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Supplementary Figure 1 – Schematization of the binding events between the molecular chaperone and the
different protein species present in the aggregating system.
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Supplementary Figure 2 – Connection between the microscopic events identified by the semi-empirical
approach based on Eq.1 in the main text and the corresponding molecular targets elucidated by the more
rigorous quantitative analysis which considers the binding events in the kinetic scheme. (a) In the case of
the Ure2p-Hsp70 system, the binding rates are much faster with respect to the generation of fibril ends and
the binding can be considered to be under equilibrium conditions. (b) A simple expression of the reduced
elongation rate constant as a function of the binding constant can be derived. This reduced elongation
rate constant does not change during the reaction process, and is equivalent to the value evaluated by the
semi-empirical approach based on Eq. 1 in the main text.
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Supplementary Figure 3 – Comparison between analytical close-form solutions and numerical calculations:
simulation of the time-evolution of the fibril mass fraction when the inhibition mechanism is described by
binding of the molecular chaperone to the monomeric form of peptides and proteins. The examples shown
are the two systems discussed in the main text: (a) the Aβ42 peptide and the Brichos chaperone, and (b) the
Ure2p and the Ssa1 chaperone. For different peptide-molecular chaperone ratios, the dot lines represent the
analytical close-form solutions according to Supplementary Eq. (50), while the continuous lines correspond
to the numerical integration of Eq. (2) in the main text. The concentrations of amyloidogenic proteins and
molecular chaperones are indicated in Fig. 2 in the main text. Kinetic parameters are: a) k+ = 3 · 106

1/M/s, kn = 3 · 10−4 1/M/s, k2 = 1 · 104 1/M2/s2, nC = 2, n2 = 2, kon = 103 1/M/s, koff = 10−3

1/s; b) k+ = 8.8 · 106 1/M/s, kn = 3 · 10−4 1/M/s, k− = 3.7 · 10−6 1/s, nC = 2, kon = 3.7 · 102 1/M/s,
koff = 1.2 · 10−3 1/s.
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Supplementary Methods

Kinetic model in the absence of molecular chaperone

The nucleation-elongation-fragmentation kinetics of the formation of amyloid fibrils is governed
by the following master equation for the time evolution of the concentrations fj(t) of chains of
length j:[1-5]

∂fj(t)

∂t
=2k+m(t)(fj−1(t)− fj(t))− k−(j − 1)fj(t) + 2k−

∞∑
i=j+1

fi(t)

+ δj,nC
knm(t)nC + δj,n2k2m(t)n2

∞∑
i=nC

ifi(t) (1)

where nC and n2 are the reaction orders of primary and secondary nucleation, respectively, often
equal to the number of monomers in the respective nuclei, δj,ni

is the Kronacker function and m is
the concentration of the soluble monomer in the system. The first two terms on the right side of the
equation describe the formation and the disappearance of fibrils of a given length by elongation.
The following two terms describe the fragmentation events, which create smaller fragments from
a longer filament, and the last two terms refer to the generation of new fibrils by primary and
secondary nucleation events, respectively. By solving the master equation with the method of the
moments it is possible to derive the time evolution of the total fibril number (P ) and fibril mass
(M ) concentration:[1-4]

dP (t)

dt
= k−[M(t)− (2nC − 1)P (t)] + knm(t)nC + k2M(t)m(t)n2 (2)

dM(t)

dt
= 2[k+m(t)− nC(nC − 1)k−/2]P (t) + nCknm(t)nC + n2k2M(t)m(t)n2 (3)

Approximate analytical solutions of Supplementary Eq. (2) - (3) provide compact expres-
sions for the time evolution of the total fibril mass concentration of the type:

M(t)

M(∞)
= 1− [exp(−C+e

κt + C−e
−κt +D)], (4)

where the kinetic parameters C±, D, and κ are functions of a limited number of combinations
of the microscopic rate constants: knk+, kn/k− and k2k+. In particular, κ =

√
2k−k+m(0) or
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κ =
√

2m(0)k2k+m(0)n2 when fragmentation or surface-induced nucleation dominates in the
system, respectively, while C± = ± λ2

2κ2
and D = λ2

κ2
, where λ =

√
2knk+m(0)nC .[1-4]

For a given chaperone-protein system, the aggregation profiles in the absence and presence
of n different cheperone concentrations Ci were simulated according to Supplementary Eq.(4) by
modifying the microscopic rate constants, which were determined by fitting the experimenal data

by minimizing a least-squared error function defined as y =
texp∑
i=1

(Msim(ti) − Mexp(ti))
2, where

Msim(ti) and Mexp(ti) are the simulated and the experimental total fibril mass fraction at time ti,
respectively. The same procedure was followed to estimate the association and dissociation rate
constants based on the equations described in the following paragraphs, by globally fitting the
reaction profiles at n different concentrations of chaperone. In this case, the least-squared error

function is defined as: y =
n∑
j=1

texp∑
i=1

(Msim,j(ti) − Mexp,j(ti))
2, where Msim,j(ti) and Mexp,j(ti)

are, respectively, the simulated and the experimental total fibril mass fraction at time ti at a given
concentration j of molecular chaperone.

Kinetic model in the presence of binding between the molecular chaperone and different
protein species

Binding to monomer
In the case of binding between chaperone and monomers (Supplementary Figure 1A), the mass
balance equations for the concentrations of soluble monomers (m(t)), bound monomers (mbound(t))
and free binding sites of the molecular chaperone (Ci(t)) read:

dm(t)

dt
= −nCknm(t)nC − n2k2M(t)m(t)n2 − 2k+m(t)P (t) (5)

− konm(t)Ci(t) + koffmbound(t)

dmbound(t)

dt
= −dCi(t)

dt
= konm(t)Ci(t)− koffmbound(t), (6)

wherembound(t) is the concentration of soluble monomer andM(t) is the concentration of monomer
units incorporated into the fibrils, Ci is the concentration of the free binding sites of the molecular
chaperone and kon and koff represent the association and dissociation rate constants. This equation
can be integrated together with the mass balance of the total monomer concentration (mtot(t)):

mtot(t) = m(t) +mbound(t) +M(t) (7)

The binding of the chaperones to the monomer reduces the concentration of reactive soluble
monomer (m(t)), therefore reducing the primary and secondary nucleation as well as the elon-
gation processes.
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Binding to fibril ends
In the case of binding of the chaperone to the fibrils ends (Supplementary Figure 1B), it is con-
venient to differentiate between three different populations of fibrils in the reaction scheme: in
addition to the population of fibrils with no end bound (f ), the binding events will generate a pop-
ulation of fibrils with one end bound (f ∗) and a population of fibrils with both ends bound (f ∗∗).
It is important to keep track of the distribution of the filaments among the different populations
to quantify the total number of fibril ends, which governs the elongation rate and therefore the
rate of fibril growth. On this purpose, we calculate the exchange of fibrils among the populations
due to binding and fragmentation events. The breakage of filaments with one end blocked (f ∗)
generates one shorter fragment in the population with no ends bound (f ) and a second fragment
which remains in the same population f ∗, while the breakage of a fibril with both ends bound (f ∗∗)
generates two shorter fragments in the population of fibrils with one end bound (f ∗). We describe
the kinetics of this process by deriving the master equations for the concentration of filaments with
a given length j of the three populations.

∂fj(t)

∂t
= + δj,nC

knm(t)nC + δj,n2k2m(t)n2

∞∑
i=nC

i (fi(t) + f ∗i (t) + f ∗∗i (t))

+ 2k+m(t)(fj−1(t)− fj(t))

− k−(j − 1)fj(t) + 2k−

∞∑
i=j+1

fi(t) + k−

∞∑
i=j+1

f ∗i (t)

− konEndfj(t)Ci(t) + koffEndf
∗
j (t) (8)

∂f ∗j (t)

∂t
= + k+m(t)(f ∗j−1(t)− f ∗j (t))

− k−(j − 1)f ∗j (t) + k−

∞∑
i=j+1

f ∗i (t) + 2k−

∞∑
i=j+1

f ∗∗i (t)

+ konEndfj(t)Ci(t)− koffEndf ∗j (t)

− konEndf ∗j (t)Ci(t) + koffEndf
∗∗
j (t) (9)

∂f ∗∗j (t)

∂t
=− k−(j − 1)f ∗∗j (t) + konEndf

∗
j (t)Ci(t)− koffEndf ∗∗j (t) (10)

where konEnd and koffEnd are the association and dissociation rate constants, respectively, and
Ci(t) is the concentration of the molecular chaperone. The master equations can be solved by
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applying the method of the moments and deriving the mass balance equations for the total fibril
concentration of the different populations:

∂M(t)

∂t
=nCknm(t)nC + n2k2 (M(t) +M∗(t) +M∗∗(t))m(t)n2

+ 2k+m(t)P (t) + k−

(
Q(t)∗

2
− M(t)∗

2

)
− konEndM(t)Ci(t) + koffEndM

∗(t) (11)

∂M∗(t)

∂t
=k+m(t)P ∗(t)− k−

(
Q(t)∗

2
− M(t)∗

2

)
+ k−(Q(t)∗∗ −M(t)∗∗) (12)

+ konEndM(t)Ci(t)− koffEndM∗(t)− konEndM∗(t)Ci(t) + koffEndM
∗∗(t)

∂M∗∗(t)

∂t
= −k−(Q(t)∗∗ −M(t)∗∗) + konEndM

∗(t)Ci(t)− koffEndM∗∗(t) (13)

∂P (t)

∂t
=knm(t)nC + k2 (M(t) +M∗(t) +M∗∗(t))m(t)n2 + k− (M(t) + (1− 2nCP (t)))

+ k− (M∗(t)− nCP ∗(t)))− konEndP (t)Ci(t) + koffEndP
∗(t) (14)

∂P ∗(t)

∂t
= + k− ((1− nC)P ∗(t))) + 2k− (M∗∗(t)− nCP ∗∗(t))) (15)

+ konEndP (t)Ci(t)− koffEndP ∗(t)− konEndP ∗(t)Ci(t) + koffEndP
∗∗(t)

∂P ∗∗(t)

∂t
= konEndP

∗(t)Ci(t)− koffEndP ∗∗(t) + k− (−M∗∗(t) + P ∗∗(t))) (16)

∂Q(t)

∂t
=n2

Cknm(t)nC + n2
2k2 (M(t) +M∗(t) +M∗∗(t))m(t)n2 + 2k+m(t) (2M(t) + P (t))

+ k−

(
−5T (t)

3
+
M(t)

3

)
+ k−

(
−T (t)∗

3
− Q(t)∗

2
+
M(t)∗

6

)
(17)

− konEndQ(t)Ci(t) + koffEndQ
∗(t)
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∂Q∗(t)

∂t
=konEndQ(t)Ci(t)− koffEndQ∗(t)− konEndQ∗(t)Ci(t) + koffEndQ

∗∗(t) (18)

+ k+m(t) (2M(t)∗ + P (t)∗) + k− (−T (t)∗ +Q(t)∗) + k−

(
−T (t)∗

3
− Q(t)∗

2
+
M(t)∗

6

)
+ 2k−

(
−T (t)∗∗

3
− Q(t)∗∗

2
+
M(t)∗∗

6

)

∂Q∗∗(t)

∂t
= konEndQ

∗(t)Ci(t)− koffEndQ∗∗(t) + k− (−T ∗∗(t) +Q∗∗(t))) (19)

where P , M and Q represent respectively the zero, first and second order moment of the corre-
sponding fibril population. Considering a gamma distribution, the moment of the third order, T ,
can be calculated according to the closure equation:

T =
Q (2QP −M2)

MP
(20)

It is worth verifying that the time evolution of the total mass: Mtot(t) = M(t) + M∗(t) +
M∗∗(t) depends only on the nucleation and the elongation events:

∂Mtot(t)

∂t
=
∂M(t)

∂t
+
∂M∗(t)

∂t
+
∂M∗∗(t)

∂t
=

nCknm(t)nC + n2k2Mtot(t)m(t)n2 + 2k+m(t)P (t) + k+m(t)P ∗(t) (21)

since the binding and breakage events exchange filaments among the different populations but
do not modify the total fibrillar mass. The binding of the inhibitor to the fibril ends reduces the
elongation rate, which in the absence of inhibitor is equal to r+ = 2k+m(t)Ptot(t), since now
only a fraction of the total number of fibrils equal to P/Ptot can propagate from both ends, and
another fraction of fibril equal to P ∗/Ptot can react only from one end. The effective elongation
rate becomes r+ = 2k+m(t)P (t) + k+m(t)P ∗(t).

Binding on fibril surface
The binding of the chaperone along the fibril surfaces (Supplementary Figure 1C) decreases the
number of monomeric units incorporated in the fibrils which are able to catalyze secondary nucle-
ation events. The amount of monomeric units which is deactivated, Mbound, can be calculated by
considering a Langmuir-type adsorption of the chaperone on the fibril surface, which in its sim-
plest form assumes independent binding events on different sites. The binding rate is proportional
to the concentration of free sites and the concentration of soluble chaperone:

∂Mbound(t)

∂t
= konSurfCi(t)

(
Mtot(t)σ −Mbound(t)

)
− koffSurfMbound(t) (22)
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The parameter σ describes the fraction between the number of available binding sites and the total
number of monomeric units in the filaments: σ is equal to 1 when one chaperone molecule can bind
each single monomeric unit, and is lower than 1 when the number of binding sites is lower than
the number of monomers. The secondary nucleation reaction rate is proportional to the number of
unbound monomeric units in the fibrils: r2 = k2(M(t) − θMbound(t))m(t)n2 . The parameter θ is
the overlap-site size, which describes the number of monomeric units occluded by a single bound
ligand. This parameter is larger than one if the presence of the chaperone on the surface decreases
the activity not only of the bound monomeric unit but also of the neighbour monomeric units. The
mass balance for the total fibril concentration in the presence of binding of the inhibitor along the
fibril surface is modified as follows:

∂M(t)

∂t
= nCknm(t)nC + n2k2

(
M(t)− θMbound(t)

)
m(t)n2 + 2k+m(t)P (t) (23)

Depending on the specific system under investigation, all or only some of the mechanisms
described above may be relevant. Supplementary Eqs (5)-(23) must be coupled with the mass
balance of the chaperone, which in the most general case is:

CTot
i = CSol

i + CMon
i + CFibrilEnd

i + CFibrilSurf
i (24)

where CTot
i is the total chaperone concentration, CSol

i is the concentration of the soluble chaperone
andCMon

i ,CFibrilEnd
i andCFibrilSurf

i represent the concentration of chaperone bound to monomers,
fibril ends and fibril surface, respectively.

Simplified expressions and quantification of interaction energies from reaction rates

In the most generic case, the rate of generation of protein species which interact with the inhibitor
can be comparable to the binding rate. As a consequence, the binding events cannot be considered
a priori at equilibrium with respect to the aggregation processes, and the set of Supplementary
Eqs (5)-(23) must be solved numerically. However, in some limiting situations, compact expres-
sions of the inhibited microscopic rate constants as a function of the equilibrium binding constant
can be derived, in particular in the situations where the inhibitor is present in excess with respect
to the protein species and the binding reaction can be considered at equilibrium. In this case, we
can derive apparent rate constants which are analogous to the closed expressions obtained in the
context of enzyme inhibition in the presence of ligands,[6] where the measured apparent values of
specificity and catalytic rate constants can be easily expressed as function of the ligand concen-
tration and the binding equilibrium constant. The analysis of the dependence of the rate constants
on the ligand concentration provides information on the enzyme inhibition mechanism, such as
the presence of competitivity and cooperativity.[6] Approximative closed-form expressions for the
reaction time course, are discussed in the next section.
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Binding to monomer
In the case of binding to monomers, it is trivial to derive from the mass balance of the total
monomer concentration the expressions for the soluble unbound monomer concentration and the
effective microscopic rate constants as a function of the binding equilibrium constant:

m(t) = m(t)sol +m(t)bound (25)

m(t)sol =
m(t)

1 +KeqMonCTot
i

(26)

kappN = kN
1

(1 +KeqMonCTot
i )

nC
(27)

kapp+ = k+
1

1 +KeqMonCTot
i

(28)

kapp2 = k2
1

(1 +KeqMonCTot
i )

n2
(29)

Binding to fibril ends
Similarly, in the case of binding to fibril-ends the following expression for the concentration of
unbound soluble fibril-ends and for the elongation rate constant can be derived:

P Tot(t) = P (t) + P ∗(t) + P ∗∗(t) (30)

P ∗∗(t) = KeqEndC
Tot
i P ∗(t) (31)

P ∗(t) = KeqEndC
Tot
i P (t) (32)

P (t) =
P Tot(t)

1 +KeqEndCTot
i + (KeqEndCTot

i )
2 (33)

kapp+ /k+ =
2P (t) + P ∗(t)

2P Tot(t)
=

2 +KeqEndC
Tot
i

2 + 2KeqEndCTot
i + 2 (KeqEndCTot

i )
2 (34)

Binding on fibril surface
Finally, an analogous expression for the secondary nucleation rate constant can be derived in the
case of binding along fibril surface:

Mbound(t) = KeqSurfC
Tot
i M(t) (35)

kapp2 = k2
(
1−KeqSurfC

Tot
i

)
(36)

An example of a situation where these simplied expressions can be applied is represented
by the Ure2p-Hsp70 system discussed in the main text. In Supplementary Figure 2a we compare
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the simulated reaction rates for nucleation ≈ generation of new fibril ends (r2(t) ≈ k−M(t)),
elongation, (r+(t) = 2k+P (t)m(t)), and binding, (rB(t) = konM(t)Ci(t)) corresponding to the
simulated reaction profiles of the Ure2p-Hsp70 system shown in Figure 2e in the main text. The
rates are calculated at the reference protein-chaperone ratio 1:0.5. In this case, the association
and dissociation rates are several orders of magnitude larger than the secondary nucleation rate
by fibril fragmentation. The association and dissociation events are therefore much faster than the
generation of new fibril ends by breakage events, and the binding reaction can be considered at
equilibrium with respect to the aggregation process. In this case, the effective elongation rates can
be described by Supplementary Eq.(26).

This observation explains why the semi-empirical approach based on Eq.1 in the main text
can describe the global kinetic profiles by considering a single effective apparent elongation rate
constant during the overall process. In Supplementary Figure 2b we compare the apparent values
estimated by the fitting shown in Figure 2 in the main text with the effective elongation rate con-
stants predicted by Supplementary Eq.(26). The two sets of values are in excellent agreement and,
as expected, the value of Keq required to describe the apparent elongation rate constants with Sup-
plementary Eq.(26) is equal to the equilibrium constant evaluated by the integrated rate laws shown
in Figure 2. This observation highlights the fact that, in systems where the binding process can be
considered to proceed under equilibrium conditions, the apparent kinetic constants evaluated by the
semi-empirical approach based on Eq.1 in the main text can provide a direct measurement of the
equilibrium binding constant (Keq) and of the free energy of binding (4G0

binding = −RTlnKeq).

Analytical closed-form solutions for fibril growth in the presence of binding between the
molecular chaperone and monomers

In this section, we sketch out a general mathematical treatment for obtaining closed-form solutions
for fibril growth in the presence of chaperone binding to the monomers; the cases when molecular
chaperones bind fibril ends or surface can be treated using a similar approach. The starting point
of our treatment of filamentous growth kinetics with chaperone binding to monomers is given by
the following kinetic equations

dP (t)

dt
= knm(t)nC + k2M(t)m(t)n2 (37)

dm(t)

dt
= −2k+m(t)P (t)− konm(t)Ci(t) + koffmbound(t) (38)

dmbound(t)

dt
= −dCi(t)

dt
= konm(t)Ci(t)− koffmbound(t), (39)

where k2 is the rate constant for the secondary nucleation process and n2 defines the dependence of
this process on the concentration of free monomers, with n2 = 0 corresponding to fragmentation,
n2 = 1 corresponding to lateral branching and n2 ≥ 2 describing surface catalysed secondary
nucleation. Note that in Supplementary Eq. (38) we have neglected the terms −nCknm(t)nC and
−n2k2m(t)n2M(t) describing the depletion of monomers through nucleation processes. This set
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of equations can be most conveniently written in the dimensionless form

dΠ(τ)

dτ
= ν1µ(τ)nC + ν2[1− µ(τ)− µb(τ)]µ(τ)n2 (40)

dµ(τ)

dτ
= −µ(τ)Π(τ)− βµ(τ)γi(τ) + αµb(τ) (41)

dµb(τ)

dτ
= −dγi(τ)

dτ
= βµ(τ)γi(τ)− αµb(τ), (42)

where we have introduced the following rescaled variables τ = 2k+mtott, µ(τ) = m(τ)/mtot,
µb(τ) = mbound(τ)/mtot, γi(τ) = Ci(τ)/mtot, Π(τ) = P (τ)/mtot and the following parameters

ν1 =
knm

nC−2
tot

2k+
, ν2 =

k2m
n2−1
tot

2k+
, α =

koff

2k+mtot
, β =

kon

2k+
. (43)

The parameters ν1, ν2, α and β defined in Supplementary Eq. (43) are dimensionless combinations
of the rate parameters that describe the relative importance of nucleation and binding processes to
filament elongation. Thus, under typical environmental conditions ν1 � 1, such that we seek a
solution of Supplementary Eqs. (40)-(42) in form of a perturbation series in the (small) parameter
ν1:

Π(τ) = Π0(τ) + ν1Π1(τ) + ν21Π2(τ) + · · · (44)
µ(τ) = µ0(τ) + ν1µ1(τ) + ν21µ2(τ) + · · · (45)
µb(τ) = µb,0(τ) + ν1µb,1(τ) + ν21µb,2(τ) + · · · (46)
γi(τ) = γi,0(τ) + ν1γi,1(τ) + ν21γi,2(τ) + · · · (47)

After solving Supplementary Eqs. (40)-(42) separately for each order of ν1, and applying the initial
condition µ(0) = 1, we find the following expansion at order O(ν1)

µ(τ) + µb(τ) = 1− ν1(1− λ2)nC−n2

2ν2

(
e
√
ν2(1−λ2)n2+1τ + e−

√
ν2(1−λ2)n2+1τ − 2

)
, (48)

where

λ2 =
1

2

1 + γ0 +
α

β
−

√(
1 + γ0 +

α

β

)2

− 4γ0

 (49)

Using the perturbative renormalization group approach[7-8] to remove the secular divergent term in
Supplementary Eq. (48), yields the following result for the fibril mass concentration:

M(t)

mtot
= 1− exp

(
−C̃+e

κ̃t + C̃−e
−κ̃t + D̃

)
, (50)

where the dominant kinetic parameter is given by κ̃ =
√

2m(0)k2k+m(0)n2(1− λ2)n2+1, while
C̃± = ± λ̃2

2κ̃2
and D̃ = λ̃2

κ̃2
, where λ̃ =

√
2m(0)knk+m(0)nC (1− λ2)nC+1.
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In the cases where the dominant secondary mechanism is monomer-dependent secondary
nucleation (n2 ≥ 1), a more accurate expression of Supplementary Eq. 50 can be obtained, which
reads:

M(t)

mtot

= 1−

[
1 +

λ̃2

2θκ̃2
eκ̃t

]−θ
(51)

where θ =
√

2/[n2(n2 + 1)].

The analytical close-form solutions were validated by comparison with numerical calcula-
tions. In Supplementary Figure 3 we show this comparison for the two systems discussed in the
main text: the Aβ42 peptide and the Brichos chaperone, and the Ure2p and the Ssa1 chaperone.
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