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Abstract

The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding
of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing
these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the
directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train
recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be
applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood
function to relate a neuron’s spiking probability to possible covariates, such as its own spiking history and the concurrent
activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point
process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of
its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary
motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree
of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many
of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process
data, and has the potential to provide unique physiological insights when applied to neural spike trains.
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Introduction

Neurons in the brain are known to exert measurable, directional

influences on the firing activities of surrounding neurons, and a

detailed analysis of these interactions improves our understanding

of how the brain performs specific functions [1]. Attempts to

identify associations between neurons, such as the cross-correlo-

gram [2], joint peri-stimulus time histogram [3], smoothed ratio of

spiking activity [4], and gravitational clustering [5], have been

useful in the past. However, these methods provide little insight

into the directional nature of the interactions that they detect, are

less reliable in their detection of inhibitory interactions, and

usually do not consider the point process nature of neural spike

train data. Occasionally they may also give a misleading picture of

the relationships between neurons if the detected associations are

caused by common inputs or mediated by other neurons [6].

Granger causality has proven to be an effective method for the

investigation of directional relationships between continuous-

valued signals in many applications [7–11]. The basic idea of

causality between signals was introduced by Wiener [12] but was

too general to be implemented. Granger formalized this idea in

order to enable practical implementation based on the multivar-

iate autoregressive (MVAR) models [7]: if past values of y contain

information that helps predict x above and beyond the

information contained in past values of x alone, then y is said to

Granger-cause (or g-cause) x. Its mathematical formulation is

based on the MVAR modeling of processes. However, it is difficult

to apply this method directly to spike train data, since they can not

be described by the MVAR model, and standard distance

measures such as the mean squared error (MSE) are not designed

for spike train data. Recently, several methods have been

developed to apply Granger causality to spike train data [13–

19]. Attempts at transforming neural spike trains into continuous-

valued data by convolving spike trains with either a smooth kernel

[13] or a lowpass filter [14,15] have been proposed, but they

introduced unwanted distortion of the point process characteristics

of spike train data. Granger causality analysis based on an MVAR-

nonlinear-Poisson model has been proposed [16]; however, this

approach lacks an explanation of the physical meaning of the

model that is being applied. A method called transfer entropy

using mutual information has also been proposed [17,18], and it is

sensitive to nonlinear signal properties, but unfortunately its

application is restricted to bivariate cases. A nonparametric

method based on spectral matrix factorization has been proposed

[19]; however, it required the second-order stationarity of spike

train data.

To address these issues, this paper proposes a point process

framework for assessing Granger causality between multiple
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neurons. The spiking activity of each neuron is simultaneously

affected by multiple covariates such as its own spiking history and

the concurrent ensemble activity of other neurons. The effect of

these factors on a neuron’s spiking activity is characterized by a

statistical framework based on the point process likelihood

function, which relates the neuron’s spiking probability to the

covariates [20,21]. Using the point process likelihood function,

Granger causality between neurons is assessed based on the

likelihood ratio statistic. That is, Granger causality from neuron j
to neuron i is measured based on the relative reduction of the

point process likelihood of neuron i obtained by excluding the

covariates corresponding to the effect of neuron j compared to

the likelihood obtained using all the covariates. If the likelihood

ratio is less than one, we say that there is a causal influence from

neuron j to i, and if the ratio is one, we say that there is no causal

influence. In continuous-valued cases, the Granger causality

measure based on the MVAR prediction error was shown to be

the likelihood ratio test statistic if the prediction error is assumed

to be Gaussian [22]. In addition, the point process likelihood

ratio statistic enables us to perform statistical hypothesis testing to

investigate the significant causal interactions between neurons,

since it asymptotically follows a chi-squared distribution when the

conditional intensity function (CIF) of the point process is

modeled by the generalized linear model (GLM) [23]. When

performing a set of statistical inferences simultaneously to detect

statistically significant causal interactions among all possible

interactions, multiple hypothesis testing problems where the null

hypothesis is more likely to be incorrectly rejected should be

considered. The present study uses the false discovery rate (FDR)

correction to control the expected proportion of incorrectly

rejected null hypotheses [24].

The proposed framework was used in an attempt to identify the

causal relationships between simulated spike train data, and

accurately estimated the underlying causal networks presented in

the simulations. It was also applied to real neural data recorded

from the cat primary motor cortex (MI) in order to assess the

causal relationships that occur between multiple simultaneously

recorded neurons during performance of a movement task.

Methods

Ethics Statement
The experiments that were performed for the collection of real

neural spiking data were approved by the Animal Ethics Committee

of the University of Western Australia, and the National Health and

Medical Research Council of Australia (NH&MRC) guidelines for

the use of animals in experiments were followed throughout.

Summary of the Proposed Method
Statistical analysis of the potential causal relationships between

neurons was performed based on a point process likelihood

function. The likelihood function related a neuron’s spiking

probability to possible covariates, such as its own spiking history

and the concurrent activity of all simultaneously recorded neurons.

The causal relationships between associated neurons were assessed

based on the point process likelihood ratio, which represents the

extent to which the likelihood of one neuron is reduced by the

exclusion of one of its covariates, compared with the likelihood if

all of the available covariates are used. The Granger causality

measure based on the point process likelihood ratio also enabled us

to detect significant causal relationship through a hypothesis

testing based on the likelihood ratio statistic.

A Granger Causality Measure for Point Process Models
A point process is a time series of discrete events that occur in

continuous time [25]. The discrete, all-or-nothing nature of a

sequence of action potentials together with their stochastic

structure suggests that neural spike trains may be regarded as

point processes [20,26–28]. Given an observation interval (0,T �,
let 0vui

1v � � �vui
jv � � �vui

Ji ƒT be a set of Ji spike times point

process observations for i~1,:::,Q recorded neurons. Let Ni(t)
denote the sample path that counts the number of spikes of neuron

i in the time interval (0,t� for t [ (0,T �. A point process model of a

spike train for neuron i can be completely characterized by its CIF,

li(tjHi(t)), defined as

li(tjHi(t))~ lim
D?0

Pr½Ni(tzD){Ni(t)~1jHi(t)�
D

ð1Þ

where Hi(t) denotes the spiking history of all the neurons in the

ensemble up to time t for neuron i [25]. In this work, Hi(t) is defined

in the interval ½t{MiW ,t), which is divided into Mi non-

overlapping rectangular windows of duration W ; We denote the

spike count of neuron q in a time window of length W covering the

time interval ½t{mW ,t{(m{1)W ) as Rq,m(t) for q~1,:::,Q and

m~1,:::,Mi. The CIF, li(tjHi(t)), of (1) represents the firing rate of

neuron i at time t, so it quantifies the probability that neuron i fires a

spike at time t given its covariates Hi(t). Each neuron has a different

Hi(t), since each has a history dependency of different length,

MiW . The probability that neuron i fires a single spike in a small

interval ½t,tzD) can be approximated as li(tjHi(t))D.

To model the effect of its own and ensemble’s spiking histories on

the current spiking activity of a neuron, a GLM framework is often

used to model the CIF. In the GLM framework, the logarithm of the

CIF is modeled as a linear combination of the functions of the

covariates that describe the neural activity dependencies [20,21].

Thus, the logarithm of the CIF is expressed as

log li(tjci,Hi(t))~ci,0z
XQ

q~1

XMi

m~1

ci,q,mRq,m(t) ð2Þ

where ci,0 relates to a background level of activity of neuron i, and

Author Summary

Recent advances in multiple-electrode recording have
made it possible to record the activities of multiple
neurons simultaneously. This provides an opportunity to
study how groups of neurons form functional ensembles
as different brain areas perform their various functions.
However, most of the methods that attempt to identify
associations between neurons provide little insight into
the directional nature of the interactions that they detect.
Recently, Granger causality has proven to be an efficient
method to infer causal relationships between sets of
continuous-valued data, but cannot be directly applied to
point process data such as neural spike trains. Here, we
propose a novel and successful attempt to expand the
application of Granger causality to point process data. The
proposed method performed well with simulated data,
and was then applied to real experimental data recorded
from sets of simultaneously recorded neurons from the
primary motor cortex. The results of the real data analysis
suggest that the proposed method has the potential to
provide unique neurophysiological insights about network
properties in the cortex that have not been possible with
other contemporary methods of functional interaction
detection.

A Granger Causality Measure for Point Process Data
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ci,q,m represents the effect of ensemble spiking history Rq,m(t) on the

firing probability of neuron i. The parameter vector ci is given as

ci~fci,0,ci,1,1,:::,ci,q,m,:::,ci,Q,Mi
g, ð3Þ

which represents the dependency of neuron i on the spiking history

of all neurons in the ensemble. Especially, the parameters

fci,q,mg
Mi
m~1 represent the dependency of neuron i on the spiking

history of neuron q for i,q~1,:::,Q. The model for the CIF of (2) is

not a fixed form, but can change depending on its covariates and its

relationship to them.

A point process likelihood function was used to fit the

parametric CIF and analyze Granger causality between neurons

since it is a primary tool used in constructing statistical models and

has several optimality properties [29]. Here, we used a discrete

time representation of the point process likelihood function in

order to simplify ensuing calculations. To obtain this representa-

tion, we partitioned the observation interval (0,T � into K

subintervals (tk{1,tk�Kk~1 each of length D~TK{1 where K is a

large integer. Usually, K is chosen to make D as 1 ms. We denote

the continuous time variables defined above as the discrete time

versions such as Ni½k� for Ni(tk), Hi½k� for Hi(tk), Rq,m½k� for

Rq,m(tk) and so forth. Since we chose a large value for K , there is

at most one spike per subinterval, that is, DNi½k�~
Ni½k�{Ni½k{1� takes on the value 0 if there is no spike in

(tk{1,tk� or 1 if there is a spike. The parametric form of the CIF of

(2) for neuron i is represented as li(tkjci,Hi½k�).
Given the ensemble spiking activity in (0,T �, the likelihood

function of the spike train of neuron i is given as in [20] using its

CIF by

Li(ci)~ P
K

k~1
½li(tkjci,Hi½k�)D�DNi ½k�

½1{li(tkjci,Hi½k�)D�1{DNi ½k�zo(DJi
)

ð4Þ

where the term o(DJi
) relates the probability that neuron i

includes two or more spikes in any subinterval (tk{1,tk�. Based on

the likelihood function of (4), a point process framework for

assessing the causal relationships between neurons is proposed. A

potential causal relationship from neuron j to neuron i is assessed

by calculating the relative reduction in the likelihood of producing

a particular set of spike trains of neuron i if the spiking history of

neuron j is excluded, compared with the likelihood if all of the

available covariates are used. The log-likelihood ratio, Cij , is given

by

Cij~log
Li(c

j
i)

Li(ci)
ð5Þ

where the likelihood Li(c
j
i) is obtained using a new CIF, lj

i , which

excludes the effect of neuron j from Hi½k�, given as

log l
j
i(tkjcj

i ,H
j
i ½k�)~c

j
i,0z

XQ

q~1
q=j

XMi

m~1

c
j
i,q,mRq,m½k�: ð6Þ

The parameter vector c
j
i is obtained by re-optimizing the

parametric likelihood model after excluding fci,j,mg
Mi
m~1 from ci

in order to remove the effect of neuron j on neuron i, and H
j
i ½k� is

obtained by leaving out fRj,m½k�gMi
m~1 from Hi½k�. Since the

likelihood Li(ci) is always greater than or equal to the likelihood

Li(c
j
i), the log-likelihood ratio Cij is always less than or equal to 0.

If the spiking activity of neuron j has a causal influence on that of

neuron i in the Granger sense, the likelihood Li(ci) that is

calculated using all the covariates of neuron i is greater than the

likelihood Li(c
j
i) that is calculated using the same covariates, save

for the history of neuron j, which is excluded. Excitatory and

inhibitory influences of neuron j on neuron i can be distinguished

by the sign of
PMi

m~1 ci,j,m that represents an averaged influence of

the spiking history of neuron j on neuron i. The equality holds

when neuron j has no influence on neuron i. Thus, the Granger

causality measure from neuron j to neuron i is proposed as

wij~{sign
XMi

m~1

ci,j,m

 !
Cij , ð7Þ

which provides an indication of the extent to which the spiking

history of neuron j affects the spike train data of neuron i. A

positive result is indicative of neuron j having an excitatory effect

upon neuron i, a negative result indicates an inhibitory effect, and

zero indicates that no interactions are detected. Finally, a Q|Q

Granger causality matrix can be produced, W, whose (i,j)th
element is wij , and represents the extent to which neuron j has

either an excitatory or inhibitory influence on neuron i for

i,j~1,:::,Q.

Significance Test
The Granger causality matrix W represents the relative strength

of estimated causal interactions between neurons, but does not

provide any insight into which of these interactions are statistically

significant. To address this issue, a hypothesis testing based on the

likelihood ratio test statistic is performed to evaluate the statistical

significance of the estimated causal interactions of W. For this, the

goodness-of-fit (GOF) statistics are applied as follows [23,29]. Let

us denote the deviance obtained using the model parameter c
j
i as

D0 and the deviance obtained using the model parameter ci as D1;

The deviance is obtained by comparing the estimated model with

a more general model that has a parameter for every observation

so that the data fits exactly, which is called a full model [25,30]. Its

expression is 22 times the log-likelihood ratio of the estimated

model to the full model, which is mathematically expressed by

D~{2½log L(c){log L(cmax)� ð8Þ

where c and cmax are the parameters for the estimated and the full

models, respectively. In the GLM framework the deviance is used

to compare two models, which are nested like the above case, since

a model of cj
i is a special case of the more general model of ci.

Consider the null hypothesis

H0 : h0~cj
i , ð9Þ

which corresponds to the model of (6). An alternative hypothesis is

H1 : h1~ci, ð10Þ

which corresponds to the model of (2).

We can test H0 against H1 using the difference of the deviance

statistic as the test statistic, which is given by

A Granger Causality Measure for Point Process Data
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DD~D0{D1~{2½log Li(c
j
i){log Li(c

max
i )�{

2½log Li(ci){ log Li(c
max
i )�

~{2½log Li(c
j
i){log Li(ci)�~{2Cij :

ð11Þ

Thus, the deviance difference between two models is equivalent to

22 times log-likelihood ratio given by (5). If both models describe

the data well, then the deviance difference may be asymptotically

described as DD*x2
Mi

where Mi is equal to the difference in

dimensionality of the two models [23,29]. If the value of DD is

consistent with the x2
Mi

distribution, the hypothesis H0 is accepted

since it is simpler. This result indicates that the past values of

neuron j contain no significant information that would assist in

predicting the activity of neuron i. Thus, neuron j has no causal

influence on neuron i. On the contrary, if the value of DD is in the

critical region, i.e., greater than the upper tail 100|(1{a)% of

the x2
Mi

distribution where a determines false positive rates, then

H0 may be rejected in favor of H1 since the model of (2) describes

the data with significantly more accuracy. This indicates that past

spike times of neuron j contain information that improves the

ability to predict the activity of neuron i. Thus the activity of

neuron j g-causes the activity of neuron i.

In any attempt to identify the causal relationships between

multiple neurons simultaneously, the total number of the possible

causal interactions to be investigated is usually large. Thus, the use

of common statistical thresholds cited above to assess the causal

interactions would lead to an unacceptably large number of false

causal interactions (false positives) where the null hypothesis is

incorrectly rejected [31]. The multiple comparison problem could

potentially be addressed by the use of stricter statistical thresholds,

which would result in a reduction in the proportion of the falsely

rejected null hypotheses. However, stricter thresholds would also

reduce the probability that true causal interactions between

neurons were identified. The present study uses a multiple-

hypothesis testing error measure called the FDR to address the

multiple comparisons problem. The FDR controls the expected

proportion of false positive findings among all the rejected null

hypotheses [24]. In situations where the number of hypothesis tests

is large, other approaches that attempt to control the familywise

error rate (FWER), which is the probability of making one or more

false discoveries among all the hypotheses, can be too strict and

decrease the power. Thus, the FDR is a less conservative, but

more powerful, quantity to control for multiple comparisons than

the FWER at a cost of increasing the likelihood of obtaining false

positive findings [32].

Combining the multiple hypothesis testing results with the sign

of
PMi

m~1 ci,j,m, we detect the inhibitory, excitatory, and non-causal

interactions, which are denoted as the blue, red, and green colors,

respectively. Thus, a Q|Q causal connectivity matrix Y whose

(i,j)th element corresponds to one of three interactions is

constructed. In this paper, the connectivity matrix Y was obtained

by controlling the FDR as 0.05.

Results

Simulation
In order to evaluate the proposed framework’s ability to identify

Granger causality for ensemble spiking activity, we analyzed

synthetically generated spike train data. Simulated spike train data

were synthetically generated based on the nine-neuron network of

Figure 1. The firing probability of each neuron was dependent on

its own spiking history and the concurrent ensemble activity

through the inhibitory and the excitatory interactions of Figure 1.

The inhibitory and the excitatory interactions were represented as

black and white circles, respectively. Each neuron was influenced

by other neurons through two inhibitory interactions including its

own self-inhibition and through one or two excitatory interactions.

The overall network of Figure 1A consisted of three sub-networks

Figure 1. Nine-neuron network to generate synthetic neural spike trains. (A) Each neuron had a spontaneous firing rate 18 Hz and was self-
inhibitory. Neurons interact through inhibitory (black) and excitatory (white) connections. The firing probability of each neuron is modulated by a
self-inhibitory interaction in addition to the inhibitory and excitatory interactions. (B) The true causal connectivity map is obtained from (A). Black and
white circles indicate the respective inhibitory and excitatory influence from trigger neuron to target.
doi:10.1371/journal.pcbi.1001110.g001

A Granger Causality Measure for Point Process Data
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each with three neurons. The interactions between neurons within

sub-networks were set to have relatively small duration, and the

parameter vectors for the inhibitory and the excitatory interactions

among neurons were set to c(s,{)
i,j,: = [20.8 20.6 20.3] and

c
(s,z)
i,j,: = [1 2 2], respectively. For interactions between different

sub-networks, the parameter vectors for the inhibitory and

excitatory interactions were set to have relatively long duration

such as c(l,{)
i,j,: = [0 0 0 20.8 20.9 20.5] and c(l,z)

i,j,: = [0 0 0 1 2 1],

respectively. The parameter vector for the self-inhibition was set to

c
(0)
i,i,: = [20.6 20.5 20.4]. All neurons had the same spontaneous

firing rate (18 Hz). Spike trains for neuron i were generated using

a commonly used procedure as follows [33]: A random number r,

uniformly distributed between 0 and 1, is generated at every

interval; if rƒli(tkjci,Hi½k�)D, a spike is presumed to have

occurred in (tk,tkzD�; otherwise, no spike is generated. The time

resolution D was set to 1 ms. An absolute refractory period of 1 ms

was enforced to prevent neurons from firing a spike in adjacent

time steps. Based on the experimental settings cited above, we

generated 100,000 samples for each neuron, and the total number

of spikes for each neuron ranged from 2176 through 2911.

Examples of generated neural spike trains during the first 5 sec

(5,000 samples) are illustrated in Figure 2. It can be seen that

neurons generally fire less (or more) spikes after other neurons with

inhibitory (or excitatory) influence on them fire spikes. However, it

is hard to estimate the underlying causal network between neurons

from this plot.

In order to select a model for each neuron we fit several models

with different history durations MiW to each spike train data and

then identified the best approximating model from among a set of

candidates using Akaike’s information criterion (AIC) [34,35].

Using this criterion, an optimum model order for each neuron was

selected. The spike counting window length W was set to 2 ms.

Figure 2. Spike train examples generated based on the nine-neuron network of Figure 1. It can be seen that neurons generally fire less (or
more) spikes after other neurons with inhibitory (or excitatory) influence on them fire spikes. However, it is hard to estimate the underlying causal
network between neurons directly from this plot.
doi:10.1371/journal.pcbi.1001110.g002

Figure 3. Two causality maps, W and Y, estimated using the simulated data. (A) The Granger causality matrix W shows how much each
neuron interacts one another. (B) The causality connectivity map Y was obtained through the hypothesis testing. As shown, the red and blue colors
denote the presence of the inhibitory and the excitatory interactions from trigger neuron to target, respectively. The green color represents that
there is no causal interaction between the tested neurons. The estimated pattern matches the actual network of Figure 1.
doi:10.1371/journal.pcbi.1001110.g003

A Granger Causality Measure for Point Process Data
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For neurons 1, 3, 4, 5, 8, and 9, which were influenced by other

neurons through relatively long interactions, the selected GLM

spike order Mi was 3, which indicates a 6 ms history duration, and

for neurons 2, 6, and 7 influenced by other neurons within same

sub-network only through short interactions, the selected GLM

order Mi was 2, which corresponds to a 4 ms history duration.

Based on the estimated model, two kinds of causality maps were

obtained using the proposed method. Firstly, the Granger causality

map W, which is illustrated in Figure 3A, represents the relative

strength of the causal interaction between neurons. It represents

the extent to which a trigger neuron has a causal impact on a

target compared to other interconnections, but provides little

insight into which causal impact is statistically significant. In order

to make up for W, the causal connectivity map Y was obtained

through the hypothesis testing when we controlled the FDR as

0.05. This is shown in Figure 3B. The red, blue, and green colors

denote the presence of excitatory, inhibitory, or no interactions

from trigger neuron to target, respectively. The estimated pattern

of Y matches the actual network of Figure 1 exactly. This causality

map does not show a connection between neurons that do not

have direct interactions, even though they have indirect

interactions.

The FDR procedure was used as a solution for the multiple

comparisons problem when considering a set of statistical

inferences simultaneously. When controlling the FDR at a specific

significance level k, we expect that on average there will be kR
false positives amongst R detected significant interactions. In order

to verify that the FDR is actually being controlled at the

significance levels that we are claiming in the present study, the

Monte-Carlo (MC) simulations were conducted by varying both

the number of causal interactions between the virtual neurons, and

the signal-to-noise ratio (SNR) of the simulated spikes. These MC

simulations show how effectively the FDR is being controlled

under different experimental conditions. Firstly, we conducted a

series of the MC simulations by changing the number of causal

interactions from 8 to 64. Data was synthetically generated to

resemble four different kinds of networks (seen in Figure 4), each

having a different incidence of interaction between neurons. Fifty

data sets were generated for each network condition, while all

other experimental parameters remained the same. The dashed

circle in Figure 4A and B represents a neuron whose firing activity

does not depend on the spiking history, and thus follows a

homogeneous Poisson process, i.e., c(0)
i,i,: = 0. Networks of Figure 4A

to D consist of 8, 16, 32, and 64 interactions (including self-

interactions), respectively. The observed FDR is calculated by

averaging the ratio of the number of false positives to the number

of detected significant interactions over 50 simulations, and it is

illustrated in Figure 5A for significance levels of 0.01, 0.05 and 0.1.

Figure 4. Four different networks used to generate synthetic neural spike trains. (A) A nine-neuron network with 8 causal interactions is
illustrated. All experimental conditions remained the same as those that were used for the production of Figure 1. The dashed circle represent a
neuron that has no self-interaction effect on itself. (B) A nine-neuron network with 16 interactions is illustrated. (C) A nine-neuron network with 32
interactions is illustrated. (D) A nine-neuron network with 64 interactions is illustrated.
doi:10.1371/journal.pcbi.1001110.g004

A Granger Causality Measure for Point Process Data
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The FDR was generally controlled at the significance level that we

were attempting to control except for the 8-interaction case with

less false positives than the number expected at that significance

level. We then performed another MC simulation by changing the

SNR. Noisy neural spike trains were generated using the CIF of (2)

in the following: We added a Gaussian noise to the logarithmic

CIF, i.e., the right-hand side of (2), and then generated spike trains

using the perturbed CIF. The noise changed the background level

of firing rate over time. The SNR is defined as the ratio between

the unperturbed logarithmic CIF and the perturbation itself. Fifty

data sets of noisy spike trains were synthetically generated based

on the nine-neuron network of Figure 1 with different levels of

noise, which led to about 0, 10, 20, 30, and 40 dB SNRs,

respectively. All other experimental conditions are same to the

previous case. Figure 5B illustrates the simulation results obtained

for significance levels of 0.01, 0.05, and 0.1. When the SNR is

approximately 0 dB, more false positive events were detected than

what was expected at the specified significance level, but in most

cases the observed FDR was no different from the theoretical

FDR. In summary, unless the perturbation level is similar to or

higher than the level of the logarithmic CIF of (2) that is

modulated by the intrinsic dynamics of the neurons, the FDR is

effectively controlled at the significance level that we are

attempting to control.

Figure 6. Location of recording electrodes in motor cortex. (A) A peri-operative photograph of a craniotomy, and the locations on the cortical
surface where the microwires were implanted (black dots). Rostral is up. (B) A pictorial reconstruction of the unfolded cortical surface,
cytoarchitectonic boundaries and electrode locations was created from serial coronal sections. Medial is up. The recording sites where the neurons
were simultaneously recorded are labeled in color code. Blue, red and black circles represent sites where one, two or no neurons were able to be
recorded, respectively. Abbreviations: 3a, 4 and 6a are cytoarchitectonic areas. Sulci: SA: Ansate sulcus, SCor: Coronal sulcus, SCr: Cruciate sulcus, SPs:
Presylvian sulcus.
doi:10.1371/journal.pcbi.1001110.g006

Figure 5. Monte-Carlo simulations performed in order to verify the control of the FDR. (A) The observed FDR is illustrated for 8, 16, 32,
and 64 causal interactions at the significance levels of 0.01, 0.05, and 0.1. (B) The observed FDR is illustrated by varying the SNR from about 0 to 40 dB
at the significance levels of 0.01, 0.05, and 0.1.
doi:10.1371/journal.pcbi.1001110.g005
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Real Data Analysis
To illustrate the application of the proposed method to real

spike train data, 15 neurons were simultaneously recorded from

the cat MI shown in Figure 6 and analyzed. The experimental

methodology that was implemented to collect the neural activity

used for the following analysis was described in detail in Ghosh

et al. [36]. Briefly, an adult cat was trained to perform a skilled

reaching movement, using its preferred forelimb to retrieve food

pellets placed between 2 upright Perspex barriers spaced 4 cm

apart. After behavioral training was complete, PTFE coated

Platinum-Iridium microwires were implanted into the cortex to a

depth of about 1.5 mm into forelimb and hindlimb representations

of MI (identified using intracortical microsimulation). Neural

recordings were made as the animal performed the reaching task,

and only neurons that significantly modulated their firing rate

during task performance were isolated for analysis in this study.

Interspike interval, spike duration and spiking rate analyses were

performed on neurons isolated from adjacent recording sites. This

was done in order to rule out the possibility of the same neuron

being counted more than once due to cross-talk between

neighboring electrodes. Autocorrelogram, interspike interval and

‘burst surprise’ (using a surprise value of 3) analysis were

performed on all neurons in order to identify any potentially

bursting neurons in the data set (there were none) [37–39]. The

data set includes 150,000 samples (3,000 samples/trial|50 trials)

for each channel, and the total number of spikes for each neuron

across all trials ranged from 613 to 5716. The sampling rate was

1 KHz.

Using the AIC, an optimum model for each neuron is selected

to minimize the criterion. The non-overlapping spike counting

window W was intuitively set to 3 ms to obtain a relatively small

number of parameters while maintaining the temporal resolution.

Figure 7. Selected GLM spike history order Mi by AIC. Each neuron used 1 parameter (3 ms) through to 18 parameters (54 ms) to model its
interconnection.
doi:10.1371/journal.pcbi.1001110.g007

Figure 8. Best and worst KS plots across all 15 neurons. The 45-degree solid line represents exact agreement between the model and spike
train data. The two 45-degree dashed lines are the 95% confidence bounds based on the distribution of the KS statistic. (A) Neuron 3 had the best KS
plot. (B) Neuron 8 had the worst KS plot.
doi:10.1371/journal.pcbi.1001110.g008
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Figure 7 shows the selected GLM spike order Mi of each neuron

for i~1,:::,15, and for each neuron 1 parameter (3 ms) through to

18 parameters (54 ms) were used to model its interconnection.

The GOF of the estimated model is assessed by using the

Kolmogorov-Smirnov (KS) plots [40]. Prior to making inferences

from an estimated statistical model, it is crucial to measure the

agreement between a statistical model and the spike train data. For

continuous-valued data, the GOF of the model can be

quantitatively measured as standard distance such as MSE.

However, this distance measure can not be applied to neural

spike train data. To address this problem, we utilized the

previously proposed time-rescaling theorem to transform point

process measures such as neural spike train data to a continuous

measure appropriate for a GOF assessment [40]. Once a CIF is

estimated, rescaled times can be computed using the estimated

CIF. These rescaled times will be uniformly distributed random

variables on the interval (0,1� if the estimated CIF is a good

approximation to the true conditional intensity of the point

process. To evaluate whether the rescaled times follow the uniform

distribution, we order these rescaled times from the smallest to the

largest, and then plot the quantiles of the cumulative distribution

function of the uniform distribution on (0,1� against the ordered

rescaled times. This form of graphical representation is termed a

KS plot. If the model is consistent with the data, then the points

should lie on a 45-degree line. Approximate 95% confidence

bounds for the degree of agreement between the model and the

data may be constructed using the distribution of the KS statistic

[41]. Figure 8 shows the best and the worst KS plots obtained

using estimated GLMs across all the given spike train data. Most

KS plots were almost within the confidence intervals, which

indicates that most estimated GLMs fit the data well.

The causal connectivity between the recorded neural spike train

data was assessed using the proposed framework, and the results are

illustrated in Figure 9. Figure 9A and B show the causal connectivity

maps, Y, estimated using the proposed framework without and with

the FDR correction, respectively. As illustrated in Figure 9A when

Figure 9. Causal connectivity maps between recorded neurons. (A) The causal connectivity map, Y, estimated without the application of the
multiple comparisons correction is illustrated. (B) The causal connectivity map with the FDR correction is illustrated. (C) The causal connectivity map
estimated from another data set recorded during a period of postural maintenance is illustrated. (D) The causal connectivity map was estimated using
a smaller number of trials of the reaching task so that the number of spikes is similar to that of data set recorded during postural maintenance.
doi:10.1371/journal.pcbi.1001110.g009
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the multiple comparison problem was not considered, more causal

connectivity was estimated; however, there was a high probability

that the false rejection of the null hypotheses of the multiple

comparison caused the extra causal relationships. In the present

study, a for the hypothesis testing was set to 0.05. After the FDR

correction for the multiple comparison problem, the incidence of

interactions between the recorded neurons was sparser, and is shown

in Figure 9B. In Figure 9B, neurons 2, 3, 4, 5, 6, 9, and 10 exchanged

causal interactions with a handful of other neurons including

themselves, neurons 7, 12, 14, and 15 showed purely self-inhibitory

interactions, and finally neurons 1, 8, 11, and 13 did not receive any

influence from other neurons, nor did they show signs of self-

interaction. Interestingly, neurons 5, 6, 9, and 10 appeared to display

evidence of self-excitatory interactions, which is highly unusual

behavior for a neuron. Interspike interval and autocorrelogram

analysis were performed on these neurons in order to exclude the

possibility that these interactions were occurring due to bursting

behavior [37,38]. Further analysis of these neurons revealed that

they also had the four highest history orders among neurons as

shown in Figure 7. Figure 9C shows the connectivity map obtained

using the neural spike train data recorded during a period of postural

maintenance from the same recording sites in MI following

completion of a satisfactory number of task trials shown in

Figure 6. The data set includes 54,000 samples (3000 sampless/

trial|18 trials), and the total number of spikes for each neuron

across all trials ranged from 55 to 1030. As shown in the figure,

during the state of postural maintenance, most neurons did not show

any evidence of significant interactions. It could be argued that the

decrease in the number of detected significant interactions that were

seen during the state of postural maintenance was actually related to

the decreased number of spikes that were observed during this

behavioral period. In order to prove that this decrease is actually

related to a physiological phenomenon rather than a decreased spike

count, causality analysis was performed using the first 11 trials (of a

total of 50) of the ‘reaching’ data set, which decreased the averaged

number of spikes in that set of data (522 spikes) to a similar level as

the ‘postural maintenance’ set (520 spikes). Figure 9D illustrates the

obtained causal connectivity map, and more significant interactions

were still seen between neurons during reaching movement than

during postural maintenance. Note that the obtained causal

connectivity maps do not necessarily represent interactions as a

result of direct anatomical connection, but suggests that a functional

causal connectivity exists between the recorded neurons.

The estimated GLM parameters fĉc(0)
i,i,mg

Mi

m~1 that correspond to

the self-interactions of all neurons i for i~1,:::,15 are illustrated in

Figure 10. The red, blue, and green colors represent the excitatory,

inhibitory, or no self-interactions, respectively. In all cases, the first

parameter is always negative due to the absolute refractory period,

and the remaining parameters generally have positive values for the

self-excitatory interactions and negative values for the self-inhibitory

interactions, respectively. In cases where no-interactions was

occurring, only one negative parameter (indicated with green

asterisk) existed. Neurons showing evidence of excitatory self-

interactions have the four highest history orders, and those

indicating inhibitory self-interactions have higher orders than those

with no self-interactions, which have only one parameter.

Figure 10. Estimated GLM parameters for self-interactions. The estimated GLM parameters for self-interactions are plotted for all neurons.
The red, blue, and green colors denote the excitatory, inhibitory, or no self-interactions, respectively.
doi:10.1371/journal.pcbi.1001110.g010
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Discussion

We proposed a point process framework for identifying causal

relationships between simultaneously recorded multiple neural spike

train data. Granger causality has proven to be an effective method

to test causality between signals when using the MVAR model, but

to date it has been used for continuous-valued data [7–11]. The

method described in this study represents a novel attempt to apply

Granger causality to point process data. The high level of accuracy

that our method displayed when predicting the nature of the

interactions occurring in the simulated data set was an encouraging

indication that the proposed method is sound. Furthermore, the

marked disparity in incidence of interactions during movement and

non-movement periods in the experimental data is in keeping with

the findings of previous studies investigating interactions in MI [36].

Thus, the outcome of both our simulated and experimental data

analysis provides compelling evidence that Granger causality can be

successfully applied to point process data. This is an important

finding, as there are currently very few techniques that assess

interactions between multiple neurons as well as providing insight

regarding the causal relationships that exist between them. The

ability to infer causal relationships between interacting neurons

provides us with important information about networks of neurons

being studied with this method. A detailed understanding of the

interactions occurring in ensemble activity recorded from MI may

lead to improved accuracy in algorithms used to control devices

such as brain-computer interfaces and neural prosthetics [20,42,43].

Other model-based methods for assessing the directional

relationships between neurons have been recently developed

[21,42]. These methods infer underlying interactions between

neurons based on estimated model parameters, which contain the

information on the dependencies between all of the recorded

neurons. Thus, functional connectivity between neurons is inferred

when the estimated model parameters achieve non-zero magnitude,

that is, when their confidence intervals do not cross the zero-

magnitude line. However, no quantitative criteria currently exists to

guide users of these methods to accept or reject detected interactions

when the suspected interaction is of low magnitude, or high

magnitude but with wide confidence intervals for the estimated

parameters. Thus, in more difficult cases where a model-based

method produces uncertain results, the acceptance of a spurious

interaction, or the rejection of a legitimate one, may compromise

the reliability of experimental data analysis. The proposed point

process framework addresses this issue by performing statistical

significance tests that investigate the causal interactions based on the

likelihood ratio statistic, eliminating this uncertainty. Thus, the

proposed method may be of use to researchers who are having

trouble quantifying some of the connections that they are detecting

when using other model-based methods.

Some of the neurons included in this analysis showed no evidence

of either self-interaction, or interactions with other neurons. Although

these neurons also had non-zero GLM parameters for self-interaction,

as indicated with green asterisks in Figure 10, their effects were tested

to be statistically insignificant compared to those caused by other

neurons or background firing activity. In these cases, we must consider

that the hypothesis testing to evaluate the significant causal

interactions depends on the FDR value that is chosen. Decreasing

the FDR value means that a statistical threshold for the significance

test is more strict, and would lead to a sparser causal connectivity map.

Therefore, it should be noted that the inferred causal connectivity

maps Y generated by this method are not absolute, and may change

depending on the user’s selection of the FDR value.

The identification of excitatory self-interactions for some of the

analyzed neurons was an unexpected and interesting finding.

Analysis of the spiking features of these neurons verified that they

were not engaged in any manner of bursting behavior that may

explain the self-excitation result. Based on the high history orders

that were also seen in those neurons as shown in Figure 10, we infer

that the self-excitation result may be caused by ‘hidden’ positive

feedback networks, that is, networks involving neurons that were not

recorded by our microwires. To support our inference, we have

performed another simulation to investigate the effect of hidden

feedback networks. We identified the causal interactions among

ensemble spiking activity, which was synthetically generated based

on the five-neuron network of Figure 11. Compared to the nine-

neuron network of Figure 1A, the five-neuron network of Figure 11A

Figure 11. Five-neuron ensemble with a hidden positive feedback network. (A) Five neurons interacting with one other were simulated, but
only neurons 1, 2, and 3 were treated as spike trains that were simultaneously recorded together. The activities of neurons 4 and 5 were used to
create a hidden positive feedback network with neuron 1, but were treated as neurons outside the receptive field of an electrode: that is, their
activities were not used as covariates to create the connectivity maps. (B) The true causal connectivity map between neurons 1, 2 and 3 is obtained
from (A).
doi:10.1371/journal.pcbi.1001110.g011
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had hidden neurons 4 and 5, which composed hidden positive

feedback networks together with neuron 1. So the firing activity of

neuron 1 was not only dependent on the spiking activity of observed

neurons 2 and 3, but also on the spiking activity of hidden neurons 4

and 5; however, only neurons 1, 2, and 3 were observable. The

parameter vector for the excitatory interaction of the hidden

network was set to c(h,z)
i,j,: = [0 0 1 2 2 1]. The other experimental

settings were all same to the previous case. We generated 100,000

samples for each neuron, and the total number of spikes for the

observed neurons 1, 2, and 3 were 4247, 2606, and 2314,

respectively. Due to the hidden positive feedback, neuron 1 fired

more spikes than other neurons. The model orders were selected

using the AIC, and the selected orders for neurons 1, 2, and 3 were 5

(10 ms history duration), 2 (4 ms), and 2 (4 ms), respectively.

Neuron 1 had a relatively longer history duration than other

neurons due to the hidden feedback networks. Using the proposed

method, we obtained both the Granger causality map W and the

causal connectivity map Y, which is illustrated in Figure 12. The

estimated causality map Y matches well the original network of

Figure 11 except that neuron 1 was estimated to have a self-

excitatory interaction, which was caused by the hidden positive

causal interactions with neurons 4 and 5. This hidden interaction

also led to the relatively long history duration of neuron 1 compared

to the other neurons. This simulation supported the idea that

hidden positive feedback network leads to the relatively long history

duration and can change inhibitory self-interaction to excitatory

one, which we could also observe in this real data analysis case.

Similarly, self-inhibitory interactions, which had a relatively long

history duration as shown in Figure 10, were also identified in this

study, and may be the result of hidden negative feedback networks.

Self-inhibitory interactions (as they are defined using this method)

may be difficult to quantify in some cases, as a neuron with a very

low firing rate may produce a self-inhibitory result that is similar in

appearance to that which would occur due to hidden negative

networks. However, the majority of the neurons in the present study

that showed the evidence of self-inhibition had quite high firing

rates. Thus, the inference of hidden negative feedback networks is a

plausible explanation in these cases. The proposed framework

creates an unprecedented opportunity to investigate interactions

from hidden neural networks that have either excitatory or

inhibitory causal influences on recorded neurons. Recently a

method called partial Granger causality to identify the underlying

causal interactions in the presence of exogenous inputs and latent

variables for the continuous-valued case has been proposed [44,45].

It would be useful to extend this work to neural spike train data in

order to deal with the effects of exogenous inputs or hidden neurons

beyond the investigation of the hidden feedback network.

The Matlab software and the data sets used to implement the

methods presented here are available at the website (http://www.

neurostat.mit.edu/gcpp).
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