, Johnson

& Johnson Consumer Products, Skillman, NJ) the evening before

their scheduled appointment. No product usage (including applica-

tion of topical products) was allowed after the bath, the night before

and during the day of their scheduled appointment. Infants who had

been on antibiotics, steroidal medication, or used medicated soaps

within the past 30 days of the study were not included.

Skin flora was sampled using a swab technique (Paulino et al.,

2006). A 2� 2 cm area of the skin was sampled by swabbing the skin

with a cotton pledget that was soaked in 0.15 M NaCl and 0.1%

Tween 20. The head of each swab was aseptically cut from the
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handle and placed into a sterile microcentrifuge tube and frozen at

�20 1C, until shipment to sequencing facility.

DNA extraction

Swab samples from 31 infant and 5 adult subjects were taken out of

the �80 1C freezer. Cotton tips of the swabs were shaved off using

sterile surgical scalpels. The samples were placed into a TissueLyser

(Qiagen, Valencia, CA) with a mix of 600ml RLT buffer, a 5-mm

sterile stainless steel bead, and 500ml of glass disruption beads. The

samples were processed for 5 minutes at 30 Hz. A subsample of

100ml of lysate was then transferred into a 1.7 ml microcentrifuge

tube containing a mix of 250 ml 100% ethanol and 350ml of RLT

buffer with b-mercaptoethanol. Standard procedures for the Qiagen

DNA Extraction kit (Qiagen) were then followed after the mix was

transferred into a spin column. A volume of 500ml of buffers AW1

and AW2 were used for washing. Finally, the DNA was eluted with

100ml of buffer AE and stored at �80 1C.

bTEFAP

We utilized the bacterial tag-encoded FLX-titanium amplicon

pyrosequencing approach (bTEFAP; pronounced beta-FAP) as

described previously (Wolcott et al., 2009; Bailey et al., 2010;

Finegold et al., 2010; Gontcharova et al., 2010; Pitta et al., 2010), to

evaluate the bacterial populations from infant skin swabs. Briefly, all

DNA samples were diluted to 100 ng ml�1 and a 100 ng aliquot of

each DNA sample was used for a 50 ml step 1 PCR reaction. The 16S

universal Eubacterial primers 530F (59-GTGCCAGCMGCNGCGG)

and 1100R (59-GGGTTNCGNTCGTTG) were used for amplifying

the 600 bp region of 16S rRNA genes. HotStarTaq Plus Master Mix

Kit (Qiagen) was used for PCR. A step 2 PCR was performed for
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454-amplicon sequencing under the same condition by using

designed special fusion primers with different tag sequences. After

secondary PCR, all amplicon products from different samples were

mixed in equal volumes, and purified using Agencourt Ampure

beads (Agencourt Bioscience Corporation, Beverly, MA). In prepara-

tion for FLX sequencing (Roche, Nutley, NJ), the DNA fragment sizes

and concentrations were accurately measured using DNA chips

under a Bio-Rad Experion Automated Electrophoresis Station

(Bio-Rad Laboratories, Hercules, CA) and a TBS-380 Fluorometer

(Turner Biosystems, Sunnyvale, CA). A 9.6 Eþ 06 sample of double-

stranded DNA molecules per ml with an average size of 625 bp were

combined with 9.6 million DNA capture beads, and then amplified

by emulsion PCR. After bead recovery and bead enrichment, the

bead-attached DNA fragments were denatured with NaOH, and

sequencing primers were annealed. A two-region 454-sequencing

run was performed on a 70675 GS PicoTiterPlate using the Genome

Sequencer FLX System (Roche). Twenty tags were used on region of

the PicoTiterPlate. All FLX procedures were performed using

Genome Sequencer FLX System manufacturer’s instructions (Roche).

All molecular procedures and bioinformatics were performed at

Research and Testing Laboratory, Lubbock, TX.

bTEFAP sequence processing pipeline
Methods of analysis for pyrosequencing data used herein have been

described previously (Wolcott et al., 2009; Bailey et al., 2010;

Finegold et al., 2010; Gontcharova et al., 2010; Pitta et al., 2010).

Briefly, sequences, which were o250 base pairs after phred20-

based quality trimming were not considered. Sequences were

analyzed by a script optimized for high-throughput data to identify

potential chimeras in the sequence files and all definite chimeras

were depleted as described previously (Gontcharova et al., 2010).

Bacterial species were identified within the resulting FASTA files for

each sample using BLASTn comparison and alignments to curated

ribosomal databases derived from and with taxonomic designations,

based upon the National Center for Biotechnology Information.

Comparison of hit IDs to the NCBI taxonomy database was used to

create taxonomic compilations.

Diversity and richness analyses were performed as described

previously (Dowd et al., 2008) from raw reads of phred20 quality that

were trimmed to 350 bp. Recently it has been suggested that OTU

predictions derived from 454 pyrosequencing using methods such as

MOTHUR (Schloss et al., 2009) provides overestimations of diversity

(Quince et al., 2009). Particularly at the 1% divergence, estimators,

such as rarefaction, ACE, and Chao1, may create overestimation of

OTU’s when using pyrosequencing data. Here, in order to reduce

such overestimation errors, we used the 3 and 5% divergence to

classify OTUs for species and genus levels, correspondingly, and in

addition each sample was subject to the same analyses.

Statistics

Microbial diversity analyses (Finkel and Kolter, 1999; Hong et al.,

2006; Sogin et al., 2006; Ptacnik et al., 2008) were performed

by clustering sequence tags into groups of defined sequence

variation as previously described (Schloss and Handelsman, 2005).

Diversity measurements (rarefaction, Shannon index, ACE, and

Chao1) were analyzed using a blocked analysis of variance.

All analyses were conducted using R programming language

(R Development Core Team, 2009).

Distance-based redundancy analysis (Legendre and Anderson,

1999), as implemented in the R package ‘‘vegan’’ (Oksanen et al.,

2010), was used to test for differences in microbial communities

among subjects belonging to one of three age groupings. This

method uses a permutation test for the effects of constraints (in this

case, age group) on a community ordination. This ordination is

based on inter-sample (i.e., inter-subject) distances. Distances

among subjects with respect to microbial communities were

examined using abundances that were scaled so that each species

was given equal weight. Bray–Curtis distances were used to

characterize differences among subjects.

Principal component analysis. To assess the separability of the

samples, PCA was implemented. It is widely used for dimensionality

reduction to aid in visualization of high-dimensional data. These

data are visualized by plotting the samples on primary eigenvectors

defined by the principal components. Samples more similar to each

other should appear closer together according to the respective axis

reflecting the variation among all samples. This technique is useful in

displaying clusters existing within data. Two sets of variable PCA

analyses were performed on the data. In the first approach, we used

methods as described previously (Suchodolski et al., 2009; Pitta

et al., 2010) to formulate the environment and NEXUS tree files for a

distance matrix, based on the UNIFRAC (Lozupone et al., 2006)

formula. This sequence distance matrix-based PCA was evaluated

using R and visualized using Xlstat (Addinsoft USA, New York, NY).

In the second approach, the variables (features) were the relative

bacterial composition (percentage of each taxonomic unit) at a given

taxonomic level with PCA and visualization performed using Xlstat.

Clustering. To analyze the relationships and clustering between

groups of samples, dual hierarchal dendrogram was calculated,

based on bacterial composition information at the class and genus

taxonomic levels. The analysis was performed using the NCSS

using weighted pair clustering, based upon Manhattan distance

measurements.
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