Supplementary Information

Supplementary Figure 1: Overview of the MIA pathway and the cell-specific localization of the branches leading to vinblastine and vincristine. Solid arrows represent single enzymatic steps, dashed arrows multiple enzymatic steps. The arrow bearing a black circle represents the transport of loganic acid from one type of cells to the other.

Supplementary Figure 2: Evaluation of the expression of P450 candidates in transformed yeast microsomes. Differential absorbance of the CO-saturatedreduced versus reduced microsomes was recorded between 400 and 500 nm and cytochrome P450 concentration was determined according to ${ }^{1}$. x-axis: wavelength in nm. Iridoid oxidase (IO, CYP76A26, Caros003676), 7-deoxyloganic acid hydroxylase (7-DLH, CYP72A224, Caros005234), Geraniol-8-oxidase (G8O, CYP76B6, Caros006766), CYP81Z1 (Caros001222), CYP71AY1 (Caros018961), CYP71AY2 (Caros007986), CYP81Q32 (Caros003164).

1/V (s/pmol)

Supplementary Figure 3: Kinetics of the IO reaction. Lineweaver-Burk plot of the reaction rates measured by product formation. The data are means \pm standard errors of three replicates.

Supplementary Figure 4: Activity of 10 with different substrates. Substrates $(100 \mu \mathrm{M})$ were incubated for 20 min at $27^{\circ} \mathrm{C}$ with $23 \mu \mathrm{M}$ of CYP76A26 (iridoid oxidase, IO) in absence (top) or in presence (bottom) of NADPH. Samples were then extracted with ethyl acetate and analyzed on GC-FID. s: substrate peak(s); p: peak(s) of product(s).

Supplementary Figure 5: Kinetics of the 7-DLGT reaction. Lineweaver-Burk plot of the 7 -DLGT reaction rates measured by product formation. The data are means \pm standard errors of three replicates.

Supplementary Figure 6: Kinetics of 7-DLH reaction. Lineweaver-Burk plot of the 7 -DLH reaction rates measured by product formation. The data are means \pm standard errors of three replicates.

Supplementary Figure 7: Evaluation of 7-deoxyloganic acid conversion into loganic acid by $\mathbf{7 - D L H}$ in N. benthamiana leaf-disc assay. Discs from leaves agro-infiltrated with a binary vector containing the 7-deoxyloganic acid hydroxylase (7-DLH; CYP72A224) sequence were excised 5 days post-infiltration and incubated for 3 hours on buffer containing 7-deoxyloganic acid. A leaf methanol extract was analyzed on UPLC-MS. Multiple reaction monitoring in positive mode with the transition $215.1>108.9$ is shown. EV: extracts of discs agro-transfected with the empty vector incubated with 7 -deoxyloganic acid.

C

Supplementary Figure 8. Activity of CYP72A224 and CYP72A1 with 7deoxyloganic acid and loganin. Microsomes from yeast expressing CYP72A224 (7-DLH) or CYP72A1 (SLS) were tested for activity with 7-deoxyloganic acid and loganin. No 7-deoxyloganic acid conversion was observed with SLS (a). No loganin conversion was observed with 7-DLH (b). Identity of the SLS products was determined using MS and authentic secologanin (c). Product 1 corresponds to an oxygenated derivative of secologanin ($\mathrm{m}=404.13$), product 2 corresponds to reference secologanin ($m=388.14$).

Supplementary Figure 9: Subcellular localization of secoiridoid pathway enzymes. C. roseus cells were transiently co-transformed with plasmids expressing pathway enzymes fused to GFP (green; left) and mCherry organelle markers (red; middle). Co-localization of the fluorescent signals appears in the merged pictures in yellow (right). Iridoid oxidase (IO) and 7-deoxyloganic acid hydroxylase (7-DLH) were co-transformed with ER marker and 8-hydroxygeraniol oxidoreductase (8-HGO) and 7-deoxyloganetic acid-O-glucosyltransferase (7DLGT) with cytosol/nucleus marker. Scale bars $=10 \mu \mathrm{M}$.

Supplementary Figure 10. Masses and quantitative changes of compounds detected upon step-wise reconstitution of the secologanin pathway in N. benthamiana. Gene combinations are as listed in Fig. 8A. Heatmap shows relative mass intensity changes. ${ }^{1}$ F, formic acid adduct; A, acetyl group adduct; M, malonyl group adduct; number 2, dimer; H , hexose, P , pentose. NI : not identified.

Supplementary Figure 11. Modified pathway intermediates observed in \mathbf{N}. benthamiana.

Supplementary Figure 12: Iridoid oxidase is an essential component of the pathway. LC-MS analysis on selected masses 359 (7-deoxyloganic acid; 7-DLA) or 401 (acetylated 7-DLA) of N. benthamiana leaves infiltrated with 7-DLA or 8oxogeranial co- agro-infiltrated with gene combination IS $+I O+7-D L G T, I S+7-D L G T$ or empty vector (EV). CPS = counts per second.

Supplementary Figure 13: Reconstitution of the pathway from iridodial to secologanin in \boldsymbol{N}. benthamiana. LC-MS analysis showing selected mass 433 (formic acid adduct of secologanin) of extracts of N. benthamiana leaves in which the gene combinations $1 O+7-D L G T+7 D L H+S L S, I O+7-D L G T+7 D L H, I O+7-$ $D L G T+L A M T+S L S, 1 O+7-D L G T+7 D L H+L A M T, I O+7-D L G T+7 D L H+$ LAMT + SLS, or empty vector (EV) were transiently expressed and that were coinfiltrated with iridodial or secologanin as indicated. * indicates that identical profiles were obtained with co-infiltrated iridotrial. CPS = counts per second.

Supplementary Table 1: Candidate enzymes in mesophyll and epidermal

 cells. A proteomic approach with microsomes isolated from enriched epidermal or mesophyll protoplast fractions was carried out as described in Methods. Shown are candidate enzymes found among 2200 identified proteins and their distribution between mesophyll and epidermis. n.s.: not significant. SD: standard deviation.| Enzyme Class | Enzyme name | Accession number | proteomics hits | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Epidermis Mean \pm SD | Mesophyll
 Mean \pm SD | Statistics Fi Significance level (\%) | shers exact test p-value | Enrichment |
| Cyt P450 | CYP72A224 | Caros005234 | 0.0 ± 0.0 | 2.3 ± 2.5 | 95 | (0.013) | Mesophyll |
| Cyt P450 | CYP76B6 | Caros006766 | 1.0 ± 1.0 | 14.7 ± 9.9 | 95 | (0.0000000025) | Mesophyll |
| Cyt P450 | CYP81Q32 | Caros003164 | 6.3 ± 4.2 | 7.7 ± 7.2 | 0 | (0.52) | n.s. |
| Cyt P450 | CYP76A26 | Caros020058 | 0.67 ± 1.2 | 11.0 ± 8.4 | 95 | (0.00000018) | Mesophyll |
| Cyt P450 | CYP71AY2 | Caros007986 | 8.0 ± 2.6 | 3.0 ± 2.6 | 95 | (0.0018) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | CrADH2 | Caros002459 | 5.3 ± 4.2 | 0.7 ± 1.2 | 95 | (0.00021) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | CrADH3 | Caros022489 | 15.0 ± 10.8 | 3.3 ± 3.2 | 95 | (0.000000056) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | CrADH5 | Caros021570 | 11.7 ± 7.8 | 4.3 ± 3.2 | 95 | (0.00015) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | CrADH8 | Caros012730 | 27.3 ± 17.1 | 20.0 ± 16.1 | 95 | (0.0036) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | Cradh9 | Caros017236 | 16.0 ± 4.6 | 3.7 ± 6.4 | 95 | (0.000000029) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | CrADH11 | Caros007544 | 36.0 ± 6.2 | 18.7 ± 15.1 | 95 | (0.00000029) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | CrADH14 | Caros006689 | 48.0 ± 13.7 | 11.0 ± 9.5 | 95 | (0.00000000000000000000049) | Epidermis |
| oxidoreductase (alcohol dehydrogenase) | CrADH15 | Caros002170 | 14.0 ± 5.0 | 3.0 ± 5.2 | 95 | (0.00000011) | Epidermis |
| oxidoreductase | CrBBE1 | Caros003491 | 2.0 ± 2.6 | 0.0 ± 0.0 | 95 | (0.0097) | Epidermis |
| UGT | CruGT2 | Caros004449 | 16.3 ± 9.8 | 5.3 ± 4.5 | 95 | (0.0000015) | Epidermis |
| UGT | CrUGT3 | Caros020739 | 0.0 ± 0.0 | 10.3 ± 14.6 | 95 | (0.0000000046) | Mesophyll |

Supplementary Table 2: Sequences of primers and cloning methods used for

plasmid constructions. Primers are displayed from 5' to 3' end.

Construct	restriction site	primer F
pRT101 IO	Xhol,Kpnl	GGCCTTCTCGAGATGGCGACCATCACTTCG

Supplementary Table 3: Relative conversion rates for 8 -HGO substrates.

Values are the average of 4 replicates \pm standard error. Compounds were prepared as 100x stock solutions in acetone. Reactions proceeded for 5 min at room temperature with $100 \mu \mathrm{M}$ of specific substrate, $200 \mu \mathrm{M} \mathrm{NAD}^{+}$and 200 ng enzyme in 50 mM Na-phosphate buffer pH 9 . Rates were calculated based on NADH production measured in a spectrophotometer at 340 nm .

Compound	relative conversion rate (\%)		
8-OH-geraniol	100	± 11	
geraniol	75	\pm	8
trans-2-hexenol	72	± 12	
8-oxogeraniol	53	\pm	3
farnesol (mix of isomers)	48	\pm	7
nerol	43	\pm	8
8-OH-geranial	33	\pm	4
4-isopropylbenzyl alcohol	29	\pm	4
octanol	10	\pm	2
3,7-dimethyloctanol	9	\pm	1
(\pm)-ß-citronellol	8	\pm	1
heptanol	7	\pm	1
cis-4-heptenol	0		
(\pm)-linalool	0		

Supplementary Table 4. Relative conversion rates for IO substrates.

Values are the average of 3 replicates \pm standard error. The different substrates $(100 \mu \mathrm{M})$ were incubated for 5 minutes at $27^{\circ} \mathrm{C}$ with $0.25 \mu \mathrm{M}$ iridoid oxidase. Ethyl acetate extracts were analyzed by GC-MS (see Methods). Activity was quantified based on peak area of products. Minor conversion of linalool, 8-oxogeraniol and 8oxogeranial was observed using higher enzyme concentrations.

Compound	relative conversion rate (\%)
iridotrial	100 ± 5
$(+)-\beta$-citronellol	20 ± 4.5
nerol	2 ± 0.5
lavandulol	2.5 ± 0.5
linalool (mix of isomers)	0
8-oxogeraniol	0
8-oxogeranial	0
geraniol	0
7-deoxyloganic acid	0

Supplementary Reference

1 Omura, T. \& Sato, R. The carbon monoxide-binding pigment of liver microsomes.
i. evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370-2378 (1964).

