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Lysophosphatidylcholine acyltransferase
2-mediated lipid droplet production supports
colorectal cancer chemoresistance
Alexia Karen Cotte1,2,3, Virginie Aires1,2,3, Maxime Fredon1,2,3, Emeric Limagne2,3,4, Valentin Derangère2,3,4,

Marion Thibaudin1,2,3, Etienne Humblin1,2,3, Alessandra Scagliarini1,2,3, Jean-Paul Pais de Barros1,2,5,

Patrick Hillon1,2,6, François Ghiringhelli1,2,3,7 & Dominique Delmas1,2,3

Lipid droplet (LD) accumulation is a now well-recognised hallmark of cancer. However, the

significance of LD accumulation in colorectal cancer (CRC) biology is incompletely under-

stood under chemotherapeutic conditions. Since drug resistance is a major obstacle to

treatment success, we sought to determine the contribution of LD accumulation to che-

motherapy resistance in CRC. Here we show that LD content of CRC cells positively corre-

lates with the expression of lysophosphatidylcholine acyltransferase 2 (LPCAT2), an LD-

localised enzyme supporting phosphatidylcholine synthesis. We also demonstrate that LD

accumulation drives cell-death resistance to 5-fluorouracil and oxaliplatin treatments both

in vitro and in vivo. Mechanistically, LD accumulation impairs caspase cascade activation and

ER stress responses. Notably, droplet accumulation is associated with a reduction in

immunogenic cell death and CD8+ T cell infiltration in mouse tumour grafts and metastatic

tumours of CRC patients. Collectively our findings highlight LPCAT2-mediated LD accumu-

lation as a druggable mechanism to restore CRC cell sensitivity.
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Metabolic reprogramming is a common feature of cancer
progression and metastasis1. Besides the Warburg
effect, tumour cells also undergo lipid remodelling

mostly characterised by aberrant de novo lipogenesis, cholester-
ogenesis due to oncogenic-driven lipogenic enzyme over-
expression (e.g., fatty-acid synthase (FASN), 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGCR)). This bulk of newly
synthesised lipids serves for membrane biogenesis and synthesis
of essential lipid-derived second messengers (e.g., phosphatidic
acid, phosphoinositides, eicosanoids, including prostaglandin E2
(PGE2)) to maintain cancer cell proliferation and survival1–3.

Aside from a boost in de novo lipid biosynthesis, lipid droplet
(LD) accumulation has been observed in increasing numbers of
cancer cell lines and neoplastic tissues4–7. This LD accumulation
in non-adipocytic tissues has, in very recent years, emerged as a
new hallmark of cancer. However, the relative contribution of LD
accumulation in many aspects of cancer biology remains
incompletely understood. LDs are dynamic organelles that either
store excess lipids or fuel cells with essential lipids to sustain lipid
homeostasis depending on energy requirements. They are com-
posed of a neutral lipid core (triglycerides (TGs) and sterol-esters)
surrounded by a phospholipid monolayer mainly composed of
phosphatidylcholine (PC) and a broad range of proteins mainly
involved in lipid metabolism8. The hydrophobic core of the LD is
produced by the main TG pathway called the glycerol-phosphate
pathway, which terminates in both diacylglycerol O-
acyltransferase enzymes DGAT1 and DGAT2, located in the
endoplasmic reticulum (ER)9. Mature LDs continue growing with
ER interactions and production of PC by the enzymes of the
Kennedy pathway, especially phosphocholine cytidylyltransferase
alpha (CCTα) directly located in the LD monolayer10. The
remodelling of PC species occurs with the re-acylation of lyso-
phosphatidylcholine (LPC) by the enzymes of the Lands cycle:
specifically, lysophosphatidylcholine acyltransferase LPCAT1 and
LPCAT2 isoforms participating in LD expansion and stability11.
These organelles have been shown to promote proliferation12 or
survival under nutrient stress13,14, to reduce intracellular lipo-
toxicity15. They are also involved in inflammatory processes by
producing proinflammatory lipid mediators such as PGE216.
Although a role for LD accumulation in tumour cell chemore-
sistance mechanisms has been suggested in some studies, no
direct evidence has been provided so far17. For instance, it has
been recently shown by label-free Raman spectroscopy that LD
accumulation is a characteristic of colorectal cancer (CRC) stem
cells, suggesting a potential implication of LD biogenesis in CRC
relapse and its potential use as a biomarker in this cancer18.

Herein, we sought to fill in the gaps in the literature and
explore LD formation and function under chemotherapy condi-
tions in CRC cell models. We show both in vitro and in vivo that
the Lands cycle acyltransferase LPCAT2 plays a crucial role in
CRC cell LD production. In addition, we show that LPCAT2
overexpression and LD overproduction confer CRC cell che-
moresistance by blocking chemotherapy-induced ER stress, cal-
reticulin (CRT) membrane translocation and subsequent
immunogenic cell death (ICD).

Results
LD production in CRC cell lines is driven by LPCAT2. We first
evaluated and compared the basal LD content of six human
colorectal cancer (CRC) cell lines (SW620, LoVo, Hct116, Hct8,
SW480 and HT29) by intracellular neutral lipid staining with Nile
red. Qualitative and quantitative analyses of the staining showed
differential basal LD density, allowing the discrimination between
tumour cells with low- and high-LD content (Fig. 1a). Both
phenotypes were further confirmed by transmission electron

microscopy (TEM) analyses (Supplementary Fig. 1a) and quan-
tification of cellular triglyceride (TG) levels (Supplementary
Fig. 1b) in SW620 and HT29 cells. We next investigated whether
the expression of key enzymes of PC biosynthetic pathways could
account for the LD pattern observed. PC synthesis is achieved by
two main routes: the Kennedy pathway supporting de novo PC
production, and the Lands cycle involved in phospholipid
remodelling through deacylation/re-acylation steps9,10. The key
enzymes of the Kennedy pathway are as follows: choline kinase
alpha (CKα), CTP:phosphocholine cytidylyltransferase (CCTα)
and choline phosphotransferase 1 (CHPT1), CCTα being the
rate-limiting enzyme. In the Lands cycle, LPCAT (isoforms 1,2,4)
are the key enzymes connecting Lands and Kennedy pathways
because they allow re-acylation of LPC at the sn-2 position to
yield PC9,10. We found that both Kennedy and Lands cycle
enzymes were differentially expressed across CRC cell lines
(Supplementary Fig. 2a, b); nevertheless, only LPCAT2 expres-
sion was positively and significantly (Spearman’s correlation p
value = 0.0167) correlated with basal LD content (Fig. 1b, c;
Supplementary Fig. 2a, b). To further characterise the intimate
correlation between LPCAT2 expression and LD production, we
selected CRC cell lines with opposite phenotypes: SW620 cells,
which have both the lowest basal LD content and LPCAT2
expression, which we refer to as low-LD CRC cells, and HT29
cells, which have both the largest LD content and strongest
LPCAT2 expression, which we refer to as high-LD CRC cells.

It was shown that LPCAT1 and LPCAT2 enzymes, primarily
located in the ER, can be recruited to the LD surface where they
locally contribute to PC production11,19. Herein we show, with
LPCAT2 fluorescent immunostaining and specific LD staining
with Bodipy 493/503, that LPCAT2 co-localises with LD in high-
LD CRC cells (HT29), whereas in low-LD CRC cells (SW620)
LPCAT2 expression seemed more restricted to the ER compart-
ment (Fig. 1d). HPLC-MS/MS analysis of PC and LPC species
confirmed that, in agreement with increased LPCAT2 expression,
PC metabolism was preponderant in high-LD CRC cells, as
evidenced by the increase in some PC species (Supplementary
Table 1). SiRNA-mediated downregulation of LPCAT2 expression
in HT29 cells was accompanied, accordingly, by a decrease in
major PC species despite no significant impact on the total PC/
LPC ratio (Fig. 2a; Supplementary Fig. 3a, b). Besides, LPCAT2
silencing in high-LD CRC cells went along with a significant
decrease in LD density (Fig. 2b), a phenotype that we also
observed when the acyltransferase activity of LPCAT2 was
pharmacologically and specifically blocked by TSI-01 (Fig. 2c).
Conversely, stable LPCAT2 overexpression in SW620 cells
(SW620-lpcat2) enhanced basal LD content as compared to
mock infected control cells (pCMV6-empty vector, SW620-Ctl)
(Fig. 2d; Supplementary Fig. 3d). Moreover, neither LPCAT2
inhibitor nor LPCAT2 overexpression significantly modulated
TG levels (Supplementary Fig. 3c and e).

Altogether, these data demonstrate that LPCAT2 is essential
for LD production in CRC cells.

FOX chemotherapy triggers LPCAT2-dependent LD produc-
tion. To understand the significance of LD accumulation, we first
evaluated the potential correlation between LD biogenesis and the
capacity of CRC cell lines to proliferate. We ensured that
regardless of their proliferation state, low- and high-LD CRC cells
kept their differences in LD content. As shown in Fig. 3a, these
cells displayed a decrease in the LD proportion between 24 and
72 h that was recovered at cell confluency, and maintained their
distinct LD content at each time point (Fig. 3a). We next mon-
itored cell proliferation by Ki67 staining and evaluated doubling
times from cell growth curves. Surprisingly, despite a high-LD
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content, HT29 cells did not proliferate more rapidly than low-LD
SW620 cells, as evidenced by doubling times and percentages of
Ki67-positive cells (DT = 22.8± 1.9 h vs. 44.2± 4.9 h, and Ki67+

cells ≈ 52% vs. 21% for SW620 and HT29 cells, respectively)
(Fig. 3b). The lack of LD impact on cell proliferation was further
confirmed by the fact that up- or downregulation of LPCAT2 or
inhibition of LPCAT2 activity did not modify proliferation rates
(Supplementary Fig. 4a–c).

Since LDs were shown to accumulate under stress conditions
such as nutrient deprivation or hypoxia17, we next assessed
whether chemotherapy treatment could have any impact on LD
production and determined the potential key role of LPCAT2 in
these conditions. To that aim, we treated cells with two anticancer
drugs commonly used for the treatment of advanced CRC stages,
5-fluorouracil (5-Fu) and oxaliplatin (Oxa) alone or in combina-
tion (FOX) for 48 h. LD accumulation was observed in either
single or combination drug treatments in both cell lines. In
addition, major LD accumulation was observed in high-LD CRC
cells and under FOX treatment. It should also be noted that when
comparing drugs separately, 5-Fu displayed the highest capacity
to trigger LD production (Fig. 3c, lower panel). Interestingly,
great heterogeneity within high-LD CRC cells was found upon

chemotherapy, some cell populations having more LD than the
others (Fig. 3c, upper panel), and also no significant impact on
TG levels was found upon drug treatment (Supplementary
Fig. 5a). In agreement with enhanced LD production, chemother-
apy with 5-FU but not Oxa correlated with increased LPCAT2
mRNA levels (Fig. 3d, upper panels). In addition, mRNA levels of
perilipin 2 (PLIN2), a LD coat protein considered as a LD
biomarker in metabolically active cells and a key factor for LD
biogenesis20, was markedly increased in HT29 cells after
treatments supporting LD formation (Fig. 3d, lower panels).
Upregulation of LPCAT2 expression in low-LD CRC cells
(SW620-lpcat2) promoted enhanced LD formation upon 5-Fu
and FOX treatments (Fig. 3e; Supplementary Fig. 5b and c)
associated with increases in TG cellular content (Supplementary
Fig. 5d). Conversely, transient LPCAT2 silencing (silpcat2) in
high-LD CRC cells dramatically decreased chemotherapeutic
drug-induced LD accumulation (Fig. 3f; Supplementary Fig. 5e).
In addition, selective inhibition of LPCAT2 enzymatic activity
with TSI-01 in HT29 cells significantly prevented LD accumula-
tion especially induced by 5-Fu and FOX treatments (Fig. 3g;
Supplementary Fig. 5f). To determine whether cell capacity to
accumulate LDs was related to chemotherapy concentration, the
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Fig. 1 LD production correlates with LPCAT2 expression in CRC cell lines. a Basal LD content assessed by Nile red staining after 48 h of seeding. Left panel,
representative confocal images of Nile red staining (×63 magnification, scale bar= 10 µm). Nuclei (blue), LD (red). Right panel, LD quantification was
performed by counting red lipid bodies on merged pictures (300 cells per cell line) with Image J software (right). Whiskers denote 1st and 99th percentiles.
P values were determined by a two-way ANOVA with Bonferroni correction. ***p< 0.001. b LPCAT2 basal expression. A representative blot from three
independent experiments is shown. c A significant Spearman correlation coefficient (p= 0.0167) was found between basal LPCAT2 protein density and LD
content from three independent experiments. d SW620 and HT29 cells were stained after 48 h of seeding with Bodipy 493/503 (green) and LPCAT2
antibody (red), and counterstained with DAPI (blue). The Pearson correlation coefficient was calculated between LPCAT2 and Bodipy fluorescences
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LD content was assessed in cells treated with increasing FOX
concentrations. As shown in Supplementary Fig. 6a and b, FOX
concentrations triggering maximum LD accumulation corre-
sponded to maximum FOX-induced cell death in each cell line.
Collectively, the results indicate that chemotherapeutic drugs can
promote LD production in a LPCAT2-dependent manner.

LPCAT2-dependent LD biogenesis promotes chemoresistance.
LD accumulation upon chemotherapy treatments could thus be
more likely related to the emergence of CRC cell resistance.
Hence, CRC cell line sensitivity toward 5-Fu and Oxa was eval-
uated and correlated with their basal LD content. A strong
positive correlation between 5-Fu and Oxa IC50 and LD density
was observed, which strengthened the notion that LD accumu-
lation is associated with a poor chemotherapeutic drug response
(Fig. 4a; Supplementary Fig. 7a). To further characterise the link
between LD overproduction and chemoresistance, we evaluated
the impact of LPCAT2 on anticancer drug-induced cell death.
Overexpression of LPCAT2 in SW620 cells decreased the per-
centages of both early (Annexin V+/7AAD−) and late (Annexin
V+/7AAD+) apoptotic cells induced either by drugs alone or the
FOX combination (Fig. 4b). Conversely, LPCAT2 silencing or
inhibition of LPCAT2 activity sensitised HT29 cells to che-
motherapy (Fig. 4c, d). To rule out a direct effect of LPCAT2 on
cell death, we evaluated the impact of alternative pathways
involved in LD accumulation, such as DGAT2, which supports
TG synthesis and LD expansion at ER-LD contact sites21. We also
checked if supplying cells with oleic acid (OA), a potential fatty
acyl donor for acyltransferases, could potentiate the effects of
FOX therapy22. Neither DGAT2 selective inhibitor (DGAT2i) nor
OA alone significantly modified basal HT29 cell LD content;

however, they had a non-significant tendency to increase FOX
capacity to promote droplet accumulation (Supplementary
Fig. 7b). Surprisingly, DGAT2i was found to increase HT29 cell
FOX resistance while OA moderately decreased it (Supplemen-
tary Fig. 7c). We also transiently downregulated PLIN2 in HT29
cells (Supplementary Fig. 8a) and found that it sharply blocked
basal and chemotherapy-induced LD production (Supplementary
Fig. 8b) and restored sensitivity to 5-Fu and Oxa (Supplementary
Fig. 8c). In light of these results and the study of Qiu et al.
reporting that, in clear-cell renal cell carcinoma, HIF2α supported
PLIN2 expression and LD production associated with ER
homeostasis during cellular stress5, we next explored the likely
contribution of HIF2α in our models. Analysis of the HIF2α gene
(EPAS1) and the protein expression profile in CRC cell lines
showed that HT29 cells, despite a high-LD content, do not
express high HIF2α protein levels, which could be related to the
high degree of post-translational modifications of this transcrip-
tion factor23 (Supplementary Fig. 9a and b). Hence, the data tends
to suggest that HIF2α might not be involved in LD accumulation
in basal conditions, which was further confirmed in down-
regulation experiments. EPAS1 downregulation slightly increased
PLIN2 mRNA levels and protein expression, but did not impact
LPCAT2 expression (Supplementary Fig. 9c and d), LD content
(Supplementary Fig. 9e) or cell sensitivity to FOX therapy (Sup-
plementary Fig. 9f). Combining results thus confirmed that LD
production supported by LPCAT2 is involved in chemoresistance.

To evaluate the impact of LPCAT2-mediated LD production
on tumour cell growth in vivo, we generated a mouse CRC cell
line (CT26) overexpressing or not LPCAT2 (Supplementary
Fig. 10a). We controlled that constitutive expression of LPCAT2
in these cells resulted in enhanced LD production and did not
alter cell growth in vitro as seen with the SW620-lpcat2 model
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(Supplementary Fig. 10b and c). We further extended in vitro
observations in a syngeneic model of CT26-lpcat2 or CT26-Ctl
tumours subcutaneously injected into balb/c mice that we
challenged with three intraperitoneal injections of FOX or
vehicle. In contrast to in vitro experiments, significant enhanced
tumour progression was seen in CT26-lpcat2 tumour-bearing
mice. CT26-lpcat2 tumour grafts responded partially to FOX
therapy compared to control grafts (Fig. 4e) and were more
aggressive, as evidenced by reduced survival in these mice
(Fig. 4f). The role of LPCAT2 was further confirmed by shRNA-
mediated stable knockdown of Lpcat2 in vivo. CT26 cells, stably
transduced by control shRNA (shneg) or four different shRNA
targeting the Lpcat2 gene (shLpcat2 #1, #2, #3 and #4), were
generated (Supplementary Fig. 10d and e) and two of them

injected subcutaneously in balb/c mice. Lpcat2 knockdown
(shLpcat2 #2 and #4) resulted in a slight reduction in tumour
progression under FOX therapy as compared to shneg tumour-
bearing mice (Supplementary Fig. 10f), but was associated with
significantly increased mouse survival (Supplementary Fig. 10g).

To assess the potential clinical relevance of these data, we
performed immunohistochemical (IHC) staining of LPCAT2 on
liver metastasis samples from 79 CRC patients (Supplementary
Table 2). LPCAT2 IHC staining was heterogeneous but
discriminated between low- and high-LPCAT2 samples (Fig. 4g).
On the basis of LPCAT2 IHC scoring, we next evaluated relapse-
free survival (RFS) in all patients or in CRC patients who received
neoadjuvant therapy. The RFS rate did not seem to be impacted
by LPCAT2 overexpression in all patients (Fig. 4h, left panel) but
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99th percentiles. P values were determined by the multiple Student t test. ***p< 0.001. d Relative LPCAT2 and PLIN2mRNA expression levels at 0, 2, 6, 24
and 48 h after vehicle, 5-Fu, Oxa or FOX treatments. ACTB was used as a housekeeping gene to calculate ΔCt. The data are expressed as fold changes
calculated with 2-(ΔCt treatment/ΔCt vehicle). The data are the results from three independent experiments. P values were determined by two-way ANOVA
with Bonferroni correction. *p< 0.05, **p< 0.01, ***p< 0.001. Error bars denote s.e.m. e–g LD content at 48 h of chemotherapy treatments in (e) SW620-
Ctl vs SW620-lpcat2 cells; (f) HT29 cells transiently transfected with sineg vs. silpcat2; (g) vehicle (DMSO) vs. TSI-01 (10 µM) co-treatment. Whiskers
denote 1st and 99th percentiles. P values were determined by the multiple Student t test. *p< 0.05, **p< 0.01, ***p< 0.001
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was reduced in metastatic patients who received neoadjuvant
therapy (Fig. 4h, right panel). As a whole, for the first time in
preclinical studies these data show a correlation between LPCAT2
expression, LD production and resistance to chemotherapy.

LPCAT2-induced LD accumulation supports ER homeostasis.
We next explored the impact of LPCAT2 overexpression on key
markers of cell death pathways induced by 5-Fu, Oxa or FOX
treatments. As shown in Fig. 5a, constitutive expression of
LPCAT2 in SW620 cells curtailed chemotherapy-induced

activation of all caspases involved in extrinsic (caspase 8),
intrinsic (caspase 9) and ER stress (caspase-12) pathways and of
enzymes corresponding to the end of the caspase cascade, i.e.,
caspase 3 and poly(ADP-ribose) polymerase (PARP). Since
caspase-12 cleavage/activation was blunted in SW620-lpcat2 cells,
we hypothesised that LPCAT2 overexpression could hence impair
chemotherapy-induced ER stress. A common feature of cells
undergoing ER stress is enlargement of the ER lumen, which can
be monitored by increased ER-tracker probe uptake and
enhanced MFI24. Overexpression of LPCAT2 was associated with
a reduction in ER-tracker MFI upon chemotherapy treatments,
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suggesting an alteration in ER stress pathway induction (Fig. 5b).
This was further reinforced by immunostaining cells with the ER
stress marker protein disulfide isomerase (PDI). Hence, increased
expression of PDI was only found in cells with low LPCAT2
expression, strengthening the notion that overexpression of
LPCAT2 reduces chemotherapy’s capacity to trigger ER stress
(Supplementary Fig. 11). Moreover, analysis of ER stress marker
expression showed that Oxa and FOX treatments activated eif2α
and CHOP in SW620-Ctl, whereas decreased phosphorylation of
eif2α and loss of CHOP induction was found in LPCAT2-
overexpressing cells (Fig. 5c). As well, the combined decrease in
the Bip protein level and CHOP accumulation in SW620-Ctl cells
indicated commitment cell death, and conversely the main-
tenance of Bip expression and loss of CHOP expression argued in
favour of cell death escape in SW620-lpcat2 cells (Fig. 5c).

CRT, a soluble ER Ca2+-binding protein and ER chaperone,
can be translocated from ER to plasma membrane of apoptotic
dying cells generally after ER-stress-induced phosphorylation of
eif2α25. We therefore hypothesised that the weak capacity of
chemotherapy to induce ER stress in high-LD cells might be
associated with an impairment of CRT membrane exposure
(ecto-CRT), probably because of CRT sequestration by LDs.
Combined CRT and LD staining in HT29 cells showed that CRT
was localised in LDs either with or without chemotherapy
(Fig. 6a). To confirm this hypothesis, we isolated LD from SW620
and HT29 cells treated or not treated with FOX and assessed CRT
distribution across fractions. LD fraction purity is generally
controlled by the expression levels of perilipin family members

(PLIN2 notably); however, perilipins have been reported to be
differentially expressed depending on cell types and to have
variable subcellular locations depending on the cell’s metabolic
status26. We first explored the expression profile of perilipins in
CRC cell lines and showed that PLIN2 was the major perilipin
present in SW620 cells, whereas HT29 cells expressed more
PLIN3, 4 and 5; however, no PLIN1 protein expression was
detected in all cell lines (Supplementary Fig. 12a and b). Hence,
PLIN2, 3, 4 and 5 were used as LD markers in fractionation
experiments, and fraction purity was further confirmed by TG
quantification (Supplementary Fig. 13). As shown in Fig. 6b, an
enrichment of CRT in the LD fraction was only seen in FOX-
treated HT29 cells. Remarkably, LPCAT2 overexpression in
SW620 cells triggered a strong decrease in ecto-CRT (Fig. 6c) and
inhibition of LPCAT2 activity in HT29 cells weakly but
significantly potentiated FOX-induced plasma membrane CRT
expression (Supplementary Fig. 14a).

Inhibition of LD biogenesis reverses the resistance phenotype.
Since LD expansion occurs when excess lipids are esterified into
TGs and requires additional phospholipid production to coat the
enlarging surface9, we used triacsin C, a long-chain fatty acyl CoA
synthetase inhibitor27, to counteract neutral lipid and phospho-
lipid synthesis and subsequently LD biogenesis. As expected,
triacsin C remarkably curtailed the accumulation of LD induced
by anticancer drugs (Fig. 7a and Supplementary Fig. 14b). This
collapse in LD production allowed the reversion of high-LD
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HT29 cell resistance to chemotherapy (Fig. 7b), which was related
to ER-stress pathway activation (Fig. 7c) and to substantial
increases in the proportion of cells with low-LD content
(PLIN2low) and high CRT membrane exposure (CRThigh)
(Fig. 7d). Additionally, triacsin C also remarkably increased 5-
Fu’s capacity to promote CRT translocation (Supplementary
Fig. 14c). The data, thus, suggest that expression of ecto-CRT was
dependent on chemotherapy’s capacity to induce LD accumula-
tion. To confirm that, we tested the capacity of the well-known
ecto-CRT inducer mitoxantrone28 to accumulate LD. We found
that at the same cytotoxic concentration as 5-Fu or Oxa (Sup-
plementary Fig. 14d), mitoxantrone did not significantly impact
LD accumulation in SW620 cells, which correlated with the
induction of a large proportion of cells harbouring ecto-CRT.
Besides, in HT29 cells, mitoxantrone-induced LD accumulation
resulted in less CRT membrane exposure (Supplementary Fig. 14e
and f). Reversion of the chemoresistance phenotype through the
modulation of LD biogenesis was further reinforced in vivo in
mice. CT26-Ctl and CT26-lpcat2 tumour-bearing balb/c mice
were injected intraperitoneally with triacsin C the day before FOX
injection. We observed that triacsin C drastically enhanced the

antitumoural effects of FOX on CT26-lpcat2 tumour-bearing
mice and improved their survival (Fig. 8a and b, right panels),
although it did not impact FOX potential in CT26-Ctl tumour-
bearing mice groups (Fig. 8a, b, left panels). We also found that
the antitumoural effect of FOX was completely lost in immuno-
deficient mice bearing CT26-Ctl tumours (Fig. 8c, d, left panels)
and that triacsin C’s capacity to potentiate chemotherapy was
abrogated in immunodeficient mice bearing CT26-lpcat2
tumours (Fig. 8c, d, right panels), suggesting that the immune
system plays a crucial role.

Collectively, the data underline the intimate relationship
existing between LD biogenesis, modulation of ER stress-
mediated CRT exposure, immune surveillance and tumour
progression despite a chemotherapy regimen.

LD-induced CRT sequestration curtails tumour immunogeni-
city. Cell-surface exposure of CRT on dying tumour cells was
reported to support the early events of ICD, a mechanism that
can be triggered by chemotherapeutic drugs, although not all,
which contributes to efficient tumour recognition and elimination
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by the immune system28,29. Given that CRT exposure was
hampered by LPCAT2-mediated LD accumulation, we hypothe-
sised that immunogenicity of high-LD dying CRC cells could be
impaired and contribute to chemoresistance. Hence, the capacity
of CRC cells overexpressing LPCAT2 to induce ICD in vivo was
assessed in vaccination experiments according to the guidelines of
Kepp et al30. Mice were subcutaneously vaccinated with PBS
(negative control), CT26-Ctl cells treated with mitoxantrone (an
ICD inducer used as a positive control), FOX-treated CT26-Ctl or
FOX-treated CT26-lpcat2 cells and challenged 1 week after the
first injections with CT26-Ctl cells whose growth had been
monitored. About 50% of the mice were vaccinated by injection
of mitoxantrone or FOX-treated CT26-Ctl cells, while no mice
were vaccinated with CT26-lpcat2 cells treated with FOX
(Fig. 9a). In the setting of growing FOX-treated tumours, we
further evaluated changes in the composition of tumour immune
infiltrate. We notably focused on CD3+CD8+ T-cell infiltrate,
which was shown to predict positive therapeutic response after
chemotherapy31,32. As expected, CT26-Ctl tumour-bearing mice
treated with FOX presented more CD8+ tumour infiltration
1 week after FOX injection compared to untreated mice, but FOX
treatment failed to increase CD8+ T-cell infiltration in CT26-
lpcat2 tumour grafts (Fig. 9b, upper panel). These results
prompted us to assess the activation/exhaustion status of

infiltrated CD8+ T cells. We analysed the frequency of CD8+

T cells expressing both programmed cell death-1 (PD-1) and T-
cell immunoglobulin and mucin-domain containing-3 (Tim-3),
two markers of T-cell activation/exhaustion33 (Supplementary
Fig. 15d). The FOX regimen induced TIM3+ PD1+ subpopulation
accumulation in control grafts as compared to LPCAT2-
overexpressing grafts, thus suggesting that chemotherapy only
activates a CD8+ immune response in control tumours (Fig. 9b,
lower panel). This was reinforced by the fact that FOX could
only stimulate IFN-γ production in CT26-Ctl grafts (Fig. 9c).
To consolidate the role of LPCAT2 overexpression/LD produc-
tion on CD8+ T-cell exhaustion, LPCAT2 and CD8 IHC staining
was performed on liver metastasis samples from CRC patients.
IHC analysis showed that LPCAT2 overexpression was associated
with weak CD8+ T-cell infiltration only at the metastatic site
(Fig. 9d).

Collectively, these data highlight a yet undescribed direct role
of LD accumulation in CRC cell chemoresistance and suggest a
new model in which the LPCAT2 expression profile could
discriminate between responsive and resistant tumour cells. In
this model, the high-LPCAT2 cancer cell phenotype under
anticancer agent treatments such as the FOX regimen, produces
more LDs to maintain ER homeostasis, sequester CRT and impair
ICD (Fig. 10).
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Discussion
Despite an increasing number of reports highlighting the role of
LD accumulation in tumour progression and cancer aggressive-
ness5,7,16, few studies have investigated the role of these intra-
cellular lipid bodies in tumour resistance to chemotherapy, which
is a major obstacle for treatment success in cancer patients.
Indeed, LD accumulation was found to accumulate in some drug-
resistant cell lines34–37. However, no direct links or full com-
prehensive mechanisms have been provided so far. It therefore
seemed pertinent to better understand the significance of LD
accumulation in the context of chemotherapeutic treatments in
colorectal cancer (CRC). Herein, for the first time through inte-
grated approaches, we provide a mechanism linking LD accu-
mulation and resistance to conventional CRC chemotherapies
such as FOX, involving the acyltransferase LPCAT2.

In agreement with altered phosphatidylcholine (PC) metabo-
lism in many types of cancer including CRC, overexpression of
key enzymes of PC metabolism/remodelling, particularly CKα
and LPCAT1, were found to correlate with cancer progression.
LPCAT2 was recently associated with prostate cancer aggres-
siveness38–42. Interestingly, these enzymes participate, at different
levels, in the regulation of LD formation, notably the Lands cycle
acyltransferases LPCAT1 and LPCAT2, which play a key role in
LD membrane synthesis and expansion through PC biosynth-
esis8,10,19,43. We showed that only LPCAT2 was correlated with
basal LD content in CRC cell lines and supported LD formation,
as evidenced by manipulation of LPCAT2 expression levels and
enzymatic activity in high- and low-LD CRC cells. Our data from
co-localisation/LD isolation experiments also confirmed the
location of LPCAT2 in the LD monolayer in LD-rich cells11. The
apparent LPCAT2 self-sufficiency in basal LD production could
be explained by the fact that the Lands cycle can be fuelled with
acyl-CoA and lysophosphatidylcholine (LPC) by the activities of

ACSL3 and PLA2 enzymes, respectively44, and that LD-localised
PC production over LD is crucial to prevent LD coalescence10. In
addition, LD expansion supported by TG production could be
sustained by phospholipid synthesis to avoid an imbalanced
volume-to-surface ratio of droplets. In our models, DGAT2, an
end enzyme of the glycerol 3-phosphate pathway contributing to
TG synthesis, did not seem involved in basal LD production,
while LPCAT2-overexpressing cells accumulated TG during
chemotherapy. These data suggest a possible alternative route
supporting TG and LPC production, potentially through PC and
diacylglycerol (DG) transacylations, as already evidenced in
plants (through the phospholipid:diacylglycerol acyltransferase
(PDAT) enzyme) and yeast (through the lrop 1 enzyme)44, or
may reflect modifications in the lipid neutral core composition
such as a TG to the cholesterol-ester switch or modifications in
TG fatty-acyl composition, since moderate potentiation of FOX-
induced cell death was observed when supplying cells with oleic
acid. Future studies that characterise LD content under che-
motherapy may help clarify these disparities45. Likewise, LPCAT2
and PLIN2 also supported LD formation upon FOX and mainly
5-Fu treatments, both in low-(SW620) and high-LD HT29 cells,
although not to the same extent. These results indicate that each
CRC cell line had different capacity in producing LD and in
accumulating LD. It was also quite surprising not to have found a
correlation between LPCAT2-dependent LD production and
CRC cell growth since it was shown that LD production supports
cell proliferation12,16,35. Nevertheless, we observed that neither
cell line had the same proliferative capacity and that LD content
tended to decrease during the cell’s proliferative phase, suggesting
a possible use of LD for cell division. In addition, lipid accu-
mulation has been recognised as a preventive mechanism of lipid
storage in case of nutrient stress so as to supply cells with suffi-
cient energy for their survival through lipid β-oxidation5,46,47.
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Fig. 8 Inhibition of LD production promotes tumour regression. a Twelve-week-old female balb/c mice (n= 32) bearing CT26-Ctl or CT26-lpcat2 tumours
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Fig. 9 LPCAT2-induced LD accumulation prevents ICD. a Vaccination experiments: upper panel, percentage over time of tumour-free mice for each group.
Lower panel, growth curves over time of setting tumours (n= 9 of 8-week-old female balb/c mice per group). Values are mean± s.e.m. P values
were determined by two-way ANOVA with Bonferroni correction. *p< 0.05, **p< 0.01, ***p< 0.001. b CT26-lpcat2 (n= 20) and CT26-Ctl (n= 20)
tumour-bearing 8-week-old female balb/c mice were subdivided into two groups (n= 10 per group) and intraperitoneally injected with vehicle or FOX.
Tumour grafts were immunostained for CD3+CD8+ T-cell-subtype identification and PD-1 and Tim-3 subpopulation phenotyping. Fold change of the
number of CD8+ T cells and percentage of sub-populations among CD8+ cells were calculated for each condition according to their respective untreated
group. P values were determined by the multiple Student t test. *p< 0.05, **p< 0.01, ***p< 0.001. The data represent medians with interquartile ranges.
c Supernatants of dissociated tumours described in b) were assayed by ELISA for IFN-γ secretion. P values were determined by two-way ANOVA with
Bonferroni correction. *p< 0.05, **p< 0.01, ***p< 0.001. Error bars denote s.e.m. d Histological LPCAT2 and CD8 immunostainings performed on hepatic
metastasis samples from 56 CRC patients. Absolute quantification of CD8+ T cells in the metastatic, peri-metastatic, invasion and total site was performed
and compared between groups with low and high-LPCAT2 expression/scoring. Comparisons were made for all CRC patients (n= 56) and for patients who
received neoadjuvant chemotherapy (n= 32). P values were determined by Mann–Whitney U test. *p< 0.05
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A possible explanation for these observations, not addressed in
this study, is that LD lipolysis may be more prominent in highly
proliferating cells or that cells may utilise other lipid/nutrient
sources to sustain proliferation, while LDs are allocated to other
functions in high-LD cells. Relocation of PLIN2, PLIN5 and
PLIN3 to the LD fraction in high-LD cells during FOX treatment,
could argue in favour of LD protection against lipophagy and
lipolysis, by the inhibition of lipase activities such as ATGL48.

As evidenced by others18,35,47, we found great heterogeneity in
LD density within the same cell line, in particular in HT29 cells,
both at resting and under chemotherapy treatments, which
underlines the possible role of LD accumulation in fuelling the
surrounding cells with lipids and in limiting genotoxic stress.
Indeed, it was suggested that high-LD cells within a same
population may contribute to the sequestration of damaging
molecules such as reactive oxygen species (ROS) or lipid per-
oxides, and may thus protect whole cell populations from cyto-
toxic stress5,15,46,49.

According to the central role of caspase-12 in cell death-
mediated activation of the ER stress pathway through the
unfolded-protein response (UPR)50 and to the recently described
role of PLIN2-induced LD accumulation in maintaining ER
homeostasis5, we found that the chemotherapy-induced ER stress
pathway was profoundly impaired in high-LD HT29 cells.
Maintenance of ER homeostasis in high-LD cells could be
explained by a higher capacity of these cells to handle ROS/
lipotoxicity injuries or to limit excessive ER Ca2+ release and
subsequent ER stress-mediated activation of caspase-12 and
initiation of cell death51,52. Hence, disruption of LD homeostasis
may also contribute to both cell phenotypes, which would deserve
further investigation. Nevertheless, chemotherapy-induced
LPCAT2/LD accumulation appeared critical for CRC cells’
response to treatment. Indeed, increases in LD density triggered
by anticancer drugs were associated in vitro with cell survival and
inhibition of caspase activation and, in vivo, by enhanced tumour
progression. Consequently, LD directly supports resistance and
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LPCAT2 overexpression emphasises LD production in these
phenotypes.

Maintenance of ER integrity and impairment of
chemotherapy-induced cell death both contribute to limiting
danger-associated molecular pattern (DAMP) exposure. We thus
showed in cells with high-LD content and high-LPCAT2
expression, that plasma membrane CRT exposure, which is an
early event of ICD, was impaired due to 1) the incapacity of cells
to induce a sustained UPR, especially through the phosphoryla-
tion of eif2α25,53; 2) the translocation of CRT from ER to LD
instead of Golgi to membrane translocation54, which confirmed
the work of Turro et al. demonstrating the presence of CRT in the
LD fraction by mass spectrometry55. Panaretakis and colleagues
have shown that caspase 8 is essential for CRT exposure, which
supports the fact that LPCAT2 overexpressing cells with a partial
loss of caspase 8 proform expose three to four times less CRT to
plasma membrane54.

Impairment of CRT membrane exposure is associated with the
incapacity of dendritic cells (DCs) to recognise the “eat me” signal
of dying tumour cells that are required for phagocytosis and
antigen uptake, leading to DC maturation and cross-priming of
CD8+ T cells. This activation transduces signals for infiltrated-
CD8+ T lymphocytes to migrate to the tumour site and produce
cytotoxic cytokines such as IFN-γ28,29,56. We show herein for the
first time that overexpression of LPCAT2 turns CRC cells into
non-immunogenic ones after FOX treatment, which was sup-
ported by a decrease in activated IFN-γ producing-CD8+ T-cell
infiltration in vivo in mice. Moreover, the fact that tumour
growth was potentiated by LPCAT2 overexpression in basal
conditions strengthened the role for immune tumour micro-
environment modulation in tumour expansion. This is further
reinforced by previous studies showing that COX-2 is located in
LDs and contributes to PGE2 production in CRC cells16, which
could provide an inflammatory environment leading to immu-
nosuppressive mechanisms57. More importantly, discrimination
between high- and low-LPCAT2 patients confirmed a differential
response to treatment and impact on the survival rate, potentially
through the modulation of CD8+ T-cell infiltration. Altogether,
these data provide the first evidence that LPCAT2 IHC scoring or
analysis of tissue LD content by Raman spectroscopy, for
instance, could be used as potential prognostic factors for early
stages of CRC, as well as potential predictive factors of the
patient’s response to conventional neoadjuvant therapies or to the
more recently described immunotherapies in advanced
stages58,59. Moreover, further studies in larger patient cohorts
would be required to fully assess the prognostic and predictive
value of LPCAT2/LD considering tumour genetics.

Methods
Cell culture and viability assays. Human colorectal cancer cell lines SW620,
LoVo, Hct116, Hct8, SW480, HT29 and murine colorectal cancer CT26 were
obtained from the American Type Culture Collection. Cells were maintained in a
5% CO2 humidified atmosphere at 37 °C and cultured in DMEM or RPMI-1640
supplemented with 10% FBS (Dutscher). Cells were routinely tested for myco-
plasma contamination using the Mycoalert Mycoplasma Detection Kit (Lonza).

Treatments were carried out for 6, 16, 24, 48 or 72 h with 10 µM of 5-
fluorouracil (Sigma Aldrich), oxaliplatin (Accord Healthcare Limited), triacsin C
(Cayman Chemical) LPCAT2 inhibitor: TSI-01 (Cayman Chemical), DGAT2
inhibitor: PF-06424439 (Sigma Aldrich), or oleic acid (Sigma Aldrich). Cell
viability was determined using the annexin V-FITC and 7-aminoactinomycin D
(7AAD) staining from BD Biosciences according to the manufacturer’s
instructions. The inhibitory concentrations 50% (IC50) were assessed by crystal
violet staining after 48 h of treatment. IC50 values were calculated by a four-
parameter non-linear regression with SigmaPlot version 6 software (Systat
software, Inc.).

Animal studies. Female balb/c or NMRI-Nude mice about 6 to 12 weeks old were
purchased from Janvier Labs. All mice were housed and maintained in a designated
pathogen-free area accredited by the Federation of Laboratory Animal Science

Associations (FELASA) in accordance with the University of Burgundy Animal
Experimental Ethics Committee guidelines.

To induce tumour formation, 4×105 CT26-Ctl or CT26-lpcat2 or CT26
transduced with scrambled shRNA or shLpcat2#2 or #4 in RPMI were injected
subcutaneously into the left flank of 8- or 12-week-old female balb/c or NMRI-
Nude mice. Tumour size was monitored three times a week by caliper
measurements of the widest diameter and the narrowest diameter. Time of death
was considered when mice reached experimental endpoints related to graft size,
animal weight and general behaviour. For all animal studies, eight to ten mice per
group were used. After tumours reached 50 mm2, animals were randomised
according to tumour size before any treatment to ensure group homogeneity. All
animals were included in the analyses. After randomisation, depending on the
groups, mice received an intra-peritoneal injection of glucose 2.5% or FOX (50 mg/
kg of 5-fluorouracil and 6 mg/kg of oxaliplatin, Accord Healthcare Limited) once a
week for 3 weeks. For combination experiments, 2 mg/kg of triacsin C (Cayman
Chemical; resuspended in DMSO: PBS 1 × 1:2) or corresponding vehicle was
injected the day before FOX injection.

Vaccination experiments. CT26-Ctl or CT26-lpcat2 cells were treated for 6 h with
a combination of 5-fluorouracil and oxaliplatin (20 µM each). Positive control
consisted in CT26-Ctl cells treated with 1 µM of mitoxantrone for 6 h. Sixteen
hours after treatments, PBS (negative control) or cells (5×105 cells) were injected
subcutaneously into the right flank of 8-week-old female balb/c mice. 6 days later,
untreated CT26-Ctl cells (5×105 cells) were implanted subcutaneously in the left
flank of mice. Tumour setting and tumour growth were monitored three times a
week.

Patient samples. Hepatic metastasis samples from colorectal cancer patients were
obtained from the Georges François Leclerc Cancer Centre (Dijon, France). All
patients gave informed consent approved by the local Ethics Committee of the
Georges François Leclerc Centre. Review of the pathology reports confirmed the
diagnosis. All patients comprised 79 paraffin formalin-fixed paraffin-embedded
slides. The treated group comprised patients who received neoadjuvant che-
motherapy. All slides were used for relapse-free survival analysis. Fifty-six slides
were used for immunohistochemistry CD8/LPCAT2 comparison. The clinical and
pathological characteristics of patients are presented in Supplementary Table 2.

Plasmids, retrovirus, lentivirus production and viral transduction. Retroviral
vectors pCMV6 expressing human LPCAT2 (h-LPCAT2; NM_017839) and murine
Lpcat2(m-Lpcat2; NM_173014) were obtained from Origen. Retroviruses were
produced by transfecting Phoenix-AMPHO cells (ATCC; CRL-3213) with the
indicated expression plasmids using the JetPEI reagent according to the manu-
facturer’s instructions (Polyplus). Viruses were collected 48 and 72 h after trans-
fection. SW620 cells for human LPCAT2 expression or CT26 cells for murine
LPCAT2 overexpression were then incubated with virus-containing medium and 8
µg/mL polybrene (Merck Millipore) for 4 h. After 48 h of recovery in fresh med-
ium, transduced cells were selected with Neomycin (Sigma Aldrich).

Four unique 29mer shRNA constructs in lentiviral GFP vector were obtained
from Origen with the following sequences: shLpcat2#1: 5′-
TTCGTCCAGCAGACTACGATCAGTGCCTC-3′; shLpcat2#2:
5′-ACCTGGCAAGGCTATACATTCCTCCAGCT-3′; shLpcat2#3:
5′-CTGTCAACTCTTCACGAAGGTGGAGATTG-3′; sh
Lpcat2#4: 5′-GCTTCTCTTGGAGTGCCTGACCTTAATGT-3′. Lentiviruses were
produced by transfecting 293T cells with pGFP-C-shlenti Lpcat2 or with a scrambled
negative control containing a non-effective shRNA cassette associated with a pCMV-
VSV-G expression vector and a psPAX2 vector, using the jetPEI reagent according to
the manufacturer’s instructions (Polyplus). Viruses were harvested 48 and 72 h after
transfection. CT26 cells were then incubated with virus-containing medium and
8 µg/mL polybrene (Merck Millipore) for 4 h. After 48 h of recovery in fresh
medium, transduced cells were selected with puromycin (Sigma Aldrich).

Transient transfection. For small-interfering RNA (siRNA)-mediated knockdown
of the LPCAT2, PLIN2 and EPAS1 (gene encoding HIF2α protein), the cells were
reverse-transfected with 10 nM of either the targeting siRNA Silencer® Select or
negative control siRNA (Ambion) using Lipofectamine RNAiMax as the trans-
fection reagent (Invitrogen) for 24 h. Fresh or chemotherapy-containing media
were then added to cells for 48 or 72 h before subsequent analysis. The sequence of
siRNA targeting human LPCAT2, PLIN2 and EPAS1 are as follows: LPCAT2 sense
5′-CAACAUACCUAGACCUCCAtt-3′; antisense 5′-UGGAGGUCUAGGUAU-
GUUGta-3′; PLIN2 sense 5′-GGGUUAAAGAAGCUAAGCAtt-3′; antisense 5′-
UGCUUAGCUUCUUUAACCCtg-3′; EPAS1 sense 5′-CACCUACUGUGAUGA-
CAGAtt -3′; antisense 5′-UCUGUCAUCACAGUAGGUGaa -3′.

RNA extraction and quantitative PCR analysis. Total cellular RNA was extracted
with TRIzol® RNA Isolation Reagent (Ambion). RNA (300 ng) was reverse-
transcribed into cDNA using M-MLV reverse transcriptase, random primers and
RNAseOUT inhibitor (Invitrogen). cDNA was quantified by real-time PCR with
the Power SYBR Green PCR Master mix (Applied Biosystems; Warrington, UK) on
a 7500 Fast Real-Time PCR detection system (Applied Biosystems). Relative
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mRNA levels were determined by the ΔΔCt method and normalised to the
expression levels of human or mouse Actb. The primer sequences used are listed in
Supplementary Table 3.

Quantitative analysis of PC and LPC species by HPLC-MS/MS. Total lipids
were extracted from cells according to the Folch method60. The 19:0 lysopho-
sphatidylcholine (LPC, 10 ng) and 21:0/21:0 phosphatidylcholine (PC, 1 µg)
(Avanti Polar Lipids) were used as internal standards. The organic phase was
collected and dried under vacuum. Dried lipids were further solubilised in a
CHCl3/MeOH/H2O (60/40/4.5) mixture before quantitative analysis of phospho-
lipids by liquid chromatography coupled with tandem mass spectrometry (LC-MS/
MS). Phospholipids were analysed on a Zorbax RX-Sil C18 100 × 2.1 mm, 1.8-μm
column (Agilent Technologies) connected to a 1200 HPLC (Agilent Technologies)
using a binary gradient of solvent A (10 mM ammonium acetate and 1 mM
acetylacetone in water/methanol 60:40) and B (10 mM ammonium acetate and 1
mM acetylacetone in isopropanol/methanol 90:10). Positive electrospray ionisation
mass spectrometry (ESI-MS) was performed on a QQQ 6460 mass spectrometer
(Agilent Technologies) in the precursor ion mode (product ion m/z 184). Precursor
ions are listed in Supplementary Table 1.

Chromatograms were analysed with the Agilent MassHunter Workstation
software. Concentrations of PC and LPC species were determined from the ratio of
the peak area of a given species to the peak area of the internal standard.
Concentrations were expressed in pmoles per microgram of proteins (pmoles/µg).

Triglyceride quantification. Cells were washed with ice-cold PBS and the lipids
were extracted by an overnight incubation with isopropanol. After an additional
wash with isopropanol, lipid extracts were sequentially washed with toluene and
chloroform, drying the samples between each solvent step. The lipids were sub-
sequently dissolved with 1% Triton X-100 in chloroform before drying the solvent.
Finally, the lipid-Triton mixtures were dissolved in water at 55 °C for 1 h before
being cooled to room temperature. Triglyceride levels were measured enzymatically
with a commercially available kit (Diasys, Holzheim, Germany). For protein
measurements, a 0.1 M NaOH solution containing 1% SDS was added to the wells
of the culture plates after lipid extraction and the plates were incubated for 2 h at
room temperature. After an additional wash with 0.1 M NaOH/1% SDS, the
samples were sonicated before protein measurement using a BCA assay. Cellular
TG content was finally expressed as milligrams or micrograms of TG per milligram
of total proteins.

Lipid droplet isolation. Confluent monolayers of cells were collected and dis-
rupted by homogenisation in TNE buffer (20 mM Tris-HCl, 130 mM NaCl, 5 mM
EDTA; pH 8) using a Dounce type glass-Teflon homogeniser. After protein
quantification, lysates containing equal proportions of proteins from each cell line
were then mixed with TNE buffer containing 1 M sucrose (1:1 ratio) and cen-
trifuged 10 min at 1000 × g at 4 °C. The post-nuclear supernatant (PNS) was
transferred to a 15-mL ultracentrifuge tube (Beckman Coulter). Then 3.0 mL of
sucrose 0.25M, 3.0 mL of sucrose 0.125 M and TNE buffer were layered sequen-
tially. The step-wise gradient was centrifuged at 28,000 rpm, at 4 °C, for 2 h using
the SW41 rotor (Beckman Coulter). The top of the gradient corresponding to the
LD fraction was collected with a Pasteur pipette. The middle, corresponding to the
cytosolic fraction, and the pellet, corresponding to the total membrane fraction,
were collected. The LD fraction was washed with TNE pH 11. LD and cytosolic
fraction proteins were extracted and precipitated with MeOH/CHCl3. Each fraction
was then mixed with RIPA buffer for protein quantification.

Transmission electron microscopy. Cells were fixed with 4% glutaraldehyde,
2.5% paraformaldehyde in 0.1 M Sorensen phosphate buffer, pH 7.4, 1 h at room
temperature. After subsequent buffer washes, the cells were included in agarose 3%
and postfixed in 2.0% osmium tetroxide for 1 h at room temperature and then
washed again in buffer followed by distilled water. After dehydration through
graded ethanol series, the tissue was infiltrated and embedded in EMbed-812 resin
(Electron Microscopy Sciences). Thin sections were examined with a Hitachi 75000
electron microscope.

Immunohistochemistry. Four-micrometre slices were cut from formalin-fixed
paraffin-embedded samples. Wax was automatically removed using a Leica
Autostainer (Nussloch) and then stained with CD8 antibody or LPCAT2 antibody
(Supplementary Table 4) at 1:200 using a Ventana Benchmark (Tucson). Absolute
quantification of CD8-positive cells was carried out with Tissue Studio 4.0 software
(Definiens). Briefly, after numeration using the Nanozoomer 2.0 HT and NDP scan
software (Hamamatsu), the slides were processed and analysed in tumour areas
manually defined by the pathologist for each sample. Paracancerous sections of
human thyroid samples were used as a positive control for LPCAT2 expression and
staining (www.proteinatlas.org/ENSG00000087253-LPCAT2/tissue). Of the 79
hepatic metastasis samples from CRC patients, a double-blinded scoring of staining
intensity was performed to discriminate between samples with high and low
LPCAT2 expression.

Nile red/ER tracker staining. Live cells seeded on cover glasses were incubated
with Nile red (Molecular Probes) at 1:2000 in PBS for 15 min or with 1 μM ER
Tracker (Molecular Probes) in DMEM for 30 min at 37 °C and then fixed in 4%
PFA for 10 min at 4 °C. The slides were mounted in ProLong Gold Antifade with
DAPI (Molecular Probes) before imaging. Images were acquired with an Axio
Imager M2 (Zeiss) coupled with an Apotome.2 (×63 or ×40 objective) and analysed
with ImageJ and Icy software programmes.

Immunofluorescence staining. For double staining of LPCAT2/CRT and Bodipy
493/503, cells were fixed in 4% PFA for 10 min at 4 °C and permeabilised with PBS
1% BSA 0.2% saponin for 30 min. Cells were then incubated with LPCAT2 or CRT
antibody (Supplementary Table 4) at 1:250 overnight at 4 °C. Secondary Alexa
Fluor 568 goat anti-mouse or anti-rabbit (Molecular Probes) was used at 1:1000
with BODIPY 493/503 at 1:2000 for 45 min at room temperature. For PDI staining,
cells were fixed and permeabilised with glacial methanol for 10 min on ice. After 10
min of saturation at room temperature with saturation buffer (PBS 1×, 1% BSA and
0.2% Triton X-100), cells were then incubated with PDI antibody (Supplementary
Table 4) in saturation buffer for 1 h at 4 °C. After intracellular staining, cells were
incubated with a mix of goat anti-mouse Alexa Fluor 488 antibody (1:1000) in
saturation buffer for 45 min at room temperature. Isotype-matched IgG antibodies
were used as a control. Slides were mounted in ProLong Gold Antifade with DAPI
before imaging. Images were analysed with Image J and Icy software.

BODIPY 493/503. Cells were incubated with BODIPY 493/503 (Molecular
Probes) at 1:2000 and NucBlue® (Molecular Probes) in PBS for 15 min at room
temperature. Cells were fixed in 4% PFA for 10 min at 4 °C, washed once in PBS
and analysed by flow cytometry on a BD LSR-II cytometer equipped with BD
FACSDiva software (BD Biosciences) and the data were analysed using FlowJo
software (Tree Star, Ashland, OR, USA). Gating strategies are presented in Sup-
plementary Fig. 10.

Immunostaining analysis by flow cytometry. All flow cytometry experiments
were conducted on a BD LSR-II cytometer equipped with BD FACSDiva software
(BD Biosciences) and data were analysed using FlowJo software (Tree Star, Ash-
land, OR, USA). Gating strategies are presented in Supplementary Fig. 10.

For Ki67 staining cells were fixed and permeabilised with the glacial methanol
for 10 min on ice. After 10 min of saturation at room temperature with saturation
buffer (PBS 1×, 1% BSA and 0.2% Triton X-100), cells were then incubated with
Ki67 antibody (Supplementary Table 4) in saturation buffer for 1 h at 4 °C. After
intracellular staining, cells were incubated with a mix of goat anti-mouse Alexa
Fluor 488 antibody (1:1000) and NucBlue® (2 drops/mL of solution) in saturation
buffer for 45 min at room temperature. For CRT staining, cells were incubated 1 h
at 4 °C with CRT antibody (Supplementary Table 4) for cell surface staining and
then incubated for 45 min at room temperature with a solution of anti-mouse
Alexa Fluor 488 (1:1000) and NucBlue® (2 drops/mL of solution) (Thermo Fisher
Scientific). For PLIN2/CRT double staining, after incubation with CRT antibody
and extensive washings, cells were fixed and permeabilised with intracellular
fixation and permeabilisation buffer (eBiosciences). Then cells were incubated with
PLIN2 antibody (Supplementary Table 4) for 1 h at 4 °C. After intracellular
staining, cells were incubated with a mix of goat anti-rabbit-Alexa Fluor 568, goat
anti-mouse Alexa Fluor 488 (1:1000 each) and NucBlue® for 45 min at room
temperature. Isotype-matched IgG antibodies were used as a control and
fluorescence intensity of stained cells was gated on live cells.

Isolation and analysis of tumour-infiltrating CD8+ T cells. Eight-week-old
female balb/c mice bearing CT26-lpcat2 or CT26-Ctl tumours were subdivided into
two groups and intraperitoneally injected with vehicle or FOX. One week after
injection, allograft tumours were dissociated in RPMI with the gentleMACSTM

Dissociator (Myltenyi Biotec) according to the manufacturer’s protocol. Lysates
were centrifuged and cells were stained with an antibody cocktail containing anti-
CD45, CD3, CD8, PD-1 and Tim-3 antibodies (Supplementary Table 4) for 1 h at
4 °C. After surface staining, 100 µL of red blood cell lysis solution (BD Biosciences)
was added for 10 min. Cells were centrifuged (400 × g, 5 min), resuspended in flow
cytometry buffer (eBiosciences), transferred into TrucountTM Tubes (BD Bios-
ciences) and then analysed on a BD LSR-II cytometer. The gating strategy is
described in Supplementary Fig. 10.

ELISA. After tumour dissociation supernatants were assayed by ELISA for mouse
IFN-γ secretion (BD Biosciences), according to the manufacturer’s protocol.

Western blot analysis. Cells were lysed in RIPA buffer (50 mM Tris, 150 mM
NaCl, 0.5% NaDeoxycholate, 1% NP40, 2 mM EDTA, 50 mM NaF, 100 µM PMSF;
pH 8) containing complete ultra-protease/phosphatase inhibitor (Roche). Proteins
were resolved by SDS-PAGE and transferred to nitrocellulose membranes
(Amersham). Blots were then saturated in 5% milk (1 h at room temperature)
before overnight incubation at 4 °C with specific primary antibodies (Supple-
mentary Table 4). All primary antibodies were diluted at 1:1000 in 5% w/v non-fat
milk or 5% BSA. Primary antibodies were detected using horseradish peroxidase
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(HRP)-conjugated appropriate secondary antibodies (Cell Signaling Technologies)
followed by exposure to ECL (Santa Cruz Biotechnology). A signal was acquired
with a ChemiDocTM XRS + imaging system (Biorad) and blots were analysed with
Image LabTM software 5.1.2 (Biorad, France). Uncropped blots of the main figures
are presented in Supplementary Fig. 11.

Statistical analysis. Statistical analysis was conducted using Prism software 6
(GraphPad Software). For the analysis of the experimental data, continuous data
were compared using the Mann–Whitney U test, multiple Student t tests or two-
way ANOVA as appropriate, after having checked data for normal distribution and
variance homogeneity. All p values are two-tailed; p values <0.05 were considered
significant (*p< 0.05, **p< 0.01 and ***p < 0.001). The data are represented as
mean± s.e.m. or the median with 10 and 90 percentiles. Animal experiments were
not blinded. As regards clinical data, patient characteristics were examined using
Mann–Whitney tests for continuous variables. All patients were followed-up until
death or the end of data recording. Recurrence-free survival (RFS) was calculated
from the date of diagnosis until the date of relapse (local or metastatic). Alive or
deceased patients without relapse were censored at the last follow-up. RFS prob-
abilities were estimated by the Kaplan–Meier method and were compared with the
log-rank test. Analyses were performed using the MedCalc statistical software
package.

Data availability. The authors declare that all the data supporting the findings of
this study are available within the article and its supplementary information files or
from the corresponding authors upon reasonable request.
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