Look who's talking: gender differences in academic job talks

Amanda K. Glazer ${ }^{1, *}$, Hubert Luo ${ }^{1}$, Shivin Devgon ${ }^{2}$, Catherine Wang ${ }^{3}$, Xintong Yao ${ }^{1}$, Steven Siwei Ye ${ }^{4}$, Frances McQuarrie ${ }^{5}$, Zelin Li ${ }^{6}$, Adalie Palma ${ }^{1}$, Qinqin Wan ${ }^{1}$, Warren Gu ${ }^{1}$, Avi Sen ${ }^{1}$, Zihui Wang ${ }^{1}$, Grace D. O’Connell ${ }^{7}$ and Philip B. Stark ${ }^{1}$
${ }^{1}$ Department of Statistics, University of California, Berkeley
${ }^{2}$ Department of Electrical Engineering and Computer Science, University of California, Berkeley
${ }^{3}$ Department of Statistics, Carnegie Mellon University
${ }^{4}$ Department of Statistics, University of California, Los Angeles
${ }^{5}$ Department of Statistics, University of Washington
${ }^{6}$ Department of Statistics, Stanford University
${ }^{7}$ Department of Mechanical Engineering, University of California, Berkeley
*Corresponding author's e-mail address: amandaglazer@berkeley.edu

Published online: 16 December 2023
Cite as: Glazer AK, Luo H, Devgon S, Wang C, Yao X, Ye SS, McQuarrie F, Li Z, Palma A, Wan Q, Gu W, Sen A, Wang Z, O’Connell GD, Stark PB. Look who's talking: gender differences in academic job talks. ScienceOpen Research. 2023. (DOI: 10.14293/ S2199-1006.1.SOR.2023.0003.v1)

Keywords: gender, job talks, nonparametric statistics, randomization tests, type III error

Abstract

The "job talk" is a standard element of faculty recruiting. How audiences treat candidates for faculty positions during job talks could have disparate impact on protected groups, including women. We annotated 156 job talks from five engineering and science departments for 13 categories of questions and comments. All departments were ranked in the top 10 by US News \& World Report. We find that differences in the number, nature, and total duration of audience questions and comments are neither material nor statistically significant. For instance, the median difference (by gender) in the duration of questioning ranges from zero to less than two minutes in the five departments. Moreover, in some departments, candidates who were interrupted more often were more likely to be offered a position, challenging the premise that interruptions are necessarily prejudicial. These results are specific to the departments and years covered by the data, but they are broadly consistent with previous research, which found differences comparable in magnitude. However, those studies concluded that the (small) differences were statistically significant. We present evidence that the nominal statistical significance is an artifact of using inappropriate hypothesis tests. We show that it is possible to calibrate those tests to obtain a proper P-value using randomization.

INTRODUCTION

Women are underrepresented among U.S. university faculty in Science, Technology, Engineering, and Mathematics (STEM). Why?
Gender bias pervades academia, including academic hiring processes [1,2], student evaluations of teaching [3], citation counts [4], grant applications [5,6], letters of recommendation [7,8], credit for joint work [9], and the journal refereeing process [10]. Because of the prevalence of gender bias in so many areas of academia, it is important to understand where the bias is largest and most impactful to target gender equity efforts most effectively.
Some recent studies concluded that audiences treat academic seminar (e.g., job talks, conference talks, departmental seminars) speakers differently depending on the speaker's gender [11-13].
Here, we examine whether female job applicants received more questions or spent more time responding to questions than male job applicants in five STEM departments between

2013-2019: Civil and Environmental Engineering (CEE), Electrical Engineering and Computer Science (EECS), Industrial Engineering and Operations Research (IEOR), Mechanical Engineering (ME), and Physics. Table 1 shows the proportion of female faculty and female interviewees in these departments. Presenters' self-identified genders were not available. We inferred gender from pronouns on the presenter's website (if available), name, and appearance. We did not infer that any presenter's gender was non-binary but our analysis is easily extended to include more gender categories.
Our study and analysis differ substantially from previous work. Our data are for a different institution, cover more STEM disciplines, and include more categories of questions and other interruptions. To address inter-rater reliability, at least three raters examined every talk, while other studies generally used only a single rater. One recent study [13] found very large differences among raters, but concluded-based on an inappropriate use of the correlation coefficient-that those differences could be ignored.

Our data include whether each speaker was ultimately offered a faculty position, allowing us to examine the relationship between interruptions and successful applications. We also investigated department culture around asking questions during job seminars, which revealed differences across departments.
Previous work used parametric tests and were based on differences in means. We use nonparametric randomization tests based on differences in medians. The tests frame the scientific null hypothesis that "speaker gender does not matter" as the statistical null hypothesis that speaker gender is an arbitrary label that might as well have been randomly assigned (within each department). Medians represent what is "typical" for speakers of each gender, whereas means are sensitive to extreme values.
We generally find small gender differences in the medians, on the order of 0-4 questions, not all in the same direction. The differences are not statistically significant.
Whether the differences are statistically significant or not, it is implausible that differences so small have a material impact on whether a candidate is hired. Moreover, the data do not support the hypothesis that interruptions are always detrimental to the presenter: in some departments, candidates who were interrupted more often were more likely to be offered a position.
Our study was inspired by that of Blair-Loy et al. [11], who examine a slightly smaller data set (119 talks in Engineering departments versus 156 talks in STEM departments in our study) and find gender differences comparable in magnitude to those we find-but conclude that those small differences are statistically significant.
Data and Methods discusses our data and statistical methods. Randomization Test Results presents our main results. Comparison with Previous Studies examines differences between our study and previous work, presenting evidence (from simulations and experiments with negative controls) that the apparent statistical significance of the small effects found by Blair-Loy et al. [11] results from using an inappropriate hypothesis test. It also explains how to calibrate parametric tests using randomization, to obtain genuine P-values in some situations where the parametric assumptions do not hold. The findings and limitations are considered in the Discussion section. The final section presents our conclusions.

DATA AND METHODS

Data

Many UC Berkeley departments record academic job talks for tenured and tenure-track positions. We received Berkeley IRB approval to use such videos in this research.
We obtained videos from 2013-2019 for eight departments: Civil and Environmental Engineering (CEE), Electrical Engineering and Computer Science (EECS), Industrial Engineering and Operations Research (IEOR), Materials Science and Engineering (MSE), Mechanical Engineering (ME), Nuclear Engineering (NE), Physics, and Statistics. Not all the videos were adequate for our purpose (e.g., prior to 2018, the

Table 1: Percentage of faculty who are women and number of job talk videos for the five STEM departments in the study (the counts include lecturers and adjunct faculty but not emeriti).

Department	CEE	EECS	IEOR	ME	Physics
Female Faculty	25%	18%	30%	18%	12%
Female Pre-tenure Faculty	50%	31%	33%	25%	22%
Female applicant pool, 2015-2019	28%	22%	22%	22%	20%
Videos	31	65	8	35	17
Female interviewees	48%	34%	38%	40%	29%
Median events, female	9	11	23	16	7
Median events, male	9	10	24	20	8

Median events refers to the median number of audience utterances (e.g., questions, comments). Pre-tenure faculty includes tenure-track assistant professors but neither lecturers nor adjunct faculty. Faculty counts and applicant pool data were obtained from the UC Berkeley Office for Faculty Equity and Welfare. Faculty full-time equivalent (FTE) data as of 4/30/2020.
statistics department did not use an audience microphone: the audience voices were often unintelligible), and some departments had too few male or female applicants for any test to have much power: we omitted departments for which (\# presenters) choose (\# female presenters) is less than 20, because that makes it impossible to have a P-value less than 5%, no matter what the data are. That left CEE, EECS, IEOR, ME, and Physics. In all, 156 videos from the five departments were annotated.

Annotation methodology

We developed a set of tags for audience interactions using an iterative process that involved eight raters tagging the same videos, then assessing inter-rater reliability. The category definitions were adjusted until all annotators agreed on the annotations across several videos. We tried to capture "tone" to the extent that it could be labeled consistently by different raters. We ended up with 13 categories, listed in Table 2. An annotation refers to each time a member of the audience spoke. A typical video might have 8-20 annotations (the number of annotations ranged from 2 to 57); variation across departments was substantial.
Each video was reviewed by three undergraduate researchers. Two students independently annotated each video; a third student resolved any discrepancies. Data quality is discussed in Appendix A.

Randomization (permutation) tests

We consider the null hypothesis that the gender of the presenter is not related to the number, duration, or nature of questions the audience asks, as if gender were an arbitrary label assigned at random to presenters. This hypothesis naturally leads to randomization tests.
We condition on the number of female and male presenters in each department and consider the distribution of test statistics under the null hypothesis. Conceptually, we imagine randomly re-labeling presenters in such a way that each department keeps its observed numbers of female and male presenters, but the gender labels are "shuffled" across presenters. That induces a (null) probability distribution for any test statistic we might choose to examine (including the test

Table 2: Characteristics of utterances noted by raters, and their definitions.

Category	Definition
Begin	Time a distinct person starts speaking. End
Speaker	
Acknowledged	Whether the speaker was an audience member or host/other Presenter (or host) paused and either verbally or nonverbally recognized the speaker before the speaker spoke, e.g., "I see you have a question" or "yes?" If the speaker cut off the presenter or host, the speaker is unacknowledged.
Attempted Interruption	An audience member interrupted the presenter or host but the presenter or host continued without giving the audience member a chance to question or comment, or ignored the question or comment.
Follow-up	The question/comment came from the same person as the previous question/comment. If a new person asks a related question it is not a follow-up. The audience member commented about the science, beyond providing context for a question.
Scientific Comment	
Non-scientific Comment	
Positive Comment	The audience member made a comment that is not related to a scientific concept. The audience member made a positive comment (e.g., "very interesting work!"). Clarifying Question
A question about what the presenter did, how they did it or what it means (e.g. "what does that variable mean?", "How does	
this model work?"). Questions about the presenterấtms background, previous research, or approach to various problems are	
clarifying questions (e.g., "Can you describe the research you are working on with Professor X?" or "How would you teach this	
concept to others?").	

statistic used by Blair-Loy et al. [11], as discussed below). The probability that the test statistic is greater than or equal to the value observed for the original data, computed on the assumption that the null hypothesis is true, is a P-value for the null hypothesis.
In principle, the randomization distribution can be found exactly by enumerating all assignments of genders to presenters that keeps the total number of female and male presenters fixed. When there are many presenters and more than a few of each gender, it is impractical to enumerate all assignments. Instead, P-values can be constructed by assigning gender pseudorandomly B times, then basing the P-value on the distribution of the test statistic in that simulation. This can be viewed as a simulation approximation to the "true" P-value that would be obtained by examining all assignments or it can be viewed as an exact P-value for a randomized test [14,15], if the P-value is computed as
$\begin{aligned} & \text { \# assignments for which the test statistic } \\ & \text { is as large or larger than observed) }+1\end{aligned}$
$B+1$

In the latter approach, the smallest attainable P-value is $1 /(B+1)$.
It is important to select the test statistic before examining the data, to prevent " P-hacking." We chose to use the difference in the median number of questions asked of female and male presenters as the test statistic, primarily for two reasons. First, we are interested in "typical" behavior, which the median measures but the mean does not. Second, in our experience, the total number of questions varies considerably; we did not want the results to be driven by a small number of talks that generated
unusually many questions. Note that there is more than one definition of the median. We use the "smallest" median: the smallest number that is greater than or equal to at least 50% of the observations.
As described in Comparison with Previous Studies and Appendix B, we also used the test statistic adopted by Blair-Loy et al. [11], namely, the gender coefficient in a ZINB regression of the number of questions on covariates that included the presenter's gender and the percentage of faculty in the department who are female.
Blair-Loy et al. [11] examined the pre-Q\&A portion of job talks but not the Q\&A portion: they hypothesized that presenters are injured by questions (interruptions) during the pre-Q\&A period because it takes time away from their exposition. We analyzed pre-Q\&A questions and other interruptions to compare with their results. However, we also analyzed entire talks, including the Q\&A period, to examine whether male and female presenters are treated differently overall. Because pre-Q\&A questions are relatively rare, restricting attention to the pre-Q\&A period would have limited our ability to detect differences.
Our primary analysis kept departments separate because departments have different customs and etiquette for asking questions and interrupting presenters. We did not stratify by year. Stratifying by year might reduce the possibility of Simpson's Paradox affecting the results, for instance, if the percentage of presenters who are female varies substantially from year to year and department practices also change. However, stratifying by year might also decrease power because there are relatively few female applicants and relatively few applicants in all annually.

The randomization tests work as follows:

1. For each category, calculate the test statistic for the original data.
2. Randomly reassign the presenter gender labels $B=10,000$ times, holding constant the number of female and male labels. For each assignment, recalculate the test statistic for each category.
3. Calculate the P-value for each category as in (1).

In addition, we used nonparametric combination of tests (NPC) [16] to combine categories into a single multivariate randomization test (see below).
We performed the following randomization tests:

- One-sided randomization test using the difference in the median number of acknowledged questions between male and female presenters
- One-sided randomization test using the difference in the median number of unacknowledged questions (i.e., interruptions) between male and female presenters
- One-sided randomization test using the difference in the median number of attempted interruptions between male and female presenters
- One-sided randomization test using the difference in the median time spent on audience questions/comments between male and female presenters
- Nonparametric combination of tests combining all 13 categories, where the individual tests were one-sided for the four variables mentioned above and two-sided for the other 9 categories.

We use 1-sided tests for the four primary categories because previous research suggests that women receive more questions, are interrupted more often, and spend more time answering questions than men [11-13]. We also combine all 13 categories into a single, omnibus test using the nonparametric combination of tests method (NPC) [16], a general method for creating multivariate tests by combining univariate permutation tests. The test statistic for the multivariate test is calculated by applying a combining function to the P-values from the univariate tests.
The randomization distribution of that combination of P-values under the null hypothesis is used to calibrate the omnibus test, as follows:

1. Create B randomized versions of the dataset by randomly reassigning the presenter gender labels B times, yielding a total of $B+1$ datasets, including the original.
2. For each of the $B+1$ datasets, calculate the test statistic for each of the 13 categories (the difference in medians for that category between male and female presenters).
3. Then, for each dataset, replace the value of the test statistic for the j th category with the fraction of values (across the $B+1$ versions of the dataset) for which the j th test statistic
is greater than or equal to the value of the test statistic for that dataset (for two-sided tests, the test statistic is the absolute value of the "raw" difference). This replaces each observed value of the test statistic by its corresponding P value. That gives $B+113$-vectors; the components of each 13 -vector are numbers between 0 and 1 .
4. Apply Fisher's combining function $\left(-2 \sum_{j} \ln P_{j}\right)$ to each of the $B+113$-vectors to get the NPC test statistic for each dataset.
5. The overall P-value is the fraction of the NPC test statistics (among the $B+1$ values) that are greater than or equal to the NPC statistic for the original dataset.

In total, five tests (the four one-sided randomization tests and the NPC test) were performed on 4 subsets of each department's data-all presenters or pre-tenure presenters, and the entire talk or pre-Q\&A portion of the talk-a total of 20 tests. We adjusted for multiplicity using the Holm-Bonferroni correction, but nothing was statistically significant even before the adjustment.

RANDOMIZATION TEST RESULTS

Descriptive statistics do not illuminate differences in the number or nature of questions asked to female versus male presenters. Figure 1 shows the distribution of acknowledged, unacknowledged, and follow up questions asked broken down by department and gender.
Here we present our results based on randomization tests. These findings were compared to an analysis using the parametric ZINB method of Blair-Loy et al. [11], which was calibrated parametrically and nonparametrically using randomization (see Comparison with Previous Studies and Appendix B).
We considered the entire talk (pre- and post-Q\&A), pre-Q\&A by itself, all presenters, and only pre-tenure presenters: four analyses in all. Table 3 show entire talk results for each department and all presenters. Results for pre-Q\&A and only pre-tenure presenters were qualitatively the same and are presented in the Appendix.
Some differences were positive (women received more questions of a given type than men) and some negative; most were zero. The smallest P-value was 0.14 , for unacknowledged questions in ME. Almost half of the $65 P$-values for individual categories were equal to 1 ; only 3 are below 0.2 (in EECS and ME). The non-parametric combination of tests yields a combined P-value of 1 for all departments. In summary, the statistical evidence that audience members interact with female and male presenters differently is weak.

COMPARISON WITH PREVIOUS STUDIES

We find relatively small differences in the median number of questions between female and male presenters: the difference was 0 for most types of questions and comments, but depending on the department and the type of question or comment, the difference ranged from -7 (women received fewer questions) to 7 (women received more questions). Median time for

Question Distribution by Type, Department and Gender

Figure 1: Box plots showing the distribution of acknowledged, unacknowledged and follow up questions asked broken down by department and gender. The box extends from the 25th to 75th percentile with a line for the median in between. The whiskers extend from the minimum to maximum values, with points plotted above or below if they are outside of 1.5 times the interquartile range.

Table 3: For each department, difference in medians (femalemale) for each category of audience utterance, for entire talks (preand post-Q\&A), for all applicants (non-tenured and tenured).

	CEE	EECS	IEOR	ME	Physics
Time on Questions (in seconds)	43	37	117	31	0
	0.36	0.15	0.50	0.33	0.64
Acknowledged Question	2	1	7	-5	-2
	0.29	0.30	0.37	0.97	1
Unacknowledged Question	0	0	-7	2	1
	0.83	0.59	0.65	0.14	0.35
Attempted Interruption	0	0	-2	0	0
	1	1	0.65	0.85	0.67
Follow-up Question	1	1	-1	-2	-1
	0.49	0.35	0.65	0.85	0.77
Scientific Comment	0	0	-3	2	0
	1	1	0.57	0.17	1
Non Scientific Comment	0	0	-2	1	0
Positive Comment	1	1	0.59	0.55	1
	0	0	0	0	0
Clarifying Question	1	1	1	1	1
Furthering Question	3	3	-5	-5	-3
	0.36	0.18	0.72	0.29	0.32
Critical Element	1	0	4	0	2
	1	1	0.38	1	0.63
Ad Hominem	0	0	-1	0	-1
	1	1	1	1	0.65
Self Referential	0	0	0	0	0
	1	1	1	1	1

P-values for permutation tests are italicized in the second row for each question category.
questions was $0-2$ minutes more for women than for men. The randomization tests do not find any of these differences to be statistically significant.
We are aware of three studies related to ours: Blair-Loy et al. [11], Davenport et al. [12], and Dupas et al. [13]. Blair-Loy et al. [11] is the closest to ours: the other studies primarily look at non-job talks (or do not look at job talks at all), annotate talks "live" while the talk was underway, and examine talks in other disciplines (Economics and Astronomy versus Engineering and Physics).
Davenport et al. [12] is an "informal report" based on 225 talks at the 223rd Meeting of the American Astronomical Society (AAS), held in January 2014. Attendees of AAS were asked to recall and report the number of questions asked in talks they attended through an online form. The online form was advertised to the attendees via email, social media, and blogs. Attendees were not given any training on recording information about the talks, and the report does not analyze the reliability of annotations. The mean number of questions for female presenters was 3.28 (SE 0.20) and for male presenters was 2.64 (SE 0.12). It is not clear how to assess whether the difference, 0.64 , is meaningful or statistically significant. Our best understanding is that the reporters were self-selected; not every talk was included and observers had no training. We are not aware of any study of the accuracy of recall data (by untrained observers) in this context: the analysis consolidated multiple observations of a single talk on the assumption that the highest number was correct.

Dupas et al. [13] analyzed 462 Economics seminars at 32 institutions and from 84 seminar series. Of those, 176 talks (38\%) were job talks. The talks were annotated by 77 graduate students from many institutions. It is not clear whether the annotators received any training. Most talks were annotated by a single student; a small percentage were annotated by two students. Annotators recorded the start and end time of each interaction, information about who asked the question (e.g., male or female, professor or student), and whether the question was answered, deferred, ignored, or interrupted. Qualitative data were also collected about the type and tone of question. Coding the tone was optional and most annotators chose not to report tone. The data was analyzed using a large number of linear regressions, regressing the outcome (e.g., number of questions) on a subset of presenter gender, a vector of talk level controls (dummy variables for official seminar duration in minutes and whether the seminar is internal (presenter is from institution hosting the seminar)), seminar series fixed effects, coder fixed effects, home institution group fixed effects, and paper JEL fixed effects. The regression was weighted by the inverse of number of coders recording a given talk. The paper does not mention multiplicity adjustments, despite the fact that at least eight models were fit using four different treatments of clustered standard errors, along with dozens of other tests and regression models. (We estimate that the analysis includes hundreds of combinations of models and assumptions about errors.) Dupas et al. [13] conclude that women are asked 3.5 more questions than men on average.
Blair-Loy et al. [11] examined 119 videos from two years of job talks in Computer Science and Electrical Engineering departments at two highly ranked R1 universities and the Mechanical Engineering department at one of those universities. They do not mention the years the talks were recorded. Not every video was annotated; they annotated videos of all female presenters ($N=41$) and a sample of male presenters $(N=78)$ (matched to the female presenters by years from PhD).
They found small differences comparable to those we found: women had an average of 1.18 (SE 1.04) more unacknowledged interruptions than men, 0.097 (SE 0.89) fewer acknowledged questions, 1.83 (SE 1.09) more follow up questions, 2.91 (SE 2.40) more total questions, and 0.012 (SE 0.0065) proportion of the time more on audience questions. The t-statistics for the individual Blair-Loy et al. [11] estimates are 1.8 or below: formally, the differences are not statistically significant, even before adjusting for multiplicity. Thus, our data and theirs agree in broad brush.
However, we disagree over the statistical and practical significance of the (generally) small observed differences. Blair-Loy et al. [11] find the gender differences to be statistically sig-nificant-but not on the basis of the t-statistics. Instead, they introduce an ungrounded parametric model for audience questions: zero-inflated negative binomial (ZINB), which they fit to the data by regression. They find the gender coefficient in a ZINB model to differ significantly from zero at significance level 0.05 for follow-up questions and at level 0.1 for total questions.

Appendix B discusses differences in more detail, including differences in the data collection and the statistical analysis. It applies their parametric analysis to our data and shows that randomization P-values for the same test statistic are substantially larger, and that the parametric test may produce the spurious appearance of statistical significance.

DISCUSSION

Are interruptions bad?

So far we have considered whether there are gender differences in how audiences treat speakers. Generally, the observed differences are small and neither material nor statistically significant. However, we might also wonder whether asking women more questions than men disadvantages women at all. Blair-Loy et al. [11] suggest that women are disadvantaged by frequent audience questions.
Our study is observational, not a controlled experiment; it is hard to draw reliable causal inferences from observational data. However, our data suggest that (at least in some departments) questions reflect genuine interest in the talk: departments that spent more time asking female presenters questions also hired women more frequently during that time period. Table 1 shows that the proportion of female pre-tenure faculty in CEE, EECS, and IEOR is higher than the proportion of women in their applicant pools. These departments also spent more time questioning women than men. On the other hand, women and men spent equal time on questions in Physics, which hires women roughly in proportion to their representation in the applicant pool.
Furthermore, in CEE, faculty presenters who received offers generally were asked more questions during their talk than presenters who did not receive offers, which is consistent with the chair's description of departmental culture (see Departmental culture). The median number of questions asked of presenters who received offers was larger than the median for presenters who did not receive offers by 2 acknowledged questions and 1 unacknowledged question. While more study is needed, these descriptive statistics suggest that, at least in CEE, candidates who receive more questions may be treated more favorably-not less favorably-in hiring decisions.
In summary, questions and interruptions could signal many different things, including:

- audience interest, curiosity, engagement, or excitement
- audience confusion, related to the audience's familiarity with the material
- audience confusion, related to the quality or clarity of the exposition
- disrespect, hostility, or harassment

Our data suggest that all four of these things happen, depending on departmental culture.

Departmental culture

Descriptive statistics and our randomization test analysis indicated substantial differences in the way departments tend to
act towards speakers-regardless of the speaker's gender. For example, the median number of audience utterances was 9 for both male and female presenters in CEE whereas it was 23 and 24 , respectively, for IEOR. In IEOR, talks by 3 of the 8 speakers (all men) had no formal Q\&A period, but had many pre-Q\&A questions.
For the Engineering departments, women generally spent more time on questions and were asked more questions (except in ME); however, these differences are small and not statistically significant. In Physics, male presenters generally spent more time on questions and comments and were asked more questions than female presenters, although the differences are not statistically significant.
We asked the department chairs to describe the general department question etiquette.
In CEE, the audience is encouraged to hold questions until the end of the talk. Audiences are generally courteous, but questions at the end of the talk are encouraged and better talks typically stimulate more questions.
In EECS, etiquette is evolving. For the years included in our analysis departmental culture embraced interrupting speakers during their talk.
In IEOR, questions are frequently asked during the talks. The culture condones asking questions and interrupting, especially if the question is clarifying.
In ME, questions are generally asked during talks. If there are too many questions in a row, the moderator might ask the audience to hold their questions.
In Physics, questions are encouraged and it is common to interrupt the speaker with clarifying questions during the talk. However, many audience members hold other kinds of questions until the end.

Leaky pipeline

Blair-Loy et al. [11] suggest that differences in audience interactions during academic job talks exemplify the "leaky pipeline." But as Dupas et al. [13] points out, there is a difference between disparate treatment, i.e., whether the audience interacts differently with female versus male presenters, and disparate impact, i.e., whether job outcomes are different for equally qualified female and male applicants. We do not find gender based differences in our academic job talks (disparate treatment). We also note that all of the departments we analyzed interviewed a greater proportion of women than the proportion of women in their applicant pool. However, for some departments, the proportion of interviewees who are women is much larger than the proportion of pre-tenure faculty who are women. This indicates potential bias in making job offers (disparate impact), yield, or retention of junior female faculty; we do not examine the issue here.

Limitations

Presenter gender self-identification was not available to us, so we had to infer gender based on name, appearance and pronouns on presenter website (if available). We did not infer any of
the presenters to be non-binary, so we were not able to analyze differences in audience interactions with non-binary presenters. Some departments had video quality that was so poor, e.g., Statistics, that we were ultimately unable to use those videos in our analysis.
Ideally we would have liked to have stratified our analysis by year, but we were unable to do this due to small sample sizes. Therefore, we were unable to account for whether a department implemented bias training or specifically tried to diversify the faculty hiring process during the study period.
It is unclear to us what magnitude of difference is important. For example, is a difference of one question a material difference? We do not believe the median differences observed in this study are material.

CONCLUSION

Neither our main analysis (randomization tests with difference in the median number of questions asked of female and male presenters as the test statistic) nor our nonparametric calibration of a parametric test finds material or statistically significant differences in audience interaction with female versus male presenters (P-value ≥ 0.1).
Of course, women are discriminated against in other ways. Previous studies have shown that women and faculty from under-represented minority groups face conscious and unconscious biases in STEM and academia [3,4,8,17,18].
It is clear that commitment and leadership can bring large changes in gender equity in hiring in a relatively short period of time: three years after instituting systematic changes to recognize and value contributions to community engagement, fully 50% of the faculty hired by the College of Engineering were women.
Moreover, hiring is not the end of the story. For example, relying on student evaluations of teaching for employment decisions disadvantages women and other groups protected by employment law [3]. Universities must also pay attention to mentoring, assessment, and promotion to ensure that everyone is supported and evaluated fairly.

ACKNOWLEDGMENTS

We are grateful to Karie Frasch and Fatima Alleyne for data, to Pamela Cosman for helpful conversations, and to Emily Hsiao, Omar Buenrostro and Luyun Lin for their help with the annotations.

REFERENCES

[1] Moss-Racusin CA, Dovidio JF, Brescoll VL, Graham MJ, Handelsman J. Science faculty's subtle gender biases favor male students. Proc Natl Acad Sci. 2012;109:16474-9.
[2] Reuben E, Sapienza P, Zingales L. How stereotypes impair women's careers in science. Proc Natl Acad Sci. 2014;111:4403-8.
[3] Boring A, Ottoboni K, Stark P. Student evaluations of teaching (mostly) do not measure teaching effectiveness. ScienceOpen Res. 2016.
[4] Caplar N, Tacchella S, Birrer S. Quantitative evaluation of gender bias in astronomical publications from citation counts. Nat Astron. 2017;1:1-5.
[5] Kaatz A, Gutierrez B, Carnes M. Threats to objectivity in peer review: the case of gender. Trends Pharm Sci. 2014;35:371-3.
[6] Witteman H, Henricks M, Straus S, Tannenbaum C. Female grant applicants are equally successful when peer reviewers assess the science, but not when they assess the scientist. Biorxiv. 2018.
[7] Madera JM, Hebl MR, Martin RC. Gender and letters of recommendation for academia: Agentic and communal differences. J Appl Psychol. 2009;94:1591-9.
[8] Schmader T, Whitehead J, Wysocki VH. A linguistic comparison of letters of recommendation for male and female chemistry and biochemistry job applicants. Sex Roles. 2007;57:509-14.
[9] Sarsons H. Gender differences in recognition for group work. Harvard University; 2015.
[10] Budden AE, Tregenza T, Aarssen LW, Koricheva J, Leimu R, Lortie CJ. Double-blind review favours increased representation of female authors. Trends Ecol Evol. 2008;23:4-6.
[11] Blair-Loy M, Rogers L, Glaser D, Wong YA, Abraham D, Cosman P. Gender in engineering departments: are there gender differences in interruptions of academic job talks? Soc Sci. 2017;6:29.
[12] Davenport JRA, Fouesneau M, Grand E, Hagen A, Poppenhaeger K, Watkins LL. Studying gender in conference talks-data from the 223rd meeting of the american astronomical society. ArXiv Preprint ArXiv:1403.3091, 2014.
[13] Dupas P, Modestino AS, Niederle M, Wolfers J. Gender and the dynamics of economics seminars. Technical report, National Bureau of Economic Research, 2021.
[14] Dwass M. Modified randomization tests for nonparametric hypotheses. Ann Math Stat. 1957;28:181-7.
[15] Ramdas A, Barber RF, Candès EJ, Tibshirani RJ. Permutation tests using arbitrary permutation distributions. Sankhya A. 2023; 1-22.
[16] Pesarin F, Salmaso L. Permutation tests for complex data: theory, applications and software. Wiley; 2010.
[17] Brunsma DL, Embrick DG, Shin JH. Graduate students of color: race, racism, and mentoring in the white waters of academia. Sociol Race Ethnic. 2017;3:1-13.
[18] Ozgumus A, Rau H, Trautmann S, Konig-Kersting C. Gender bias in the evaluation of teaching materials. Front Psychol. 2020;11:1074.

APPENDIX

A. DATA QUALITY

We examined three sets of annotations to get a sense of data quality. The first two sets were collected towards the beginning of the annotation process: 21 videos from ME and 17 from Physics. The last set was collected towards the end: 7 additional videos from ME.
First, we looked at how often the two annotators agreed there was an audience utterance, regardless of how it was labelled. For the first ME set and the Physics annotations the agreement was 74% and 69% respectively. For the second ME set, the agreement was 74\%.
We randomly sampled and reviewed several videos to understand the source of these discrepancies.
In one video, there were no discrepancies: both annotators found 6 audience utterances.
In another video, one annotator found 32 audience utterances and the other annotator found 37 audience utterances, including all 32 the first annotator found. We summarize this as

$$
\begin{aligned}
& \frac{\# \text { events labelled by both as an interruption }}{\# \text { events labelled by either as an interruption }}=\frac{32}{37} \\
& \quad=86 \% \text { accuracy. }
\end{aligned}
$$

Of the 5 times the second annotator found an interruption but the first did not, 3 were interruptions that lasted less than 2 seconds and a fourth lasted 8 seconds. The fifth discrepancy was that the first annotator missed a question from an audience member who had interrupted the presenter's response to a different question from a different audience member, coding the exchange as one interruption when it was two.
In the third video, annotators agreed on $18 / 26=69 \%$ of the utterances one or both identified. There were 8 discrepancies. Six involved utterances that lasted less than 5 seconds. One annotator missed a 9 -second question at the end of the video. The last resulted from one annotator coding two quick interjections (6 seconds and 4 seconds with a 3 -second presenter remark in between) as one interjection.
In general, discrepancies arose from an annotator missing an audience utterance during a quick exchange, especially in videos with many audience interjections. When both annotators agreed there was an utterance, they generally agreed on how to code that utterance.

B. DETAILED COMPARISON WITH BLAIR-LOY ET AL.

 B. 1 Video annotationOur system of annotations differs slightly from that used by Blair-Loy et al. [11]: They used three categories of audience utterances: acknowledged questions, follow-up questions, and unacknowledged interruptions. They label all follow-up questions "acknowledged," while we label a follow-up question "unacknowledged" if the speaker was cut off by the audience member to ask another question. We also include "attempted interruptions," which Blair-Loy et al. [11] do not appear to
include in their analysis-we think their taxonomy classifies attempted interruptions as interruptions. Blair-Loy et al. [11] consider only the pre-Q\&A period; we consider both pre-Q\&A and Q\&A.
We found that individual reviewers may miss some utterances, so two raters reviewed each video and a third rater resolved differences (See Appendix A). In the Blair-Loy et al. [11] study, one person annotated each video. In the Dupas et al. [13] study, some talks were annotated by two raters-who often disagreed substantially—but most were annotated by only one (untrained) rater in real time. Our raters found it necessary to rewind and review portions of the video repeatedly to accurately code rapid exchanges between the audience and the speaker, so we expect that the data quality in Dupas et al. [13] is uneven.

B. 2 Statistical analysis

Blair-Loy et al. [11] use a statistical test based on the coefficient of gender in a ZINB regression that includes data from all departments (see Section 5 of Blair-Loy et al. [11]).
They note that ZINB is a common model for "overdispersed" count data. However, that does not justify using it as a basis for inference, which requires the data to have been generated by the ZINB model.
The ZINB model involves two sub-models: a model for the probability zero questions are asked (the zero model) and a model for the number of questions given that at least one question was asked (the positive model). The zero model is a logistic function of a linear combination of covariates, and the positive model is a negative binomial model in which the parameters are a function of a set of covariates, including presenter gender. The test statistic is the gender coefficient in the positive model. We find this noteworthy because that coefficient does not capture whether male or female presenters get more questions overall; it only involves the distribution of the number of questions given that there were some.
Blair-Loy et al. [11] translate the scientific hypothesis that there is no gender bias into the statistical hypothesis that the gender coefficient in the positive model equals zero. The P-value is computed on the assumption that the ZINB model is true, i.e., it is how the data were generated.

B. 3 ZINB Test on the new data

We fit a ZINB model to our pooled pre-Q\&A data using the same covariates Blair-Loy et al. [11] used: proportion of faculty who are women and years since the presenter received a PhD. Tables 4 and 5 give the results. The resulting nominal P-values are smaller than those for our randomization test.
The parametric P-values are uninterpretable when the parametric assumptions are false, i.e., when the number of questions is not generated by a ZINB model (with the assumed functional relationship between the included covariates and the parameters of the model). Those assumptions are implausible, but one can still use the estimated coefficient of gender in the ZINB positive model to construct a valid test by calibrating the null distribution of the coefficient using randomization

Table 4: $\quad P$-values from randomization test using the gender coefficient from the ZINB positive model (with presenter gender and proportion female faculty as independent variables) as test statistic.

	Parametric	Unstratified randomization \boldsymbol{P}-value	Stratified randomization \boldsymbol{P}-value
Attemponsed Interruption	<0.01	0.05	0.04
Acknowledged Question	0.93	0.94	0.95
Unacknowledged Question	0.76	0.76	0.79
Follow-up Question	0.19	0.18	0.18
Total Questions	0.60	0.56	0.56

Each response variable was regressed on the presenter gender indicator variable and the proportion female faculty in that department in the ZINB model.

Table 5: $\quad P$-values from randomization test using the gender coefficient from the ZINB positive model (with presenter gender, proportion female faculty, and number of years since the presenter earned a PhD as independent variables) as test statistic.

		Unstratified Parametric randomization	Stratified randomization
Response variable	<0.01	0.07	0.05
Attempted Interruption	0.75	0.93	0.94
Acknowledged Question	0.96	0.79	0.75
Unacknowledged Question	0.24	0.19	0.20
Follow-up Question	0.67	0.57	0.57
Total Questions	0		

Each response variable was regressed on the presenter gender indicator variable, the proportion of female faculty in that department, and the number of years since the presenter earned a PhD in the ZINB model.
rather than relying on the parametric assumptions, as we now describe.
For each random assignment of the presenter gender, we fit the ZINB model and record the gender coefficient. The randomization P-value is the proportion of random assignments that yield an estimate of the gender coefficient greater than or equal to the estimate computed from the original data.
The randomization test can be performed with or without stratification by department, i.e., it can fix the number of female presenters in each department or only fix the total across departments. Because the stratified randomization test respects the number of male and female presenters in each department, it is tied more closely to the underlying data. The unstratified and stratified randomization P-values are in Tables 4 and 5. The randomization P-values generally are above 0.1 ; some are as large as 0.96 .
Table 4 gives the results corresponding to Table 4 of Blair-Loy et al. [11] for our data. The parametric P-value for the coefficient of gender in the ZINB positive model for attempted interruptions is 0.002 . If we calibrate the P-value using randomization rather than relying on the (false) parametric assumptions, the presenter gender coefficient is not significantly different from zero at level 5\% in any of the models, after adjusting for multiplicity. We also attempted to replicate Table 6 from Blair-Loy et al. [11]. It includes the number of years since the presenter earned a PhD as a covariate in the ZINB model. Unadjusted P-values
are reported in Table 5. The smallest randomization P-value is slightly above 0.05 . If the five tests were adjusted for multiplicity, the resulting P-values would be above 0.1 .

B. 4 Testing ZINB: negative controls

As a further illustration that the parametric assumptions of the ZINB model may produce misleading conclusions, we use the ZINB model to estimate the effect of a variable that should not matter: whether the presenter's first name has an even or odd number of letters.
The parametric P-value associated with this variable in the ZINB positive model is less than 0.05 for two of the response variables, the number of unacknowledged questions and the number of follow up questions. On the other hand, the randomization P-values (for the same test statistic) are above 0.05 for all response variables. Results are in Table 6.

B. 5 ZINB versus randomization tests

The randomization tests posit that gender is an arbitrary label, which might as well have been assigned at random. They make no assumption about the distribution of the number and nature of questions; they do not even assume those things are random. Indeed, they "condition" on the number of questions of each type received by each presenter.
In contrast, the ZINB model assumes that questions are generated in the following way. First, toss a biased coin. If the coin lands heads, then the presenter receives no questions (in the pre-Q\&A portion of the talk). If the coin lands tails, toss a different coin repeatedly, independently, until it lands heads some pre-specified number of times. The number of tosses it takes to get the pre-specified number of heads is the number of questions asked in the pre-Q\&A portion of the talk. The parameters in the models are the chance of heads for the first coin, chance of heads for the second coin, and the pre-specified number of heads for the second coin. These are the "natural" parameters for the negative binomial, but it is common to re-parametrize the distribution in terms of the mean and scaled standard deviation. These parameters are in turn modeled as parametric functions of a pre-specified set of covariates, such as gender, proportion of female faculty, and years since the presenter earned a PhD.

Table 6: $\quad P$-values from randomization test using the coefficient of the indicator variable of whether the presenter's first name has an even or odd number of letters in the ZINB positive model as the test statistic.

	Parametric	Unstratified randomization \boldsymbol{P}-value	Stratified randomization \boldsymbol{P}-value
\boldsymbol{P}-value			
Attempted Interruption	0.36	0.36	0.34
Acknowledged Question	0.45	0.46	0.46
Unacknowledged Question	0.05	0.10	0.11
Follow-up Question	0.04	0.06	0.05
Total Questions	0.13	0.13	0.14

Each response variable was regressed on the indicator variable of whether the presenter's first name has an even or odd number of letters.
A. K. Glazer et al.: Look who's talking: gender differences in academic job talks

The scientific research question is, "Are women interrupted more than men?" The ZINB analysis changes that question to "On the assumption that the number of questions was generated by a ZINB model with a specified parametric relationship to a given set of covariates, is the coefficient of "female" in the ZINB positive model zero?"
Focusing solely on the "positive model" (i.e., the distribution of pre-Q\&A questions given that at least one question was asked) widens the gap between the scientific question and the statistical question. Suppose, for example, that there are 50 female and 50 male presenters. Every man receives 5 questions. One woman receives 50 questions and the others receive none. The only woman who contributes data to the "positive model" is the woman who received 50 questions, but all the men contribute data. The positive model would show that women receive more questions than men, even though on average they receive fewer.

C SUPPLEMENTAL RESULTS

Additional results are shown below. Table 7 gives the results for all presenters (nontenured and tenured) for only the preQ\&A portion of the talk. Table 8 gives the results for only nontenured presenters for only the pre-Q\&A portion of the talk. Table 9 gives the results for only nontenured presenters for the entire talk (pre and post Q\&A). None of the omnibus tests are significant (P-value of 1).

Table 7: For each department, difference in the median (female - male) for each category with the permutation P-value italicized in the second row.

	CEE	EECS	IEOR	ME	Physics
Time on Questions (in seconds)	0	14	-65	7	-4
	1	0.25	0.65	0.29	0.84
Acknowledged Question	0	0	1	1	0
Unacknowledged Question	1	0.65	0.51	0.43	0.96
	0	-1	-16	1	0
	1	0.93	1	0.26	0.68
Follow-up Question	0	0	-4	0	0
	1	1	0.95	1	1
Scientific Comment	0	0	-11	0	0
	1	0.56	0.87	0.54	0.96
Non Scientific Comment	0	0	-2	0	0
	1	1	0.40	1	1
Positive Comment	0	0	-1	0	0
	1	1	0.69	1	1
Clarifying Question	0	0	0	0	0
	1	1	1	1	1
Furthering Question	0	1	-9	-2	1
	1	0.84	0.72	0.79	1
Critical Element	0	0	2	0	0
Ad Hominem	1	1	1	1	1
	0	0	-1	0	0
Self Referential	1	1	0.38	1	1
	0	0	0	0	0

Table 8: For each department, difference in medians (female - male) for each category with the permutation P-value italicized in the second row.

	CEE	EECS	IEOR	ME	Physics
Time on Questions (in seconds)	0	8	-65	2	-4
	1	0.41	0.65	0.41	0.84
Acknowledged Question	0	-1	1	0	0
	1	0.88	0.51	0.58	0.96
Unacknowledged Question	0	-1	-16	1	0
	1	0.92	1	0.47	0.68
Attempted Interruption	0	0	-4	0	0
	1	1	0.95	1	1
Follow-up Question	0	0	-11	0	0
	1	0.69	0.87	0.60	0.96
Scientific Comment	0	0	-2	0	0
	1	1	0.40	1	1
Non Scientific Comment	0	0	-1	0	0
	1	1	0.69	1	1
Positive Comment	0	0	0	0	0
Clarifying Question	1	1	1	1	1
Furthering Question	0	0	-9	-2	1
	1	1	0.72	0.65	1
Critical Element	0	0	2	0	0
	1	1	1	1	1
Ad Hominem	0	0	-1	0	0
	1	1	0.38	1	1
Self Referential	0	0	0	0	0
	1	1	1	1	1

Statistics based on non-tenured presenters only and the pre Q\&A data only.

Table 9: For each department, difference (female - male) in the median for each category with the permutation P-value italicized in the second row.

	CEE	EECS	IEOR	ME	Physics
Time on Questions (in seconds)	-6	39	117	-13	0
	0.48	0.11	0.52	0.55	0.64
Acknowledged Question	1	1	7	-6	-2
	0.27	0.34	0.37	0.97	1
Unacknowledged Question	0	0	-7	2	1
	0.75	0.66	0.65	0.22	0.35
Attempted Interruption	0	0	-2	0	0
	0.94	0.99	0.65	0.79	0.67
Follow-up Question	1	1	-1	-2	-1
	0.41	0.45	0.65	0.78	0.77
Scientific Comment	-2	0	-3	2	0
	0.15	1	0.57	0.14	1
Non-scientific Comment	0	0	-2	1	0
	1	1	0.59	0.99	1
Positive Comment	0	0	0	0	0
Clarifying Question	1	1	1	1	1
Furthering Question	2	2	-5	-5	-3
	0.42	0.42	0.72	0.42	0.32
Critical Element	1	-1	-5	-1	2
Ad Hominem	0.56	0.9	0.72	1	0.63
	0	0	-1	1	-1
Self Referential	1	1	1	0.97	0.65
	0	0	0	0	0
	1	1	1	1	1

[^0]
[^0]: Statistics based on non-tenured presenters only and the entire talk.

