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Abstract

Recent advances in deep learning for tomographic reconstructions have shown great potential 

to create accurate and high quality images with a considerable speed up. In this paper, we 

present a deep neural network that is specifically designed to provide high resolution 3-D 

images from restricted photoacoustic measurements. The network is designed to represent an 
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iterative scheme and incorporates gradient information of the data fit to compensate for limited 

view artifacts. Due to the high complexity of the photoacoustic forward operator, we separate 

training and computation of the gradient information. A suitable prior for the desired image 

structures is learned as part of the training. The resulting network is trained and tested on a 

set of segmented vessels from lung computed tomography scans and then applied to in-vivo 
photoacoustic measurement data.

Index Terms

Deep learning; convolutional neural networks; photoacoustic tomography; iterative reconstruction

I Introduction

PHOTOACOUSTIC Tomography (PAT) is an emerging “Imaging from Coupled Physics” 

technique [1] that can obtain high resolution 3D in-vivo images of absorbed optical energy 

by sensing laser-generated ultrasound (US) [2]–[7]. If data is obtained over a complete 

surface surrounding the domain of interest, and for all times over which the acoustic waves 

are propagating, then the inverse problem can be solved directly by several analytical or 

numerical algorithms [8]. The fastest of such methods just require to solve a single wave 

equation; see Section II-B for details. In many practical applications, restricted spatial and/or 

temporal sampling of the US signal is either imposed due to geometrical limitations (e.g. 

limited view) [9], or by the choice to utilise a compressed-sensing (CS) undersampling 

strategy in order to accelerate data acquisition [10]. In such cases, direct reconstruction 

methods are not optimal to obtain high quality reconstructions as they give rise to artefacts 

and/or adverse noise amplification.

Recently, several groups showed that variational image reconstruction methods that 

iteratively minimise a penalty function involving an explicit model of the US propagation 

and prior constraints on the image structure can provide significantly better results in these 

situations [11]–[16]. However, a crucial drawback of these methods is their considerably 

higher computational complexity and the difficulty to handcraft prior constraints that capture 

the spatial structure of the target accurately enough.

As the strongest contrast in biological soft tissue is given by haemoglobin, a central promise 

of PAT is to deliver high quality images of blood vessel networks, e.g., for assessing the 

vascularization of tumors [17], [18]. Consequently we assume in this study that our targets 

are vessel rich and hence we learn suitable prior constraints from a set of segmented vessels.

A Deep Learning in Image Reconstruction

The huge recent success of Deep Learning methods in image processing and computer 

vision has seen an increasing interest in applying similar strategies to tomographic 

reconstruction problems. Deep Neural Networks (DNN) are especially popular due to the 

low latency of a forward pass through a network which leads to prospective highly efficient 

reconstruction algorithms.
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In this paper we differentiate between two fundamentally different approaches to involve 

learning in image reconstruction:

1) Reconstruction followed by learning based post-processing. In this approach 

image reconstruction is carried out using a simple inversion step, and post-

processing is used to remove artefacts and noise.

2) Model based learning and reconstruction. In this approach the forward and 

adjoint operators of the imaging problem are used directly in the inverse 

algorithm, with a multiscale regularisation scheme whose parameters are learned 

in the training phase.

Many applications of Deep Learning for image reconstruction have been concentrated on 

the first approach by using a fast and simple direct reconstruction algorithm to obtain low 

quality and corrupted images and then train a convolutional neural network (CNN) on 

removing those artefacts, see [19], [20] for an application to CT, [21] for PAT, and MRI [22].

Alternatively following the second approach by including the physical forward model 

into the network has been studied in [23]–[27]. However, these improved results in 

reconstruction quality typically come at the cost of longer computation times which are 

effectively limited by the repeated simulation of the physical model.

In this paper we take the second approach. In particular, we utilize our knowledge of the 

forward operator in the reconstruction process, but we will not invoke handcrafted prior 

constraints on the vessel structures that we are interested in. Instead, we will learn them 

from the data.

B Compressed Sensing and Limited View PAT

In several imaging modalities the application of compressed sensing methods has been 

studied as a means to achieve faster acquisition speeds and/or a reduced dose when using 

ionising radiation [28]–[30]. In PAT this has been studied for example in [13] and [31]–[34]. 

Because these methods mandate an appropriate regularisation strategy, the involvement of 

Deep Learning in compressed sensing is an important topic for study.

As well as data sub-sampling, in this paper we also consider the limited-view problem. Due 

to geometric restrictions, one can often only access the US field on one side of the tissue. 

A detailed examination and discussion of sub-sampling combined with the limited view 

problem for PAT can be found in [13].

C Overview of This Paper

The rest of the paper is organised as follows. In Section II we discuss the physical model 

of photoacoustic signal generation, as well as direct reconstruction approaches, variational 

and the corresponding iterative reconstruction approaches, and an outline of the model based 

learning approach. In Section III we give a detailed description of the architecture and 

implementation of the model based learning approach as well as a description of its training 

steps. In Section IV we discuss the measurement details, generation of training data as 

well as post-processing, i.e. denoising/artifact removal, of direct reconstructions. Results for 
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simulated and 3D in-vivo data are shown. Section V provides a detailed evaluation of the 

results. Finally in Section VI we provide some conclusions and outlook for the future.

II Photoacoustic Tomography

A Photoacoustic Signal Generation

To generate the PA signal, a short pulse of near-infrared laser light is sent into biological 

tissue where the photons will get scattered and absorbed by any chromophores present. 

Under certain conditions (see [35] for details), part of the absorbed optical energy will be 

thermalised, i.e., converted to heat, and the induced local pressure increase x travels through 

the tissue as an US wave (photoacoustic effect). Spatio-temporal measurements of these 

waves at the boundary of the tissue constitute the PA signal y. A common way to model the 

acoustic part of the signal generation is to consider the following initial value problem for 

the wave equation [8], [12], [35],

∂tt − c0
2Δ p(r, t) = 0, p(r, t = 0) = x, ∂tp(r, t = 0) = 0. (1)

The US sensing is then modeled as a linear operator ℳ acting on the pressure field p(r, t) 
restricted to the boundary of the computational domain Ω and a finite time window (see [3], 

[36] for details on measurement systems):

y = ℳp ∣ ∂Ω × (0, T ) . (2)

Equations (1) and (2) define a linear mapping

Ax = y, (3)

from initial pressure x to measured pressure time series y, which constitutes the forward 
problem in PAT. The corresponding image reconstruction step constitutes the inverse 
problem to (3).

Note that x is a Nx × Ny × Nz 3D image of initial pressure and y is a Nh× Nv× Nt volume 

of acquired pressure data as a function of acoustic propagation time. In the examples used 

in this paper this results in dimension of A of around 7M by 4.6M which (if fully dense) 

would require about 123TB of memory in single precision which is intractable for currently 

available computational resources. Thus image reconstruction methods require either direct, 

or iterative “matrix-free” implementations as discussed in the next sections.

B Direct Methods for PAT Image Reconstruction

Direct methods are especially attractive in the large scale setting as they only require 

solution of a single wave equation; i.e., given a computational solver for (1) we can compute 

an inverse solution with the same computational cost [12]. In particular in this study we 

choose to compute the adjoint solution A*y, which is close to the inverse solution.

Hauptmann et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2022 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Here, as the wave solver we use a pseudo-spectral timedomain method [37]–[39] as 

implemented in the k-Wave Matlab Toolbox [40], which allows to run the computations 

on GPU cards using fast CUDA code.

Whilst direct approaches are computationally efficient they are inadequate for dealing with 

the sub-sampled limited-view data employed in this paper as we demonstrate next. Figure 1 

illustrates the influences of limited-view and sub-sampling on a simple numerical phantom 

of tubes that should mimic blood vessels. From Figure 1(c), we can see that a reconstruction 

by A*y suffers from severe circular artefacts [41] and a systematic loss of contrast with 

depth. Figure 1(d) shows that these problems are accentuated with sub-sampled data.

C Variational Approach to PAT Image Reconstruction

Variational methods aim to recover the PA image x in (3) from the measurement y as a 

minimiser of a penalty function,

x ∈ argmin
x′

J x′ = argmin
x′

d y, Ax′ + λR x′ , (4)

where the fidelity term d (y, Ax′) measures the data fit and a regularising term R(x) 

encodes prior knowledge about the structures in the image. Often, R(x) is convex but not 

differentiable. A simple approach to find a solution to (4) is given by a proximal-gradient-
descent scheme:

xk + 1 = proxR, λγk + 1 xk − γk + 1∇d y, Axk , (5)

with step length γ > 0 and where the proximal operator solves an image denoising problem:

proxR, a(y) = argmin
x

R(x) + 1
2α ∥ x − y ∥2

2 . (6)

The drawback of the above procedure is the difficulty to choose a suitable regularisation 

term R(x), a regularisation parameter λ > 0, that balances data fit and the regularisation 

properties, and the potentially large number of iterations it takes to converge.

As shown in, e.g., [11]–[13], iterative image reconstruction methods of the form (5) that 

solve variational regularisation problems [42] like (4) can improve upon the direct image 

reconstruction methods. For instance, we can incorporate the physical constraint that the 

initial pressure increase x is always positive by choosing R(x) to be 0 if x ≥ 0 and ∞ 

otherwise. For this, proxR,α(y) = max (y, 0). With the canonical choice d y, Ax′ = 1
2Ax′ − y2

2, 

(4) simply becomes a non negative least squares (NNLS) solution. Figures 1(f), 1(i) 

demonstrate that with increasing number of iterations, both limited-view artefacts and the 

systematic loss of contrast disappear. However, they also show that the convergence in 

deeper, non-central parts of the image is considerably slower and the limited-view will still 

manifest in blurry edges. For the sub-sampled data case shown in Figures 1(g), 1(j) we 

see similar effects although in addition, noise-like artefacts remain. As examined in [13], 

using noise-reducing, edge-preserving regularisation like the (isotropic) total variation (TV) 
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functional R(x) = ∥ ∇x ∥1 can further improve such results as can be seen in Figures 1(h), 

1(k). The main problem of such iterative approaches is in terms of computation times, 

compared to the linear backprojection by A*y which requires the solution of one wave 

equation, computing 20 iterations of NNLS or TV requires in total 40 additional solutions of 

a wave equation.

D Model Based Learning

Regularisation functionals like TV are popular because they often allow for a mathematical 

analysis of the minimisers of (4) and have been designed to perfectly recover certain aspects 

of x, e.g., its singularities [43]. As such, they often yield spectacular results for simple 

numerical or experimental phantoms like the ones shown in Figure 1. In many applications 

however, typical images x have a more involved structure and the prior information 

expressed by simple regularisers like TV does not lead to optimal results. One example 

is given by sub-sampled PAT measurements of vessel networks [13]. If we have a set of 

typical PA images of vessel networks, we could try to learn more suitable prior information 

and how to best incorporate it in an iterative image reconstruction approach that also utilizes 

measurement information over the gradient of the data fit,

∇ 1
2Axk − y2

2 = A∗ Axk − y , (7)

at every step k.

Inspired by [44] and [45] we take the structure of (5) as a starting point: Each iteration 

consists of updating xk by combining measurement information delivered through the 

gradient ∇d(y, Axk) with an image processing step. Instead of deriving the concrete form of 

this combination from a fixed penalty function (4), we propose to learn instead an update 

function for each iteration

xk + 1 = Gθk ∇d y, Axk , xk . (8)

This implies that the effect of the regularising term is now learned from the data during 

training. The functions Gθk correspond to CNNs with different, learned parameters θk 

but with the same architecture. The network structure is kept simple and should mimic a 

proximal gradient update (5). Due to the representation of each update by a CNN applied 

to the current xk and the gradient ∇d (y, Axk), we call the whole algorithm deep gradient 
descent (DGD).

In contrast to [23], [26], and [45] we train the DGD layer by layer (layer corresponding 

here to one iterate), i.e. we learn the parameters θk for each iteration separately. In 

this way we can exclude the photoacoustic operator from the training procedure. This is 

necessary to make the training feasible. Note, that the photoacoustic operator has complexity 

O N4log(N) [12], for a volume of size n = N × N × N, compared to CT and MRI where A has 

complexity O N3log(N)  for a volume of size n = N × N × N. Therefore we think that such 
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layer by layer training scheme is the only feasible approach for iterative high-resolution 3D 

PAT imaging at the present stage.

III Implementation

In a CNN, each layer is of the following form: Given the input g and output h with channel 

index sets I, J respectively, then

ℎi = φ bi + ∑
j ∈ J

ωi, j ∗ gj , i ∈ ℐ,

with a componentwise nonlinear function φ and convolution *. The whole parameter set θ of 

the network is therefore given by the biases bi ∈ ℝ and convolutional filters ωi,j ∈ ℝsn
 (with 

kernel size s and spatial dimension n) of each network layer.

The specific architecture we have chosen for the CNNs performing the update in equation 

(8) is illustrated in Figure 2. In each iteration we input xk and ∇d (y, Axk) to a similar 

pipeline, where both are spread to 16 and then 32 channels by a convolutional layer with 

kernel size s = 5 and dimension n = 3, equipped with a rectified linear unit as nonlinearity, 

that is defined as

ReLU(x) = max(x, 0) .

The output of both pipelines is added together and first reduced to 16 channels, 

equipped with a ReLU, and then to 1 channel without a nonlinearity, but a simple scalar 

multiplication. The result is added to the current iterate and projected to the positive 

numbers by a ReLU, similar to the proximal for NNLS discussed in Section II-C.

The architecture in this study is motivated by a typical network structure consisting of an 

analysis/encoding and a reassembling/decoding part. In this analysis part, the number of 

channels is increased between layers to refine the analysis of the features extracted in the 

layer before. In the reassembling part, these features must be merged/thresholded to produce 

an output image, so the number of channels is decreased. Since the main contribution of this 

work is not the specific neural network architecture, we use a simple architecture following 

this convention. In particular, the network structure is kept rather small with the motivation 

in mind that each Gθk primarily learns how to combine current iterate and gradient as well 

as a data specific filters, in contrast to a large post-processing network. Furthermore, a 

compact structure is necessary to minimise the needed memory on the GPU.

A Training of the Deep Gradient Descent

Given a training set yi, xtruei
i, we have two options to train the parameters θk. The first is 

to pre-define a maximum of iterations kmax and train all θk, for k = 0,&, kmax – 1, together 

to minimise the difference between xtruei  and the result of the last iteration xkmax
i ; that is we 

seek to find
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ℰkmax = min
θ0, …, θkmax − 1

∑
i

xkmaxii − xtruei , (9)

for some suitable norm. The second approach is to train the parameters sequentially: θ0 is 

trained to minimise the difference between xtruei  and x1
i  given data yi, for all indices i. After 

that, θ1 is trained to minimise the difference between xtruei  and x2
i , given the optimal x1

i

found in the training of the first CNN Gθ0. That means the minimisation of (9) is split into 

kmax independent optimisation problems w.r.t. disjoint subsets of parameters θk, k = 0,&, 

kmax — 1, given by

min
θk

∑
i

xk + 1
i − xtruei , xk + 1

i = Gθk ∇d y, Axk
i , xk

i . (10)

The first approach has the advantage that the network is more flexible to achieve the best 

possible result after kmax iterations, but during the training, the operators A and A* need to 

be evaluated many times, since for each training step all xk and their corresponding gradients 

have to be computed to evaluate (9). While the second approach is not optimal in the sense 

that it does not lead to minimal training error, it has two important advantages. Firstly, the 

computation of the gradient A*(Ax — y) and training decouple, which is important in view 

of the cost of application of A and A* in PAT. Secondly, it provides an upper bound on the 

training error (9). In fact, (10) can be viewed as a greedy approach which seeks to obtain 

a minimum in each layer k given xk—1 from the previous training step. We note that this 

property can be used to determine the number of layers kmax of the DGD in training by 

controlling the training error from layer to layer in contrast to choosing it a priori. Therefore, 

the second approach could also be used as a pre-training stage to initialize the weights for 

the first approach.

As the computational complexity of simulating acoustic wave propagation in 3D prohibits 

computing the gradient during any training scheme, we need to follow the second approach 

here. The whole training procedure we use is summarized in Algorithm 1 for a given number 

of maximum iterations kmax and the reference solution xtrue.

B Evaluation of the Deep Gradient Descent

After training the parameter sets θk k = 0
kmax − 1

, the learned iterative reconstruction scheme 

can be evaluated as follows:

Algorithm 1

Training Procedure

1: x0 ← A*y

2: function TRAININGCYCLE

3:  k ← 0
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4:  while k < kmax do

5:    Compute ∇d(y, Axk) = A*(Ax — y)

6:    function TRAINITERATE(∇d (y, Axk), xk, xtrue)

7:     Train for given accuracy

8:    end function(return θk)

9:    xk+1 ← Gθk(∇d(y, Axk), xk)

10:    k ← k + 1

11:  end while

12: end function

The new iterate xk+1 is computed by applying the network Gθk to the current iterate 

xk and the gradient of the data fit, in particular this means that the gradient has to be 

computed in every iteration. This procedure is equivalent to Algorithm 1 without calling 

TRAINITERATE in line 6-8.

IV Experiments

In this study we are interested in reconstructing human in-vivo data and hence we do not 

have a true target available for the training of measured data. This lack of a ground truth 

is one of the main challenges in supervised learning. Nevertheless, we chose to train the 

DGD with supervised learning using simulated data and hence a meaningful data set is 

crucial for a successful training, for that purpose we use segmented human vessel structures 

from computed tomography (CT) scans as discussed in the next section. The training and 

evaluation of each network Gθk has been implemented with TensorFlow [46] in Python. All 

computations are done on a Titan Xp GPU with 12GB memory.

A Training on Segmented Lung Vessels

The training data needs to be as realistic as possible to provide a meaningful basis for the 

algorithm. To achieve this we have used the publicly available data from ELCAP Public 
Lung Image Database.1 The data set consists of 50 whole-lung CT scans, from which we 

have segmented about 1200 volumes of vessel structures with a Frangi vesselness filter [47], 

[48]. The segmented volumes were of size 40 × 120 × 120, and were then scaled up by 

a factor of 2 to the final target size of 80 × 240 × 240. Out of these volumes we chose 

1024 as ground truth xtrue for the training and simulated limited-view, sub-sampled data 

using the same measurement setup used in the in-vivo data: We assume that each voxel 

has the isotropic length dx = 84.75μm and that the full data is recorded at locations on 

a grid with grid size 2dx on one of the two 240 × 240 sized outer planes of the volume 

(i.e., the scanning geometry is similar to Figure 1(a)). In time, Nt = 486 pressure samples 

are recorded with dt = 16.6ns. The full data is then sub-sampled as illustrated in Figure 

1 http://www.via.cornell.edu/databases/lungdb.html 
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1(e) but by a sub-sampling factor of 4. We have added normally distributed noise to the 

measured data, such that the resulting SNR was approximately 15 for all measurements and 

we assumed a sound speed of c0 = 1580m/s. In a nutshell, we obtained the data y = Axtrue + 

ε, where ε denotes the added noise.

The training set for one CNN Gθk then consists of current iterate xk, the gradient of the data 

fit ∇d(y, Axk) = A*(Axk — y), and the ground truth xtrue. We initialize the iteration with

x0 = A∗y .

Precomputing the gradient information for each CNN takes about 10 hours.

We trained the CNNs using TensorFlow’s implementation of Adam [49]. For the training 

we used batches of size 2, since this already fills up the memory (12GB) of the GPU 

completely. We trained each Gθk for 25000 iterations (i.e. approximately 50 epochs) with an 

initial step size of 5 · 10–5 (learning rate), The minimised loss function, i.e. the norm in (10), 

is chosen as the l2-distance of new iterate to the true solution xtrue,

loss(x) = x − xtrue 2
2 .

For training the first CNN Gθ0 we added an additional constraint to avoid the local minima 

of zero solutions by penalizing a small norm

lossadd(x) = − αmin ∥ x ∥2 − β, 0 ,

with small α, β > 0. The training of each CNN Gθk took about 1 day on the GPU. We have 

trained 5 iterates, i.e. kmax = 5, for the deep gradient descent. In total the whole training took 

7 days. We note, that this could be speed up by initialisation of θk with θk−1 or by more 

advanced optimisation strategies, see for instance the review [50]. At this point we would 

like to note, that had we included the operator A and A* in the training and trained all 5 

iterates together, then the time needed for 25000 iterations would be in the order of 70 days, 

and used at least 5 times more memory. The result of the DGD for simulated data is shown 

in Figure 3 for an example that was not included in the training set.

B Post-Processing by Deep Learning

To complement this study, we have also implemented the first approach of learning in 

image reconstruction, see Section I-A, viz. taking an initial direct reconstruction and train 

a network to remove artefacts and noise. Especially popular for improving these initial 

reconstructions is a CNN introduced as U-Net [51]. We refer to the original paper for 

the architecture, but roughly summarized its strength lies in a series of skip connections 

in a multilevel decomposition. For our application, we have followed the modified U-Net 

architecture proposed by [20] for post-processing of 2D X-ray tomography, that learns to 

compute an update to the initial reconstruction. We made the necessary modifications for a 

three-dimensional setting and implemented training and evaluation with TensorFlow.
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To be consistent with the previous section our direct reconstruction, which we seek to 

improve upon, is obtained by the application of the adjoint x0 = A*y. The modified U-Net 

is then trained on the set of pairs x0
i , xtruei

i. Due to memory restrictions we were only able 

to train one pair at a time. The loss function is chosen as the combination loss(x)+lossadd(x), 

see previous section. The training is then performed with Adam for 75 epochs and a learning 

rate of 10–4; this took 3 days. The results for simulated data will be discussed in Section 

V-B.

C Application to In-vivo Data

We now apply our method to in-vivo data of a human palm. The details of the measurement 

set-up and procedure are described in [14] and [52]. All other features like spatial 

dimensions of reconstruction volume, temporal sampling or the sub-sampling pattern are 

exactly the same as for the simulated data (cf. Section IV-A).

In-vivo data has different characteristics that are not perfectly represented by the training 

on synthetic data and hence a direct application of the trained network does not lead to 

satisfactory results, as illustrated by comparing it to a TV reconstruction in Figure 4. In 

particular, we see that the network has not learned to effectively threshold the noise-like 

artefacts in the low absorption regions i.e. regions with low concentration of chromophores. 

To train our approach to remove these features we simulated the effect of the low absorbing 

background as a Gaussian random field with short spatial correlation length, clipped the 

negative parts, scaled it to maximal value 0.1 and added it to each segmented volume xtrue 

where ever the intensity ofxtrue did not exceed 0.1 (i.e., the maximum intensity of xtrue 

stays 1). The synthetic CT volumes with the added background were then used for the data 

generation, i.e. yback
i = Axback

i + ε, whereas the clean volumes xtrue are used as reference for 

the training. Here ε is again chosen (see Section IV-A) such that the resulting measurement 

yback
i  had a SNR of approximately 15. We expect the network trained on the modified pairs 

yback
i , xtruei

i to be capable of effectively removing the background.

Furthermore, since the expected contrast in the images is crucial for the trained 

reconstruction procedure, we scaled the measurement as follows. First we computed the 

standard deviation of the measurement data for all simulated targets. Then we rescaled the 

sub-sampled real measured data to have a similar standard deviation. This rescaled data is 

then used for reconstructing with the DGD. The result after 5 iterations is shown in Figure 5.

The results can be further improved performing a transfer training of the previously trained 

networks Gθk. This however requires some reference reconstructions from the same or a 

similar system. We were able to perform such a transfer training with a set of 20 (fully 

sampled) measurements of a human finger, wrist, and palm from the same system. We 

then sub-sampled the data (fourfold) to obtain the training data yreal. As reference we took 

weakly regularised TV reconstructions from the fully sampled data, xTV. To update the 

DGD we have performed an additional 10 epochs of training on the pairs {yreal, xTV}, with 

a reduced learning rate of 10–5. Such transfer training takes only 90 minutes to update the 
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entire DGD. We denote the updated CNNs by Gθk and the resulting outputs by xk. The 

effect of the updated DGD is shown in Figure 5.

Additionally, for a full comparison we have performed an update training of the U-Net with 

the same parameters as above, i.e. 10 epochs and a reduced learning rate of 10−5. The update 

training of the network took only 20 minutes and the result is shown in Figure 5.

V Discussion of Results

The results shown in Figure 3 and Figure 5 suggest that the formulation of a gradient descent 

scheme as a CNN in each iteration does produce competitive results with a considerable 

reduction in iterations needed, as we will discuss in this section. Furthermore, it is robust 

in the transition to real measurement data, which is one of the most important aspects in 

inverse problems and image reconstruction.

During the reconstruction procedure, a major improvement is achieved in the first step, as 

shown in Figure 6. After one iteration of the DGD the background is cleared and the contrast 

is mostly restored, but there are still a few noisy patches around the vessels visible. The 

difference image also indicates that there are still parts insufficiently recovered on the outer 

area close to the boundary; these are typical limited view artefacts. After the 5th iteration 

these artefacts are considerably reduced and the error inside the domain is mostly uniform.

In the following, we discuss some particular aspects in more detail.

A Quantitative Analysis of Simulated Data

For a quantitative evaluation of the performance we have computed the relative l2-error 

for the simulated example shown in this study, see e.g. Figure 4. More precisely the 

reconstruction quality is evaluated using a scaled and unbiased relative error defined by

err(x) = min
a, b

ax − xtrue − b 2
xtrue 2

, (11)

as suggested in [20]. This unbiased error is used to not disadvantage TV and NNLS 

reconstructions in the comparison. While the networks know the absolute contrast from the 

training data, classical iterative methods often either need many iterations to recover it from 

the data or suffer from systematic contrast errors. Consequently, the optimal parameters for 

the reconstructions of DGD and U-Net are in most cases a = 1 and b = 0 and hence err 

reduces to the standard relative l2-error. For a full comparison, we have computed the mean 

error for 16 test samples that were not included in the training set. We compare the two 

networks, U-net and DGD, with TV and NNLS reconstructions, as described in Section II, 

with the regularisation parameter for TV chosen such that err(x) is minimized. The resulting 

errors are plotted in Figure 7. After one iteration U-Net achieves clearly the best result, 

but already with 2 iterations DGD achieves a smaller error down to a substantially smaller 

error after 5 iterations. TV and NNLS converge considerably slower, but achieve the U-Net 

quality after 50 iterations and will likely go lower.
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The computational time is dominated by the application of A and its adjoint A*. 

Computing either takes about 12 seconds on the Titan Xp GPU, see Table I for the 

complete computation times for each reconstruction approach. Note however, that as our 

implementations involve communication overhead between Matlab and Python, theses 

timings give an indication for the methods’ efficiency rather than an absolute comparison. 

Consequently, a reduction in iterations has a considerable impact on the total computation 

time. In this respect, the U-Net structure is clearly the cheapest with just one application 

to compute x0 = A*y. Iterative algorithms require additionally two applications for each 

iterate to compute the gradient ∇d(y, Axk) = A*(Axk – y). Thus, having similar results 

after 2 iterations with DGD and 50 iterations of TV, see Figure 7, leads to a prospective 

speed-up by 20 (including the initial reconstruction x0 = A*y). We note that the computation 

time for U-Net can be considerably reduced by using a k-space method [53] for the initial 

reconstruction.

B Comparison to Post-Processing by Deep Learning

First using a direct reconstruction and then applying a DNN to remove artifacts is a valid 

approach in many applications, especially if one is interested in fast and prospectively 

real-time reconstructions. This approach only needs an initial direct reconstruction and 

one application of the trained network. Especially for full-view data, this is a promising 

approach, but even in our limited-view case this approach proves to be quite powerful. 

A comparison of DGD and U-Net for simulated data is shown in Figure 8 (top row). 

The resulting image is cleaned up and many vessels are properly reconstructed. Some 

smaller details are missing and can not be recovered from the initial reconstruction. The 

difference to the true target is also shown in Figure 8 (bottom row). The differences are most 

pronounced in the outer parts of the domain as a consequence of the limited view geometry. 

In comparison the reconstruction by DGD has a much smaller overall error, but this is 

especially true in the center of the domain. The maximal error of the U-net reconstruction 

is 0.6012 (on the scale of [0, 1]) and of the DGD reconstruction 0.4081. In conclusion we 

can say that the U-net architecture performs very well and is even capable of removing some 

limited-view artefacts, but is ultimately limited by the information contained in the initial 

reconstruction.

C In-vivo Data

Even though the results for simulated data are very impressive, applying the DGD trained 

on images with a clean background is not sufficient for real data as shown in Figure 

4. The reason is that the algorithm interprets all structures in the data as important and 

enhances them equally. Adding a background to the training data set in order to teach the 

DGD thresholding those structures immensely improves the results and even fine details 

that were not visible before are now recovered after 5 iterations, as seen in Figure 5. 

Nevertheless, just an adjustment of the simulated data is not sufficient as can be seen from 

the quantitative measures in Table II, computed with respect to the reference reconstruction 

from fully-sampled limited-view data. Thus, further improvement can be achieved by an 

update of the DGD if one has a set of similar measurements from fully sampled data 

available. This update training has a considerable impact on the reconstruction quality as 

can been seen in Table II. Both learned methods show excellent reconstruction quality after 
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transfer training and are able to successfully remove the undesired background structures. In 

comparison to the iterative reconstruction with TV both learned methods achieve a higher 

PSNR and SSIM to the reference reconstruction from fully-sampled data. Noteworthy, the 

lowest unbiased relative l2-error (err), see (11), is achieved by the classical TV minimisation 

with an emphasis on the data term, this is likely due to the fact that the reference is a TV 

reconstruction from fully-sampled data.

D Generalisation and Robustness

Deep Learning approaches are especially powerful in a fixed measurement protocol and 

consistent targets, as illustrated for the simulated test data. The big question is how robust 

these networks are with respect to perturbations of measurement procedures or targets. First 

experiments indicate that the iterative network allows for small perturbations in the forward 

operator such as varying sub-sampling patterns (of same sub-sampling rate) or deviations 

in sound speed, as well as slightly varying noise level in the data. However, each variation 

will lead to slight deterioration of reconstruction quality. In contrast, the one step approach 

by U-Net was found much more sensitive to variations. In particular, we have found that a 

change in sampling pattern leads to a mean (for 16 samples) deterioration in err by 0.5% for 

DGD and U-Net by 5% for the simulated test data. We think that this is due to the fact, that 

the gradient in each iteration encodes the model variations and as such small perturbations 

are corrected in the iterative network. If larger changes in the measurement protocol are 

expected, it is recommended to either retrain the network or perform an update training, as 

has been done for the in-vivo data.

Furthermore, the iterative method seems to be more robust with respect to structural 

differences between the target and the training set. This is illustrated in Figure 9, where 

we have tested the networks trained on the clean segmented vessels on a tumor phantom 

[13]. With 5 iterations we achieve a similar err as TV after 20 iterations. As it can be seen, 

the network does reproduce vessels with similar characteristic as in the training set, this 

might be due to the learned prior-like filters. Whereas the U-Net reconstruction does not 

perform well with the new image structures.

VI Conclusions

In limited-view, sub-sampled photoacoustic tomography it is essential to incorporate 

the physical model into the reconstruction procedure to reduce artefacts with an 

appropriate regularisation strategy. Here we considered three possible strategies: i) iterative 

total variation, ii) backprojection followed by a learned denoiser, iii) learned iterative 

reconstruction. In terms of image quality and robustness to perturbations in the model i) 

and iii) were superior to ii). Method ii) was fastest at the cost of inferior image quality 

and flexibility. Method iii) was considerably faster than i). Thus, we believe that learned 

iterative reconstructions are a realistic technique for 3D PAT. The choice between learned 

post-processing versus learned iterative reconstruction is a matter of speed versus quality.

This study is particularly focused on method iii) and we have shown that incorporating the 

physical model as the gradient of the data fit and learning an iterative algorithm consisting 

of several convolutional neural networks leads to a superior reconstruction quality with a 
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considerable speed-up compared to classical, and well established, iterative reconstruction 

schemes. With minor modifications we were able to apply the learned algorithm to 

experimental in-vivo data of a human wrist and obtained far more detailed reconstructions 

from sub-sampled data than by TV minimisation of the same data.

Additionally, we have investigated method ii) that consists of post-processing a fast and 

basic direct reconstruction with a CNN, in particular we implemented an architecture 

introduced as U-Net that has been proven to work well on medical images. In our study 

this approach shows promise to produce a fast and good initial reconstruction, but since 

many features are not present in simple direct reconstructions, for limited-view, sub-sampled 

data, this approach is limited by the quality of the initial reconstruction. Even though 

certain features can not be recovered, post-processing with Deep Learning is promising for 

applications where low latency is more important than a best quality reconstruction, such as 

navigational tasks during surgery. Furthermore, our study suggests that iterative networks are 

more robust with respect to changes in the measurement setup or imaged target.

As inherent in all learning approaches, the limitation of the proposed method is dictated by 

the quality of the training data and the possibility to perform an update training. In future 

research we will consider combing the U-Net architecture with a model based approach. 

For instance by replacing the CNNs representing one iteration in our deep gradient descent 
with a U-Net like structure. For high resolution 3D imaging this would need computational 

resources exceeding a local workstation. Consequently, if the computational resources are 

available including the forward operator in the training will likely improve results even 

further.
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Fig. 1. Illustration of the properties and errors of different image reconstruction methods using a 
simple numerical phantom consisting of tubes.
(a) &(b): Visualizations of the numerical phantoms. (e): Illustration of the sub-sampling 

pattern. Every pixel corresponds to one of the 118 × 118 scanning locations shown as pink 

dots in (a). We sub-sample by a factor of 16, i.e., of all locations, a fraction of 1/16 is 

chosen at random and visualized by a black pixel. (c)-(d) &(f)-(j): Slice views through the 

reconstructions of the tube phantom by different methods and for full or sub-sampled data.
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Fig. 2. 
Diagram of one convolutional neural network, denoted as Gθk, representing one iteration 

of the deep gradient descent. Image size for input and output is indicated in gray. The red 

arrows denote a convolutional layer with 5 × 5 × 5 kernels followed by a ReLU, the resulting 

channels in each layer are indicated in the squares. The blue arrow denotes a convolutional 

layer followed by a scalar multiplication. The residual update (by the skip connection) is 

then projected to the positive numbers by the last ReLU.
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Fig. 3. 
Reconstruction results for a test image from the segmented CT data (not included in the 

training), presented images are top-down maximum intensity projections. From left to right: 

Back projection of the data and initialization of the network, result of DGD with 5 iterations, 

TV reconstruction with 50 iterations, phantom used to produce the data.
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Fig. 4. 
Reconstruction from real measurement data of a human palm, without adjustments of the 

training data. The images shown are top-down maximum intensity projections. Left: Result 

of the DGD trained on images without added background. Right: TV reconstruction as 

reference from fully sampled data.
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Fig. 5. 
Example for real measurement data of a human palm. The images shown are top-down 

maximum intensity projections. First row: from left to right, the initialization from sub-

sampled data, the output of DGD trained on background added data after 5 iterations, and 

updated DGD Gθk after 5 iterations. Second row: from left to right, TV reconstruction of 

sub-sampled data with a emphasis on the data fit, updated U-Net reconstruction, reference 

TV reconstruction of fully-sampled limited-view data. All TV reconstructions have been 

computed with 20 iterations.
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Fig. 6. 
Progress of iterations in the DGD for a test image from the segmented CT data. Images 

shown are top-down maximum intensity projections. The top row shows reconstructions and 

the bottom row shows difference images to the true solution. Difference images are on the 

same scale, with blue for a negative difference and red for positive. Left: initialization and 

input to the DGD, maximal value of difference is 0.8492. Middle: output after one iteration 

with DGD, maximal value of difference is 0.6171. Right: result after 5 iterations of DGD, 

maximal value of difference is 0.4124.
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Fig. 7. 
Convergence plot of mean error for 16 samples from simulated test data. The x-axis shows 

number of iterations (note the nonlinear scale). The y-axis denotes the unbiased relative 

l2-errors (11). The parameter for TV has been chosen such that the best error is achieved for 

the given iterations.
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Fig. 8. 
Comparison of reconstructions for a test image from the segmented CT data. Images are 

top-down maximum intensity projections and the difference images are on the same scale, 

with blue for a negative difference and red for positive.. Left: top and bottom shows the 

result by applying U-Net to the initialization x0 and the difference to the phantom, maximal 

value of difference is 0.6012. Middle: shows the result of the DGD after 5 iterations and the 

difference to the phantom, maximal value of difference is 0.4081. Right bottom: difference 

images as side projections for the results of DGD and U-Net.
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Fig. 9. 
Reconstruction of a tumor phantom with features that are not included in the training data. 

DGD and U-Net reconstructions are done with the networks trained on the segmented 

vessel phantoms. The TV reconstruction is computed with 20 iterations and a regularisation 

parameter λ = 10-4. Reconstruction errors with the unbiased err are: DGD 0.4925, U-Net 

0.6584, TV 0.4749.
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Table I
EVALUATION TIMES: INCLUDING INITIALIZATION X0 = A*Y AND COMMUNICATION OVERHEAD FOR 

DGD AND U-NET

DGD 5 iterations TV 5 iterations NNLS 5 iterations U-NET

TIME IN SEC. 184.19 165.72 147.7 19.75
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TABLE II
QUANTITATIVE MEASURES FOR IN-VIVO EXPERIMENT: IN COMPARISON TO REFERENCE TV 
RECONSTRUCTION FROM FULLY-SAMPLED LIMITED-VIEW DATA

PSNR SSIM ERR REL. l2-ERROR

DGD x5 32.93 0.723 0.76 1.54

UPDATED DGD x5 41.40 0.945 0.56 0.58

U-NET 40.81 0.933 0.62 0.62

TV SUB-SAMP., λ = 5 ≥ 10–5 38.05 0.912 0.52 0.86

TV SUB-SAMP., λ = 10–4 37.68 0.902 0.58 0.89
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