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Supplemental Material: Data preprocessing 

The SYNTH, HMP, MARINE, and SOIL datasets were pre-processed to remove adaptors and trim low-

quality segments of the reads. We used cutadapt software v 1.9.1 (Martin 2011), trimming bases with 

PHRED quality < 20 from 3’ end (parameter -q 20). Adaptor sequences were identified for each dataset 

individually, using FastQC v0.11.3 and manual reads inspection: 

 

SYNTH: -q 20 -a GAACTCCAGTCACTGACCAATCTCGTATGCCGTCTTCTGCTTG -A 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

 

HMP: -q 20 -a AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTG –a 

CGGTTCAGCAGGAATGCCGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTG -A 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT -A 

CGGCATTCCTGCTGAACCGAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 

 

MARINE: -q 20 -a AGATCGGAAGAGCACACGTCT -A AGATCGGAAGAGCGTCGTGTA 

 

SOIL: -q 20 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCACACTTGAATCTCGTATGCCGTCTTCTGCTTG -A 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT 
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Supplemental Material: Modifying the decision rule in exSPAnder for metagenomic data  

The decision rule in exSPAnder uses a binary support function, Support(e, e’, D), that reflects whether the 

read-pairs connecting edges e and e’ support the conjecture that e’ follows e at the distance D in the 

genome. As described in Prjibelski et al. (2014) and Vasilinetc et al. (2015), exSPAnder automatically 

adjusts its support function to the characteristics of a particular dataset (e.g. average depth of coverage in 

the case of isolate sequencing). However, since the support function was not adjusted to the local 

coverage depth, exSPAnder applied the same parameters to regions from both abundant and rare bacterial 

species, leading to suboptimal and error-prone metagenomic assemblies. metaSPAdes modifies the 

support function to take into account the read coverage localCov of the specific genomic region that is 

being reconstructed during the path extension process.  

After localCov is computed (see section “Repeat resolution with exSPAnder” for details), 

metaSPAdes computes the following values based on the empirically estimated distribution of the insert 

sizes (see Prjibelski et al. (2014) and Vasilinetc et al. (2015) for details):  

• ExpectedReadPairslocalCov(e, e’, D): the expected number of read-pairs connecting edges e and e’ 

separated in the genome by distance D, under the assumption that the coverage is uniform with 

the average value localCov. Given the distribution of insert sizes and localCov, the value 

ExpectedReadPairslocalCov(e, e’, D) is defined by the lengths of edges e and e’ and distance D. 

• ReadPairs(e, e’ ,D): the total number of read-pairs that support the conjecture that e’ follows e in 

the genome at distance D.  

• Support(e, e’, D) = 1 iff ReadPairs(e,e’,D)/ ExpectedReadPairslocalCov(e, e, D) > α (the default 

value α=0.3). 

 

  



 4 

Supplemental Material: Reducing running time and memory footprint of metaSPAdes  

To scale metaSPAdes for large metagenomic datasets, we implemented various speed-ups and memory 

saving approaches, including: 

• Parallelization of the graph simplification procedures for transforming the de Bruijn graph 

into the assembly graph, e.g. processing of bulges (Bankevich et al. 2012) and complex 

bulges (Nurk et al. 2013). 

• Filtering of rare k-mers based on a counting Bloom filter (Fan et al. 2012) to optimize the 

BayesHammer error-correction module (Nikolenko et al. 2013) of SPAdes.  

• Memory-efficient storage of cumulative information on paired-read alignments against the 

edges of the assembly graph.  

Below we sketch a yet another novel approach for compact representation and efficient construction 

of the de Bruijn graphs implemented in the SPAdes toolkit, while algorithms for parallelization of the 

graph simplification procedures, filtering of rare k-mers, and memory-efficient storage of cumulative 

information on read-pairs will be described in Korobeynikov et al. (2017). Our goal was to develop a 

more memory-efficient approach for the assembly graph construction (as compared to the naive approach 

originally implemented in SPAdes (Bankevich et al. 2012)) that would efficiently support modifying 

operations necessary for assembly graph simplification, e.g., processing of tips and bulges.  

First, sets of all distinct k-mers and (k+1)-mers in reads are efficiently computed with a “sort-and-

compact” approach (Roy et al. 2014) and stored in an external memory. Only canonical (smallest in the 

reverse-complement pair) k-mers and (k+1)-mers are considered. Afterwards, a state-of-the-art perfect 

hash function (PHF) is constructed over the set V of all k-mers in reads (Botelho et al. 2013). Afterwards, 

a binary |V|x8 matrix (called extensions matrix) is constructed using the set of (k+1)-mers. Every row in 

the matrix corresponds to a k-mer with a specified hash value and every column corresponds to a potential 

single nucleotide extension of this k-mer either to the left or to the right. The PHF, the set of distinct k-

mers (which is never loaded in RAM after the PHF is constructed), and the extension matrix serve as a 

representation of the de Bruijn graph. Since the constructed PHF data structure takes only 2.7 bits per k-
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mer (Botelho et al. 2013), the entire representation takes only (8+2.7) bits per k-mer in RAM. The graph 

is further efficiently converted into its “condensed” form, which stores non-branching paths as sequences 

of nucleotides of arbitrary length.  

With the perfect hashing of k-mers and extension matrix at its core, our approach resembles the one 

proposed in Iqbal et al. (2012), but significantly reduces its memory footprint by avoiding the need for 

storing all distinct k-mers in RAM. The important advantage of the described approach (compared to the 

original SPAdes implementation or to the approach based on the Bloom filters) is that it enables efficient 

deletion of edges in the de Bruijn graph during the graph simplification step, one of the most time 

consuming steps in the SPAdes pipeline.  

The detailed comparison of algorithms for reducing running time and memory footprint in SPAdes 

with other recently proposed approaches for efficient de Bruijn graph construction based on:  

• Bloom filters (Bloom 1970; Pell et al. 2012; Chikhi and Rizk 2013; Salikhov et al. 2014) 

implemented in the Minia assembler (Chikhi and Rizk 2013),  

• succinct de Bruijn graphs (Bowe et al. 2012) implemented in the MEGAHIT assembler (Li et al. 

2016),  

• perfect hashing implemented in the Meraculous assembler (Chapman et al. 2011) 

will be presented in Korobeynikov et al. (2017). 
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Supplemental Material: Bulge projection approach 

A bulge is defined as two short alternative directed paths between the same vertices of the de Bruijn 

graph. Multiple bulges often aggregate into more complex subgraphs that we refer to as complex bulges 

(see Bankevich et al. (2012) and Nurk et al. (2013) for details). SPAdes detects subgraphs of the assembly 

graph containing short alternative paths and searches each subgraph for a certain subtree, subject to 

constrains specified in Nurk et al. 2013. Afterwards, all edges and vertices of a subgraph that do not 

belong to the identified subtree are removed. However, in contrast to other assemblers that discard 

information about the alternative paths deleted at the bulge removal step, SPAdes transfers auxiliary 

information associated with them (e.g., the coverage depth of the deleted paths) onto the retained tree and 

maintains a projection index: a mapping of discarded k-mers onto their remaining counterparts 

(Bankevich et al. 2012; Nurk et al. 2013). The projection index facilitates accurate reconstruction of 

strain-paths (paths in the consensus assembly graph corresponding to the strain-contigs) in metaSPAdes.  
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Supplemental Material: Nx statistics 

Nx is the length for which the collection of all scaffolds of that length or longer covers at least x percent 

of the total contig length in an assembly. For example, Nx for x=50 corresponds to the standard N50 

statistics. Figure S1 presents the Nx statistics for SYNTH, HMP, MARINE, and SOIL datasets, while 

Table S4 contains N50 values for all assemblies. 

 

  

  
Figure S1. Nx statistics.  Only scaffolds longer than 1 kb were considered for computing the Nx statistics. 
 

dataset/assembler metaSPAdes MEGAHIT IDBA-UD Ray-Meta 

SYNTH 70.9 50.4 56.7 37 

HMP 9.3 3.6 4.9 12.6 

MARINE 2.6 1.6 1.9 3.3 

SOIL 2.5 1.9 2.9 1.9. 
Table S4. N50 statistics (in kb).  Only scaffolds longer than 1 kb were considered for computing the N50 statistics. 
 
  

MARINE SOIL 

HMP SYNTH 
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Supplemental Material: Analysis of the SYNTH dataset  

Supplemental Table S2 presents the list of 64 reference genomes for the SYNTH dataset in the decreasing 

order of their coverage depths. Since metaQUAST was primarily designed to work with complete rather 

than draft reference genomes, we excluded four references (marked by red in the table) that were 

represented by multiple contigs. Removal of these references affected the list of “top 20” references 

(marked in green) that we used to generate Figure 2 in the main text. To avoid pseudo-misassemblies 

(correctly assembled regions mapped to an incorrect reference and thus classified as misassemblies) and 

other artifacts, we also excluded Sulfurihydrogenibium sp. YO3AOP1 (SYO3AOP1) reference (marked in 

blue) that was closely related (95% average identity) to the more abundant Sulfurihydrogenibium 

yellowstonense SS-5 (SyeSS-5) genome previously excluded from consideration because it is represented 

by a fragmented draft assembly. We further computed the fraction of bases covered by the sequencing 

reads for each reference and identified three references with relatively high depth of coverage (marked by 

yellow in Table S3) for which more than 5% of bases were not covered by reads. We decided to exclude 

these references from further analysis since they are likely to significantly differ from their counterparts 

in the sample (note that all these references have coverage exceeding 14X). 

Supplemental Table S3 shows the per-reference metaQUAST report for the remaining (after removing 

red, blue and yellow entries in Supplemental Table S2) 56 reference genomes in the SYNTH dataset. 

metaSPAdes resulted in a significant improvement in NGA50 compared to other assemblers for many 

reference genomes. Specifically, it resulted in at least 20% improvement over MEGAHIT, IDBA-UD, 

and Ray-Meta for 33, 28, and 39 genomes, respectively. At the same time, the best assembly among 

MEGAHIT, IDBA-UD, and Ray-Meta improved over metaSPAdes by more than 20% in only 4 cases. 

With respect to the number of intragenomic misassemblies, metaSPAdes is on par with MEGAHIT, while 

IDBA-UD assemblies deteriorate when coverage drops below 20X (starting with row 53 in Table S2) and 

Ray-Meta falls out of competition. Across all considered references, metaSPAdes, MEGAHIT, IDBA-

UD, and Ray-Meta resulted 21, 38, 237 and 27 intergenomic misassemblies, respectively. Note that 
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IDBA-UD resulted in an order of magnitude increase in the number of intergenomic misassemblies as 

compared to other assemblers.  

The SYNTH dataset includes two highly similar (96 % Average Nucleotide Identity) bacteria from 

Thermotoga genus: a more abundant Thermotoga sp. RQ2 (ThRQ2) with coverage 128X and less 

abundant Thermotoga petrophila RKU-1 (TpeRKU-1) with coverage 48X. 

The 4th row in Supplemental Table S3 illustrates that metaSPAdes significantly improves on other 

assemblers with respect to the contiguity of the abundant ThRQ2 genome reconstruction. Manual 

investigation using Icarus (Mikheenko et al. 2016) confirmed that MEGAHIT, IDBA-UD and Ray-Meta 

constructed over-fragmented assemblies with many contigs mapping to both related reference genomes. 

Consistent with the “consensus-assembly” focus of metaSPAdes, this improvement comes at the cost of 

the “genome fraction” statistics for rare TpeRKU-1 genome (row 29), since resulting long contigs 

unambiguously map to the abundant ThRQ2 genome. 
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Supplemental Material: CAMI datasets 

 “Critical Assessment of Metagenome Interpretation” (CAMI) is a community initiative aimed at 

evaluating various approaches for analyzing metagenomes (http://www.cami-challenge.org/). Within this 

initiative, multiple synthetic datasets were simulated from reference genomes (including groups of closely 

related genomes) to facilitate benchmarking of metagenomic pipelines (available at https://data.cami-

challenge.org/participate). 

Supplemental Material “Analysis of CAMI datasets” presents benchmarking on a “medium 

complexity” dataset simulated from 225 genomes and containing 150 million paired-end reads (“Toy Test 

Dataset Medium Complexity Sample 1” referred to as CAMImed) and on a “low complexity” dataset 

simulated from 30 genomes and containing 74 million reads (“Toy Test Dataset Low Complexity” 

referred to as CAMIlow). Paired-end reads had length of 100 bp and mean insert size of 180 bp (the errors 

were modelled after Illumina HiSeq reads). Unfortunately, it turned out that many reference genomes 

used for generating CAMI datasets were highly fragmented draft assemblies (rather than finished 

bacterial genomes). Such datasets are not ideal for assembly benchmarking studies since reads simulated 

from fragmented assemblies result in atypical assembly graphs with many missing edges (not to mention 

that metaQUAST was primarily designed to work with complete rather than draft reference genomes).  

To bypass these problems, we excluded highly fragmented references (represented by draft 

assemblies with N50 below 200kbp) from benchmarking and used “--fragmented” option in 

metaQUAST. Table S5 presents information on all genomes comprising the CAMIlow dataset along with 

the list of over-fragmented references. Table S6 presents information on 37 genomes comprising 

CAMImed dataset with coverage depth exceeding 20X (19 of them are over-fragmented).  

No. 
Taxonomic 

ID 
Species 

 
Genome size 

(Mbp) 
Average 
coverage 

1 434085 Gamma proteobacterium IMCC2047 2.2 873 

2 247639 Marine gamma proteobacterium HTCC2080 3.6 53 

3 1050222 Paenibacillus sp. Aloe-11 5.8 22 
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4 667138 Thermoplasmatales archaeon I-plasma 1.7 21 

5 552396 Erysipelotrichaceae bacterium 5_2_54FAA 6.3 16 

6 1007115 Gamma proteobacterium SCGC AAA076-D13 1.7 14 

7 1122939 Patulibacter americanus DSM 16676 4.5 9 

8 1111069 Thermus sp. CCB_US3_UF1 2.3 8 

9 1131272 Chloroflexi bacterium SCGC AB-629-P13 0.8 8 

10 1131273 Marinimicrobia bacterium SCGC AB-629-J13 1.9 8 

11 1097667 Patulibacter medicamentivorans 5.1 7 

12 1263001 Firmicutes bacterium CAG:114 2.3 4 

13 1137281 Formosa sp. AK20 3.1 3 

14 1345697 Geobacillus sp. JF8 3.5 2 

15 1412874 Uncultured archaeon A07HR60 2.9 1.9 

16 1224136 Enterobacteriaceae bacterium LSJC7 4.6 1.8 

17 1229484 Alpha proteobacterium LLX12A 6.0 1.4 

18 1229781 Brevibacterium casei S18 3.7 1.2 

19 1235799 Lachnospiraceae bacterium 3-2 4.5 1.0 

20 370895 Burkholderia mallei 2002721280 5.7 0.9 

21 742723 Lachnospiraceae bacterium 2_1_46FAA 4.4 0.9 

22 1045854 Weissella koreensis KACC 15510 1.4 0.7 

23 1009708 Alpha proteobacterium SCGC AAA536-G10 2.2 0.6 

24 1174684 Sphingopyxis sp. MC1 3.7 0.4 

25 349101 Rhodobacter sphaeroides ATCC 17029 4.5 0.4 

26 1230476 Bradyrhizobium sp. DFCI-1 7.7 0.3 

27 245012 Butyrate-producing bacterium SM4/1 3.1 0.3 

28 939301 Alpha proteobacterium SCGC AAA015-O19 1.7 0.2 

29 1263006 Firmicutes bacterium CAG:170 2.5 0.2 

30 1394711 
Candidatus Saccharibacteria bacterium 
RAAC3_TM7_1 0.9 0.1 

Table S5. The list of 30 reference genomes comprising the CAMIlow dataset arranged in the decreasing order 
of their coverage depths. References that are not over-fragmented are marked in green. 
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No
. 

Taxonomic 
ID 

Species 
 

Genome size 
(Mbp) 

Average 
coverage 

1 1247738 Campylobacter coli BIGS0015 1.3 257 

2 1097667 Patulibacter medicamentivorans 4.8 200 

3 1399144 Brevibacillus laterosporus PE36 5.1 199 

4 494419 Arthrobacter sp. TB 23 3.5 166 

5 314254 Oceanicaulis sp. HTCC2633 3.2 140 

6 290399 Arthrobacter sp. FB24 5.1 137 

7 883112 Facklamia ignava CCUG 37419 1.8 133 

8 434085 gamma proteobacterium IMCC2047 0.5 133 

9 1131272 Chloroflexi bacterium SCGC AB-629-P13 0.8 108 

10 1224136 Enterobacteriaceae bacterium LSJC7 4.6 96 

11 1123317 Streptococcus sobrinus DSM 20742 = ATCC 33478 1.7 89 

12 457393 Bacteroides sp. 4_1_36 4.6 88 

13 1353530 Bacteriovorax sp. DB6_IX 2.5 82 

14 1159204 Mycoplasma gallisepticum NC08_2008.031-4-3P 0.9 79 

15 1209372 Bacillus sp. WBUNB009 5.6 77 

16 1263006 Firmicutes bacterium CAG:170 2.3 77 

17 1386080 Bacillus sp. EGD-AK10 4.3 76 

18 1386078 Pseudomonas sp. EGD-AK9 3.9 70 

19 322710 Azotobacter vinelandii DJ 5.4 68 

20 766138 Shigella boydii 965-58 5.2 59 

21 1283301 Streptomyces afghaniensis 772 9.1 53 

22 1262788 Clostridium sp. CAG:269 1.5 48 

23 1194208 Streptococcus massiliensis 4401825 1.7 45 

24 392917 Paenibacillus larvae subsp. larvae BRL-230010 3.8 37 

25 997884 Bacteroides nordii CL02T12C05 5.7 36 

26 234826 Anaplasma marginale str. St. Maries 1.2 36 

27 1203566 Corynebacterium sp. KPL1859 2.6 36 

28 1198114 Granulicella tundricola MP5ACTX9 5.5 32 

29 247639 marine gamma proteobacterium HTCC2080 3.6 30 

30 98439 Fischerella thermalis PCC 7521 5.4 30 

31 1042156 Clostridium sp. SY8519 2.8 28 
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32 1074065 Streptococcus sobrinus TCI-98 1.8 27 

33 1218358 Chlamydia psittaci WC 1.2 26 

34 522306 Candidatus Accumulibacter phosphatis clade IIA str. UW-1 5.3 23 

35 95609 Herbaspirillum sp. B39 3.6 22 

36 97137 Lactobacillus sp. ASF360 2.0 21 

37 1130827 Rickettsia sibirica subsp. sibirica BJ-90 1.3 20 

Table S6. The list of most abundant reference genomes (with coverage exceeding 20X) in the CAMImed dataset 
arranged in the in decreasing order of their coverage depths. References that are not over-fragmented are 
marked in green. 
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Supplemental Material: Analysis of the CAMI datasets 

Figure S2 shows cumulative scaffold length and Nx statistics for the CAMI datasets. Figure S3 and 

S4 present detailed per-reference benchmarking results for the CAMIlow and CAMImed datasets, 

respectively. These figures are based on non-over-fragmented reference genomes listed in Tables S5 and 

S6 (see Supplemental Material “CAMI datasets” for details). Note that since only a fraction of references 

have been provided to metaQUAST, the number of intergenomic misassemblies is likely to be 

underestimated. 

 

  

  

Figure S2. Cumulative scaffold length and Nx plots for CAMIlow and CAMImed datasets. 

CAMIlow 

CAMIlow 

CAMImed 

CAMImed 
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Figure S3. The NGA50 statistics (top left), the fraction of the reconstructed genome (top right), the number of 
intragenomic misassemblies (bottom left) and the number of intergenomic misassemblies (bottom right) for 
non over-fragmented references of CAMIlow dataset. References are specified by their Taxonomic IDs (see Table 
S5) and arranged in the decreasing order of their coverage depths.  
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Figure S4. The NGA50 statistics (top left), the fraction of the reconstructed genome (top right) the number of 
intragenomic misassemblies (bottom left) and the number of intergenomic misassemblies (bottom right) for 
18 most abundant non over-fragmented references species from the CAMImed dataset. References are specified 
by their Taxonomic IDs (see Table S6) and arranged in the decreasing order of their coverage depths. The genomes 
are arranged in the decreasing order of their coverage depths. 
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Supplemental Material: Benchmarking SPAdes against metaSPAdes 

Various changes in metaSPAdes contribute to improved metagenomic assemblies as compared to 

SPAdes. In particular, to clear the assembly graph from erroneous connections, SPAdes removes edges 

with coverage depth below an automatically selected coverage threshold (Bankevich et al. 2012). 

Computing the threshold based on the entire assembly graph of a metagenomic dataset proved to be 

highly unstable and often forces SPAdes to remove many genomic edges, thus increasing the number of 

misassemblies in the contigs originating from rare species. 

In contrast to SPAdes, metaSPAdes uses a fixed coverage threshold set to a low value of 2.5 and 

primarily relies on analyzing relative local coverage of incident edges, thus accurately processing low-

covered regions of the assembly graph (note that the coverage of an edge in the SPAdes condensed 

assembly graph is measured as an average coverage of (k+1)-mers contributing to this edge). In an 

attempt to provide a fair benchmarking, we additionally tested unusual SPAdes FIX and SPAdes SC FIX 

configurations of SPAdes with a coverage threshold set to 2.5 (see below). 

We use the SYNTH dataset to illustrate metaSPAdes improvement over SPAdes in metagenomics 

setting. SPAdes was launched in four different modes to ensure comprehensive benchmarking:  

• SPAdes in the “isolate” mode (referred simply as SPAdes),  

• SPAdes in the “single-cell” (--sc) mode (referred as SPAdes SC),  

• SPAdes with the fixed value of the coverage threshold set at 2.5X as in metaSPAdes (referred as 

SPAdes FIX),  

• SPAdes SC with the fixed value of the coverage threshold set at 2.5X as in metaSPAdes (referred 

as SPAdes SC FIX). 

Table S7 presents the benchmarking results and illustrates that metaSPAdes generates 

substantially more accurate assemblies than all variants of SPAdes, including variants with the fixed low 

coverage thresholds:  metaSPAdes, SPAdes, SPAdes FIX, SPAdes SC and SPAdes SC FIX resulted 

in102, 353, 163, 159 and 142 intragenomic misassemblies and 21, 239, 119, 75 and 51 intergenomic 
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misassemblies, respectively. We note that the SYNTH dataset contains very few references with low 

depth of coverage. Our analysis suggests that taking a subset of the reads for the SYNTH dataset makes 

the observed difference even more pronounced. With respect to NGA50, metaSPAdes either improves or 

remains on par with all SPAdes configurations (only for eight genomes, one of the SPAdes configurations 

improved on metaSPAdes by more than 15%). 
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No. Abbrevi
ation 

NGA50 Intragenomic misassemblies 

meta	
SPAdes	 SPAdes	 SPAdes	

FIX	
SPAdes	
SC	

SPAdes	
SC	
	FIX	

meta	
SPAdes	 SPAdes	 SPAdes	

FIX	
SPAdes	
SC	

SPAdes	
SC	
	FIX	

1 Neq 381775 320953 141036 397028 397028 0 1 1 1 1 

2 Pho 293747 230474 187452 230525 159269 2 1 1 1 1 

3 Rba 183456 213265 209811 209811 201446 5 3 3 3 3 

4 ThRQ2 45835 5372 5180 7661 7634 0 1 1 0 0 

5 Afu 183804 88770 88770 88770 88770 2 3 3 3 3 

6 Neu 46392 46505 45758 46286 46286 2 3 3 3 3 

7 
ThDSM

4359 57139 47814 47814 55811 55811 0 0 0 0 0 

8 Sto 76823 63432 58674 63417 63417 0 0 1 0 0 

9 
HY04A

AS1 258515 393877 393877 192792 192792 0 0 0 0 0 

10 Gau 1347186 729009 508460 728869 728869 0 0 0 0 0 

11 PaeIM2 91533 81696 76953 81696 81696 1 0 0 0 0 

12 Pfu 59599 55107 54575 57757 54785 0 3 3 0 0 

13 Cvi 177554 154672 154672 154672 154672 1 2 2 1 1 

14 Aca 301792 222496 222496 222496 222496 0 0 0 0 0 

15 Pca 276318 221867 221867 221867 221867 0 0 0 0 0 

16 Abo 86325 186114 27374 185944 107733 0 0 0 0 0 

17 GsuPCA 195995 195995 191745 195995 195995 4 4 4 4 4 

18 
PmaEX-

H1 1063451 1063860 1063860 1063622 1063622 0 0 0 0 0 

21 Mja 121804 109197 93232 109195 109195 1 5 2 1 1 

22 Tde 168453 121355 121355 120263 120263 0 0 0 0 1 

23 Mka 984916 331221 331221 267844 267844 0 0 0 0 0 

24 Pas 154812 120505 120505 112944 112944 0 1 0 0 0 

26 Cte 169383 169718 169718 141095 141095 0 1 1 1 1 

27 MmaC5 169568 22956 22956 11853 11853 0 0 0 0 0 

28 Dtu 939665 226110 212115 452770 452770 0 0 0 0 0 

29 
TpeRK

U-1 0 4833 4677 3831 3831 0 2 2 2 2 

30 TthHB8 60940 58802 56702 60940 60940 1 0 0 0 0 

31 Cli 102105 101378 100963 69167 69167 2 3 2 3 3 

33 Csa 39297 25682 25682 19887 19844 5 8 2 5 4 

34 Wsu 156243 156698 156698 156698 156698 0 0 0 0 0 

35 MmaS2 109948 24359 24347 10096 9821 1 0 1 0 0 

36 Cph 40887 37259 37122 35262 32264 5 3 3 4 4 

37 Pph 89343 68294 68413 60304 66096 1 2 2 5 5 

38 
CauJ-
10-fl 84420 68621 85381 54705 49548 7 14 6 11 9 
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39 Amu 189693 165681 150334 165198 165198 2 3 2 3 3 

40 Cth 74152 63141 63141 56929 56929 3 3 3 7 4 

41 Pgi 30817 31092 30693 23712 23770 3 7 4 3 3 

43 Cbe 40725 30509 30509 16594 16594 0 1 2 3 3 

44 Tps 54527 54499 70875 39066 37582 0 1 0 3 2 

45 Lch 15689 14758 15424 15178 15417 1 11 3 0 1 

46 
NPCC7

120 137846 114085 141094 46894 46894 3 7 6 6 4 

48 Iho 212262 158711 158711 78403 78403 0 2 1 0 0 

49 Bth 132888 88148 125434 64200 62811 7 10 3 8 8 

50 Hvo 26447 26367 26549 23825 24089 0 6 3 3 3 

51 Hau 112847 139642 163766 65076 67838 3 11 4 6 7 

52 Sar 10460 7604 9046 4620 4614 2 17 4 4 3 

53 Str 9743 6695 7816 3925 3861 1 10 7 7 8 

54 Bvu 88327 81478 87246 48938 48938 1 5 2 2 1 

55 DraR1 15750 16608 17132 13499 13499 0 4 2 0 0 

56 
MacC2

A 36848 31194 33235 20788 19289 9 26 3 7 5 

58 Bbr 5650 5555 5826 5475 5485 3 43 27 19 16 

60 Rpo 12719 13684 14150 13768 14150 0 11 3 1 0 

61 Zmo 43038 52284 52284 49999 50576 1 5 2 2 2 

62 
BxeLB4

00 4821 4924 5016 4918 4939 12 52 27 20 18 

63 
SbaOS1

85 6015 30454 6924 6450 6348 5 22 6 4 4 

64 
SbaOS2

23 0 4934 1037 1091 1104 6 36 6 3 1 
Table S7. Benchmarking of metaSPAdes against SPAdes on a SYNTH dataset. NGA50 statistics and the 
number of intragenomic misassemblies for 56 reference genomes shown in Table S3. See “Supplemental Material: 
Analysis of the SYNTH dataset” for motivation on excluding 8 out of 64 reference genomes from the SYNTH 
dataset. The reference genomes are arranged in the decreasing order of their coverage depths. The colors of the cells 
reflect how much the results of various assemblers differ from the median value (blue/red cells indicate that the 
results improve/deteriorate as compared to the median value).  
 

Supplemental Material “Effect of novel algorithmic approaches in metaSPAdes on assembly quality” 

illustrates how other algorithmic changes in metaSPAdes contributed to improved assembly quality.  
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Supplemental Material: Effect of novel algorithmic approaches in metaSPAdes on assembly quality 

To investigate how various algorithmic changes contribute to the improved assemblies, we considered the 

following features distinguishing metaSPAdes from SPAdes SC FIX that performed the best among four 

modes of SPAdes (see benchmarking results in Supplemental Material: “Benchmarking SPAdes against 

metaSPAdes”):  

a. novel assembly graph simplification procedures and exSPAnder modifications (see sections 

“Detecting and masking strain variations” and “Analyzing filigree edges in the assembly graph” 

in the main text as well as the Supplemental Material “Modifying the decision rule in exSPAnder 

for metagenomic data”);  

b. novel algorithm that exploits differences between strains to improve the consensus assembly (see 

section “Utilizing strain differences for repeat resolution in metaSPAdes” in the main text); 

c. novel coverage-based decision rule in exSPAnder (see section “A new metagenomic decision rule 

in metaSPAdes” in the main text).  

Table S8 presents the SYNTH dataset assembly statistics for the following configurations of metaSPAdes 

and SPAdes:  

• metaSPAdes,  

• metaSPAdes with option (c) disabled (referred to as metaSPAdes –c), 

• metaSPAdes with options (c) and (b) disabled (referred to as metaSPAdes –c –b),  

• SPAdes SC FIX.  

Note that configuration metaSPAdes –c –b corresponds to enabling the option (a) in SPAdes SC FIX. 

No. Abbreviation 
NGA50 Intragenomic misassemblies 

metaSPAdes	 metaSPAdes	
	-c	

metaSPAdes	
	-c-b	

SPAdes	
	SC	FIX	 metaSPAdes	 metaSPAdes	

	-c	
metaSPAdes	

	-c-b	
SPAdes	
	SC	FIX	

1 Neq 381775 381775 381775 397028 0 0 0 1 

2 Pho 293747 293747 144236 159269 2 2 1 1 

3 Rba 183456 197615 197622 201446 5 5 5 3 

4 ThRQ2 45835 26177 20523 7634 0 0 0 0 

5 Afu 183804 183804 87452 88770 2 2 3 3 

6 Neu 46392 46392 46392 46286 2 2 2 3 
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7 ThDSM4359 57139 57139 41488 55811 0 0 0 0 

8 Sto 76823 76823 58525 63417 0 0 0 0 

9 HY04AAS1 258515 258515 192792 192792 0 0 0 0 

10 Gau 1347186 1347186 728458 728869 0 0 0 0 

11 PaeIM2 91533 91533 79833 81696 1 1 1 0 

12 Pfu 59599 59599 54785 54785 0 0 1 0 

13 Cvi 177554 177554 153627 154672 1 1 1 1 

14 Aca 301792 301792 222725 222496 0 0 0 0 

15 Pca 276318 276318 221867 221867 0 0 0 0 

16 Abo 86325 86325 67173 107733 0 0 2 0 

17 GsuPCA 195995 195995 195995 195995 4 4 4 4 

18 PmaEX-H1 1063451 1063451 1063230 1063622 0 0 0 0 

21 Mja 121804 121804 109197 109195 1 1 1 1 

22 Tde 168453 168453 95496 120263 0 0 0 1 

23 Mka 984916 984916 330962 267844 0 0 0 0 

24 Pas 154812 154812 120505 112944 0 0 0 0 

26 Cte 169383 169383 140692 141095 0 0 1 1 

27 MmaC5 169568 169568 14711 11853 0 0 0 0 

28 Dtu 939665 939665 452770 452770 0 0 0 0 

29 TpeRKU-1 0 0 0 3831 0 0 0 2 

30 TthHB8 60940 60940 60940 60940 1 1 1 0 

31 Cli 102105 101377 94407 69167 2 2 2 3 

33 Csa 39297 39297 21211 19844 5 4 4 4 

34 Wsu 156243 156243 156243 156698 0 0 0 0 

35 MmaS2 109948 109948 15609 9821 1 1 1 0 

36 Cph 40887 40887 39734 32264 5 4 2 4 

37 Pph 89343 89343 75358 66096 1 1 1 5 

38 CauJ-10-fl 84420 84420 73383 49548 7 6 8 9 

39 Amu 189693 189693 188054 165198 2 2 3 3 

40 Cth 74152 74152 64874 56929 3 3 5 4 

41 Pgi 30817 30817 28143 23770 3 3 2 3 

43 Cbe 40725 40725 24143 16594 0 0 0 3 

44 Tps 54527 54527 54527 37582 0 0 0 2 

45 Lch 15689 15765 15178 15417 1 0 0 1 

46 NPCC7120 137846 137846 141091 46894 3 3 3 4 

48 Iho 212262 212262 158711 78403 0 0 0 0 

49 Bth 132888 132888 112266 62811 7 7 4 8 

50 Hvo 26447 25613 26447 24089 0 0 0 3 

51 Hau 112847 107560 107560 67838 3 3 5 7 
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52 Sar 10460 10544 7564 4614 2 1 1 3 

53 Str 9743 9571 6680 3861 1 1 1 8 

54 Bvu 88327 88327 79291 48938 1 1 0 1 

55 DraR1 15750 15750 15737 13499 0 0 0 0 

56 MacC2A 36848 36848 31044 19289 9 9 7 5 

58 Bbr 5650 5650 5555 5485 3 3 3 16 

60 Rpo 12719 12719 12591 14150 0 0 0 0 

61 Zmo 43038 43038 43038 50576 1 1 1 2 

62 BxeLB400 4821 4821 4802 4939 12 12 11 18 

63 SbaOS185 6015 6014 5924 6348 5 5 5 4 

64 SbaOS223 0 0 0 1104 6 6 5 1 
 
Table S8. Effects of various improvements in metaSPAdes on assembly of the SYNTH dataset. NGA50 
statistics and the number of intragenomic misassemblies reported for 56 reference genomes from the SYNTH 
dataset. The reference genomes are arranged in the decreasing order of their coverage depths. The colors of the cells 
reflect how much the results of various assemblers differ from the median value (blue/red cells indicate that the 
results improve/deteriorate as compared to the median value).  
 

As discussed in the Supplemental Material “Benchmarking SPAdes against metaSPAdes”, feature (a) 

contributes to the increased stability and accuracy of the metagenomic assemblies. For example, the total 

number of intragenomic (intergenomic) misassembles decreased from 142 (51) for SPAdes SC FIX 

(which was the most accurate of all tested SPAdes configurations) to 97 (15) for metaSPAdes –c –b 

(Table S8). The coverage-based decision rule (c) plays an important role in the improved reconstruction 

of the most abundant across closely related genomes. As NGA50 statistics in Table S8 illustrates, it 

contributed to the improved contiguity of ThRQ2 assembly, discussed in section “Analysis of the SYNTH 

dataset”. Table S8 also illustrates that feature (b) resulted in a substantial contiguity gain even though the 

SYNTH dataset has few closely related organisms. This is likely explained by the positive effect of the 

two-step strategy on the resolution of imperfect repeats, which were collapsed (into long perfect repeats) 

during graph simplification. Altogether, various algorithmic improvements resulted in more than 30% 

gain in metaSPAdes NGA50 statistics compared to SPAdes SC FIX for 27 out of 56 considered reference 

genomes. In contrast, more than 10% decrease in metaSPAdes NGA50 statistics compared to SPAdes SC 

FIX was observed for only 4 reference genomes. 

Figure S5 illustrates the effects of various algorithmic improvements in metaSPAdes on the 
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assembly of the HMP dataset. Note that SPAdes SC FIX show very similar results to IDBA-UD, while 

various improvements in metaSPAdes contribute to the gradual improvements in the assembly contiguity 

(see Figures 1 and S1 for MEGAHIT and Ray-Meta results).   

 

Figure S5. Effects of individual metaSPAdes features on the assembly of HMP dataset.  
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Supplemental Material: Analysis of the HMP dataset 

As described in the main text, we identified only three references that were at least 70% covered by 

contigs generated by at least one of four assemblers analyzed in this study (Streptococcus salivarius 

SK126, Neisseria subflava NJ9703, and Prevotella melaninogenica ATCC 25845 abbreviated as Ssa, Nsu, 

and Pme, respectively). Figure S6 presents benchmarking results for these three genomes. 

Note that the number of reported errors in the HMP assembly significantly exceeds the number of 

errors for the SYNTH and CAMI datasets or the number of errors in typical assemblies of isolates. We 

believe that most of these errors represent metaQUAST artifacts (rather than true assembly errors) caused 

by the significant differences between the three recruited references and the related genomes in the 

sample. Poor coverage of the two out of three references genomes by the assembly contigs further 

confirms this conclusion. 
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Figure S6. The NGA50 statistics (top left), the fraction of the reconstructed genome (top right), the number of 
intragenomic misassemblies (bottom left) and the number of intergenomic misassemblies (bottom right) for 
three reference genomes identified for the HMP dataset. References are arranged in the decreasing order of their 
average coverage-depths (183X, 118X, and 15X for Ssa, Nsu, and Pme, respectively). 
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