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Abstract

In the field of cancer research, scientific investigations are based on analysing differences in the secretome, the proteome, the transcriptome,
the expression of cell surface molecules, and the deregulation of signal transduction pathways between neoplastic and normal cells. Accumulat-
ing evidence indicates a crucial role in carcinogenesis concerning not only stromal cells but also normal cells from target organs and tissue
where tumours emerge. The tumour microenvironment (TME) definitively plays an important role in regulating neighbouring cell behaviour. To
date, limited attention has been focused upon interactions between cancer cells and normal cells. This review concentrates on the interactions
between stromal and healthy cells from the TME in cancer development. In the article, the authors also describe mutations, genes and proteins
expression pattern that are involved in tumour development in target organ.
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Introduction

Cell populations that assist haematopoietic stem cells and its progeny
are called stromal cells. In vitro, these cells form non-haematopoietic
adherent cell components from long-term cultures and in vivo make
up the microenvironment of haematopoiesis, comprising the set of
non-haematopoietic cells from the different haematopoietic sites [1].
Similarly, tumours have ‘their’ stromal cells which consist of non-
malignant cells of the tumour such as cancer-associated fibroblasts
(CAFs), specialized mesenchymal cell types characteristic to each tis-

sue environment, innate and adaptive immune cells, vasculature with
endothelial cells and pericytes, the extracellular matrix (ECM) consist-
ing of structural proteins (collagen and elastin), specialized proteins
(fibrillin fibronectin and elastin) and proteoglycans [2].

Research indicates that the cell environment profoundly affects
cancer development. Moreover, it has confirmed the Stephen Pa-
get’s ‘seed and soil’ theory from 1889. He postulated that metasta-
ses of a particular type of cancer (‘the seed’) often metastasizes
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to certain sites (‘the soil’) based on the similarity of the environ-
ments of the original and secondary tumour sites [3]. Present
studies confirm this theory and reveal that the tumour microenvi-
ronment (TME) is the mentioned ‘soil’ [4–7]. In carcinogenesis
and cancer spread, TME determines the underlying processes.
According to the National Cancer Institute, TME is described as
‘the normal cells, molecules, and blood vessels that surround and
feed a tumour cell; a tumour can change its microenvironment,
and the microenvironment can affect how a tumour grows’.
Hallmarks of cancer, such as deregulated ECM, continually acti-
vated proliferative signalling, inhibition of suppressors and apopto-
sis, activating invasion and metastasis, deregulated of cell
energetics, and abrogation of immune destruction are mostly regu-
lated by TME. In addition, primary tumours secrete factors that
alter the microenvironment of distant organs, making them suitable
target for subsequent metastatic cancer cell colonization. The
non-malignant cells of stromal tissue produce a unique microenvi-
ronment that can modify the neoplastic properties of the tumour
cells [8]. The now-increasingly accepted importance of TME, is
embodied in the concept that cancer cells do not manifest the dis-
ease just by themselves, but rather conscript and corrupt resident
and recruited normal cell types [9]. The niche, or local microenvi-
ronment, of a cancer cell plays an important role in tumour
progression.

Hanahan et al. (2012) proposed the division of the TME stromal
component into three general classes: (i) angiogenic vascular cells,
(ii) infiltrating immune cells and (iii) cancer-associated fibroblastic
cells. These phenotypically, oncologically and morphologically differ-
ent cell populations interact with each other to ultimately contribute
to cancer cells growth, local invasion and metastasis. Fibroblasts are
the predominant cells of the stroma and several publications have
reported genetic and epigenetic changes in stromal fibroblasts that
modulate the expression of many genes encoding growth factors and
cytokines [10, 11]. Fibroblasts produce inter alia ECM molecules such
as fibronectin and tenascin, which influence both cell adhesion and
proliferation [8].

It also bears mentioning that mammalian genomes include a
considerable number of endogenous retroviruses (ERVs). These
relics of ancestral infectious retroviruses resulted from ancestral
germ line infections by exogenous retroviruses which have thereaf-
ter been transmitted in a Mendelian fashion. Almost 8% of the
human genome comprises ERVs [12]. By analogy to exogenous
tumourigenic retroviruses, ERVs have been implicated in the path-
ogenesis of cancer. Several viruses are linked with cancer in
humans. Viruses are responsible for 18% of cancers worldwide
[13]. Many individuals are infected with viruses which may cause
cancer, but usually without no symptoms. Not every infections
develop into tumour which also confirms the theory that tumour
cells are ‘picky’ about where they live.

A fundamental understanding of basic pathophysiological pro-
cesses, for example malignant transformation, can in turn help to bet-
ter define the targets for clinical intervention. As the cells and most
factors from TME are well known, we focus on molecular interactions
between healthy cells of the stroma and normal cells surrounding the
tumour.

Cancer cell–fibroblast interaction in
cancer progression

Accumulating evidence indicates that CAFs play critical roles in cancer
pathogenesis. CAFs are recruited from periacinar cells, circulating
marrow-derived progenitors, vessel-associated pericytes, or other tis-
sue-resident mesenchymal stem/progenitor cells [14, 15]. Myofibro-
blasts, a specialized type of fibroblast, are one of the predominant cell
types in the cancer stroma and tend to aggregate peritumourally and
encircle carcinoma cells invading adjacent normal tissue [16]. CAFs
have been intensively investigated and are a key component in both
primary tumour development and metastasis [17, 18].

The impact of CAFs reflects results obtained on a murine model of
metastatic breast cancer [19]. The authors revealed that fibroblasts
from the cancer growth area are responsible for shift of the immune
microenvironment from a Th2 to Th1 polarization. This modulation of
immune polarization is associated with decreased tumour angiogene-
sis, lymphangiogenesis and suppression of spontaneous breast can-
cer metastasis. Elimination of CAFs suppresses spontaneous
metastasis and enhances the anti-metastatic effects of chemotherapy
[19]. Indeed, studies of CAFs from renal cancer confirmed that cancer
cells change cellular properties to support the invasion, migration and
proliferation rate (AACR Annual Meeting 2014). Moreover, CAFs
orchestrate tumour-related inflammation, tumour growth, invasion
and angiogenesis [20–22]. Observations from several cancer models
indicate that the functional regulatory role of CAFs in tumourigenesis
is defined via signalling pathways and mechanical stress [23–25].

Tumour growth stops at a diameter of about 1–2 mm unless suffi-
cient blood supply develops [26, 27]. Tumour growth and progression
depend on angiogenesis, a process of new blood vessel formation
from a pre-existing vascular endothelium. Increasing evidence shows
that CAFs are the major source of pro-angiogenic factors such as
VEGF or PDGF [28, 29]. Signalling pathways activated by VEGF are
considered to be crucial for angiogenesis [30], involving endothelial
proliferation, survival, migration and the formation of vascular struc-
tures [31]. PDGFs and their receptors (PDGFR) are involved directly
and indirectly in angiogenesis. Indirectly, PDGF family members
recruit VEGF-producing stromal fibroblasts [32]. Moreover, tumour
cells release pro-angiogenic factors into microenvironment resulting
in secretion of PDGF by the endothelial cells, which attract supporting
cells to stabilize the new vessel [33]. Directly, PDGF released by neo-
plastic cells bind to their receptors on bone marrow progenitor cells
following their recruitment and by signalling activation induce differ-
entiation into endothelial or smooth muscle cells and promote both
their growth and their migration [34, 35].

The importance of CAFs in tumour progression is highlighted by
the fact that they also act as major players in tumour metastasis.
Transforming growth factor b (TGF-b) seems to be a major regulator
of the processes in which CAFs are involved. TGF-b is a factor which
causes recruitment of CAFs by cancer cells [36, 37]. Moreover, para-
crine crosstalk between CAFs and cancer cells mediated by TGF-b
signalling leads to an epithelial–mesenchymal transition (EMT) gain
of cancer stem cell properties, which suggests that the CAFs contrib-
ute a specific niche for tumour progression [38].
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Epithelial–mesenchymal transition is a process by which epithelial
cells gain mesenchymal features causing cancer cell invasiveness,
motility and cell stemness [39]. Furthermore, EMT is presently con-
sidered one of the major resistance mechanisms to anti-angiogenic
strategies. Indeed, in an elegant experiment, a biopsy of a cutaneous
metastasis from a patient with clear cell renal cell carcinoma who ini-
tially responded to sunitinib, but ultimately progressed under therapy
was grafted subcutaneously in athymic nude mice; established xeno-
grafts were treated with sunitinib and proved to be sensible again to
its activity. More interestingly, histological examination of the original
metastasis revealed evidence of EMT transition, whereas the xeno-
grafts showed reversion to the original clear cell phenotype. This way,
Hammers et al. demonstrated that reversible EMT may be associated
with acquired tumour resistance to the VEGF(Rs) tyrosine kinase
inhibitor sunitinib in renal cell carcinoma [40].

In vitro studies have also shown that CAFs secrete matrix metallo-
proteinases MMP2, MMP9 and urokinase-type plasminogen activator
(uPA) [41–43]. The enhanced secretion of these proteolytic enzymes
is believed to cleave various ECM components such as decorin, which
covalently binds to TGF-b and consequently prevents the latter from
binding to the TGF-b receptor in adjacent cancer cells and initiating
EMT [44]. Collectively, these observations suggest that both CAFs
and myofibroblast niches may exert paracrine signalling regulation of
epithelial phenotype plasticity [45].

The mesenchymal to amoeboid transition (MAT) process that fol-
lows EMT allows cells to glide through ECM barriers is also mediated
by CAFs together with endothelial progenitor cells by bidirectional
ephrinA1/EphA2 signalling [46]. Thus, involvement of CAFs in these
processes promotes cancer cell escape from the primary site and
allows colonization of remote locations. Several observations indicate
that inflammatory factors secreted by CAFs participate in this trans-
formation and Wnt pathway [47–50]. Interestingly, Duda et al. have
provided evidence that the disseminating tumour cells metastasize to
the secondary site together with passenger fibroblasts, from which
early signalling originates that contributes to the pre-metastatic niche
formation [51]. In summary, CAFs not only are responsible for the
orchestration of the above mentioned plastic changes of neoplastic
cells but also for facilitating the formation of the metastatic niche.

Based on previously reported findings, Karagiannis et al. pro-
posed a novel working model of metastatic growth progression based
on both paracrine signalling and mechanical impact of the CAF cohort
at the tumour–host cell interface [45]. The ‘mechanical’ component of
the proposed model postulates that CAFs migrate from cohorts that
exert a mechanical pressure on the tumour invasion front, capable of
changing the tissue-tension dynamics of the tumour cells population.
Consequently, they may force the cancer cells to migrate towards less
dense stromal regions [45].

The ‘paracrine’ component of the model postulates that CAFs may
secrete paracrine soluble factors at the tumour invasion front, which
may affect the various layers of the neoplastic population, generating
phenotypic and signalling pathway gradients across the tumour
cohort. CAFs may form niches similar to the ones occurring in various
physiological and pathophysiological conditions in the human body
[45]. Indeed, CAFs from different cancer tissues manifest a pro-
inflammatory gene signature including cyclooxygenase 2, osteopon-

tin, chemokine ligand 1, chemokine (C-X-C motif) ligand 2, interleukin
6 (IL-6), IL-1b, chemokine (C-C motif) ligand 5 (CCL5), stromal-
derived factor (SDF-1a) and tumour necrosis factor alpha [52–54].
Among these factors, the SDF-1a is presently under active investiga-
tions in several cancer types.

Indeed, mesenchymal or marrow-derived stromal cells, which
constitute a large proportion of the non-neoplastic cells within the
TME, constitutively secrete SDF-1/CXCL12 chemokine. CXCL12
secretion by stromal cells attracts cancer cells, acting through its
cognate receptor CXCR4, which is expressed by both haematopoietic
and non-haematopoietic tumour cells. CXCR4 promotes tumour pro-
gression by direct and indirect mechanisms. First, CXCR4 is essential
for metastatic spread to organs where CXCL12 is expressed and
thereby allows tumour cells to access cellular niches that favour
tumour cell survival and growth. Second, stromal-derived CXCL12
itself can stimulate survival and growth of neoplastic cells in a para-
crine fashion. Third, CXCL12 can promote tumour angiogenesis by
attracting endothelial cells to the TME [55].

Enhanced expression of this pro-inflammatory gene indicates that
CAFs play an important role throughout the entire process of carcino-
genesis, resulting in proliferation promotion, migration and invasion
of tumour cells [56]. Intriguingly, normal fibroblasts can be ‘edu-
cated’ by carcinoma cells to express pro-inflammatory genes to pro-
mote tumour development. This ‘education’ seems to be reversible
[20]. CAFs have also the capacity to modulate the host’s immune sys-
tem to promote primary and secondary tumour growth [57–60].
Moreover, physical stimulation of CAFs and/or their ECM changes
gene expression and the secretory pattern of CAFs favouring pro-
inflammatory gene expression. This in turn helps with angiogenesis,
invasion, metastasis and also apoptosis [61–63]. The mechanisms
connected with CAF–cancer cell interaction are presented on Figure 1,
as well as those related to hepatocyte–cancer cell interaction,
described in the chapter below.

Cancer-associated fibroblasts role in tumour burden has been
extensively investigated, thus the knowledge regarding this type of
stromal cell is the broadest compared to other types of TME cells.
However, the contribution of other cells is also fundamental.

Cancer cell–hepatocyte interaction in
cancer progression

Hepatic tissue is a primary target for metastases for most dissemi-
nating cancers [64]. Liver structure has an impact on developing
metastasis, a process which begins with the retention of circulating
cancer cells in the liver sinusoids. The sinusoid diameter is critical
for cancer cell invasion and plays an important role in establishment
of secondary tumours [65]. The size of liver sinusoids is determined
by the expression of the serine protease hepsin. Hepsin is cell sur-
face serine protease and located primarily in the plasma membrane
with its trypsin-type protease module (the C-terminal half) at
the external surface of cells. This enzyme is produced in most tis-
sues, but abundantly expressed on the surface of hepatocytes [66].
In vitro and in vivo studies showed enhanced hepsin expression in
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breast cancer tissues, which is associated with tumour growth and
progression [67]. On the other hand, in gastric cancer hepsin
expression is decreased and predicts a poor prognosis [68]. Liver
sinusoids from knockout hepsin�/� mice were significantly nar-
rower than those from the wild-type (WT). A significant decrease in
the diameter of the liver sinusoids was observed with anti-hepsin
treatment of the WT, which confirms that expression of hepsin
affects the diameter of liver sinusoids [69]. The initial step in liver
metastasis is a physical trapping of circulating cancer cells in the
liver sinusoids indicating that their size determines this process.
Studies showed a greater number of tumour cells in the hepsin�/�
liver sinusoids than in the WT liver sinusoids. Moreover, in correla-
tion with the preferential retention of metastatic tumour cells, there
was a seven-fold increase in the number of tumour colonies in hep-
sin�/� mouse livers in comparison with the WT mice. These results
strongly suggest that loss of hepsin enhances colonization of livers
by tumour cells, probably through increased retention of tumour
cells associated with narrower sinusoids [69]. The proposed mecha-
nism underlying the observed phenomenon is hepsin reduction
mediating hepatocyte growth factor maturation and downstream
c-Met phosphorylation required for expressing proper levels of con-
nexins. These are critical for the maintenance of normal hepatocyte
size and ultimately normal sinusoidal diameter [69]. In agreement
with these results are findings of a lower level of hepsin mRNA in
liver versus bone and lymph node secondary tumours of prostate
cancer [70].

However, data about the role of hepsin in formation of liver
metastases remain controversial. The contribution of hepsin in the
development of secondary liver tumours is confirmed by the results
of studies conducted on prostate cancer models [71]. In contrast to
Hsu et al. (2012), Klezovitch et al. [71] found that active hepsin in

metastatic lesions and its up-regulation is responsible for liver metas-
tasis. The authors found that up-regulation of hepsin resulted in
marked progression of prostate tumours causing development of
metastasis towards the liver. Klezovitch et al. did not investigate the
pathway and molecular mechanism involved in hepsin mediation of
hepatic metastasis development. Further investigations would explain
the discrepancies in the results obtained between these two groups.
Hence, the hepsin level may not be a proper prediction factor for
hepatic metastasis.

In liver metastases of breast cancer, claudin-2 expression was
found to be elevated in comparison to primary tumour [72, 73]. In
kidney proximal tubule, claudin-2 is expressed in high level [74].
Haplo-insufficiency of claudin-2 gene mice has reduced reabsorption
of Na+ in the proximal tubule. Similar results have been obtained with
in vitro cultured cells [75]. Claudin-2 was found to be one of the fac-
tors involved in interactions of cancer cells with cells of the target tis-
sue determining the metastatic spread. In contrast to liver metastases
this protein is not prevalent in bone or lung metastases, confirming
that claudin-2 promoted cell–cell interplay between cancer cells and
hepatocytes [73]. Claudin-2 functions at an early stage following the
seeding of the liver to promote breast cancer cell colonization and
metastatic formation. Attachment assays confirmed that diminished
claudin-2 expression levels resulted in significant reduction in the
ability of cancer cells to adhere to hepatocytes [73]. It was also
reported that claudin-2 expression may be lost during certain stages
of the metastatic process, such as early dissemination from the pri-
mary tumour. Claudin-2 probably is unregulated in response to sig-
nals coming from the liver microenvironment and its expression is
likely regained at later stages of metastasis [73]. The authors suggest
that the formation of claudin-2-mediated cell–cell interactions
between cancer cells and hepatocytes may entail induction of c-Met

Fig. 1 Another mechanism of interaction between cancer cells and hepatocytes is connected with claudin-2 up-regulation (which induces this inter-
action) and—even more importantly—hepsin. The up-regulation of hepsin causes the liver sinusoids to become bigger in size. The higher sinusoid

diameter, the lower probability of metastases formation (one of probable theories in this matter, among others, for instance the ‘seed and soil’

hypothesis). In the interaction process between cancer cells and cancer-associated fibroblasts, many crucial factors play its role: pro-angiogenic fac-

tors (VEGF: vascular epithelial growth factor and PDGF: platelet-derived growth factor), inflammatory factors showed and explained on the figure,
and finally matrix metalloproteinases uPa (urokinase-type plasminogen activator, as well as matrix metalloproteinases 2 and 9). All of the latter lead

to the disruption of TGFb (transforming growth factor beta) binding with its receptor, which in turn leads to EMT (mentioned previously). Interest-

ingly, subsequently after EMT, MET occurs (mesenchymal to amoeboid transition).
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and in turn activate the pathways responsible for development of
metastasis [73].

Colon cancer patients with high levels of metallopeptidase inhibi-
tor 1 (TIMP-1) detected at the time of their initial surgery were found
to have a high risk of metachronous liver metastasis and hepatic
recurrence following resection of synchronous liver metastasis. Lev-
els of TIMP-1 were found to be significant predictive factors for poor
prognosis following liver resection. The authors claim that validation
of the obtained results may provide a greater understanding of colon
cancer liver metastasis [76]. Nevertheless, the perturbation of the
TIMP-1 level is common for most inflammatory diseases and as
inflammatory factors play a major role in mediating tumourigenesis,
its fluctuating level does not seem to be a unique marker for liver
metastasis [77–80]. On the other hand, monitoring the level of TIMP-
1 can be a useful tool for monitoring disease progression.

A study of single-nucleotide polymorphisms (SNPs) in colorectal
primary tumours with liver metastasis detected recurrent breakpoints
at chromosome 17p restricted to the FAM27L gene, whose function
is unknown. Thus, it is likely that disruption of the FAM27L gene may
play a role in the malignant transformation and/or the metastasis of
collateral tumours into the liver [81]. Further examination of sporadic
colorectal cancer liver metastases versus primary tumours demon-
strated that hepatic metastases showed acquisition of genetic aberra-
tions that were not found in their paired primary tumours [82]. These
new aberrations mainly consisted of increased frequency of genetic
lesions of chromosomes that had previously been associated with
metastatic colorectal carcinoma (1p, 7p, 8q, 13q, 17p, 18q, 20q) and
acquisition of new chromosomal abnormalities (e.g. losses of chro-
mosomes 4 and 10q and gains of chromosomes 5p and 6p). These
genetic changes may be the result of the metastatic process and/or
adaption of metastatic cells to the liver microenvironment [82].
Among the genes on aberrant chromosomes, TWIST1 plays an
important role in liver metastasis because of its influence on angio-
genesis [82]. Consistent with these results are studies of Mironchik
et al. (2005) demonstrating that TWIST1 overexpression induces
in vivo angiogenesis and correlates with chromosomal instability in
breast cancer [83].

Yet, these findings are in contradiction with the results of Malfet-
tone et al. [84] who reported lower expression of TWIST1 in hepatic
secondary tumours, speculating that TWIST1 is involved in an early
step of metastasis when it is highly expressed [84]. Observed lower
expression of TWIST1 could be explained by the fact that analysis
was conducted on samples from already existing liver metastases
when the process had already occurred [84]. The same group found
that the Na+/H+ exchanger regulating factor 1 (NHERF1) correlated
positively with hypoxia inducible factor 1a (HIF-1a) [84]. These preli-
minary studies on tissue sample cohorts from metastatic sites of
colorectal cancer compared distant and adjacent normal mucosa and
those in liver metastases indicated that nuclear NHERF1 as well as
nuclear HIF-1a are expressed at a significantly higher lever, which
could be related to the hostile, hypoxic TME, favouring a more inva-
sive phenotype [84].

Research has linked obesity to hepatic metastasis, and insulin-like
growth factor-I (IGF-I) plays a key role in the mechanism underlying
this phenomenon. Signalling by IGF-I is responsible for establishment

of hepatic metastases [85]. IGF-I promotes liver metastasis not only
through a direct paracrine effect on tumour cell survival and prolifera-
tion but also through indirect effects, likely involving the host micro-
environment and pro-inflammatory responses [85]. Nevertheless, the
crosstalk between the cancer cell and hepatocyte interaction in cancer
progression is still an unresolved issue and further investigations are
necessary.

Cancer cell–lung epithelial cell
interaction in cancer progression

Gene expression analysis in adenocarcinoma, squamous cell carci-
noma (SCC) and normal bronchus epithelium without metaplasia or
dysplasia derived from patients with neoplastic changes revealed 43
differentially expressed genes [86]. It is worth emphasizing that rep-
resentative normal bronchus tissues were selected, containing the
putative lung cancer precursor cells. Among the investigated genes
were key regulators of biological functions, including five epithelium
related adhesion genes, two subunits of integrin receptors (ITGA3
and ITGB4) and three genes involved in the desmosome complex
(DSP, plakoglobin and DSC3) [86]. In contrast to explants from nor-
mal bronchus and adenocarcinoma, SCC showed abundant RNA and
protein expression of DSP, plakoglobin and DSC3 depending on the
localization (specific central and peripheral localization). The distribu-
tion of these desmosome molecules is very similar to the pattern in
normal squamous epithelium of the skin indicating a normal expres-
sion regulation of these molecules in malignant transformed SCC and
may have implications for the biological behaviour of tumour cells
[86].

The direct physical contact between normal mesenchymal cells
and lung carcinoma cells inhibited growth of malignant cells in vitro
[87]. Co-culture of normal rat tracheal epithelial cells with chemically
transformed tracheal epithelial cells suppressed the tumourigenicity
of these cells upon inoculation into denuded tracheal grafts [88] [89].
The strong presence of these molecules in SCC and its normal distri-
bution may be associated with the less frequent and late metastasis
pattern of SCC as compared with adenocarcinoma. Nevertheless, this
conclusion needs further investigation [86]. Furthermore, factors
physiologically released by bronchial epithelium such as TGF-b, epi-
dermal growth factor (EGF) and bombesin contribute to tumour
growth [90–93]. EGF and TGF-b affect gap junction communication
which is observed in tracheobronchial epithelium as these molecules
can influence communication between epithelial cells during cancer
growth [89, 94, 95]. In comparison to bronchial epithelium, SCC
secretes much more transforming growth factor a, and expressed
greater numbers of cross-reacting EGF receptors. This in turn acts in
an autocrine and paracrine manner increasing epidermal growth fac-
tor receptor (EGFR) [96]. Taking into consideration enhanced EGFR
expression and a high physiological level of EGF, this confirms inter-
play between cancer cells and epithelial lung cells in determining can-
cer development. Surprisingly, co-culture of chemically transformed
tracheal epithelial cells with normal rat tracheal epithelial cells sup-
pressed tumourigenicity of these cells upon inoculation into denuded
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tracheal grafts [88] suggesting that tumourigenic potential may be
related to the biological isolation of a sufficiently large focus of trans-
formed cells from normal cells [89].

Mennerich et al. observed enhanced expression of syndecan-1
(SDC-1) in bronchial carcinoma compared to normal tissue [97]. This
enhanced level of SDC-1 was detected in stromal cells and probably
was expressed in epithelial cells on account of their dominance in
stroma. Marker analysis suggested a shift of SDC-1 expression from
epithelial tumour cells to myofibroblasts within the connective tissue
surrounding the tumour cells [97]. The shift of SDC-1 expression
from tumour to stromal cells may be associated with a decreased
expression within epithelial tumour cells and it can have important
consequences [97]. SDC-1 down regulation potentially generates the
ability to form a dedifferentiated invasive or migrating tumour cell,
mobilization of growth factors from epithelial tumour cell surfaces
and ECM and soluble factors needed for the establishment of the can-
cer-associated non-malignant stroma [97, 98]. The above findings
support the hypothesis that the cancer-associated non-malignant
stromal cells contribute to tumour cell invasion and the development
of metastases [97].

Interaction between cancer cells and
normal cells of the primary organ

Hyaluronan (HA) concentration in cells is enhanced under pathologi-
cal conditions and disturbs the normal cell–cell and cell–ECM
interactions in simple epithelia, leading to aberrant epithelial morpho-
genesis. These morphological abnormalities in vitro in a kidney model
upon stimulated HA synthase 3 gene expression may be related to
pre-malignant changes, including intraluminal invasion and deregulat-
ed epithelialization, probably mediated by mitotic spindle orientation
defects [99]. The results indicate that cancer cells may directly or
indirectly secrete HA which is in agreement with previously studies
[100, 101]. In this manner, increased HA concentration in the
‘healthy’ environment interferes with cell–cell adhesions, resulting in
the disruption of epithelial barrier function and pre-neoplastic
changes.

In vitro observation made by Pistone et al. [102] that conditioned
media (CM) collected from cancer increases the proliferation of non-
tumour mammary epithelial cell line. The authors conclude that this
phenomenon is because of the presence of soluble factors in CM
derived from the tumour cell line, which are present in CM and absent
in the healthy one [102]. This evidence suggests possibility that a
tumour is able to favour tumour growth through secreted molecules
modifying the normal microenvironment.

One of the factors taking part in this interplay may be IL-15. It has
been proposed recombinant IL-15 may kill tumour cells by stopping
the blood flow to the tumour and by stimulating white blood cells to
kill kidney cancer cells (according to clinical trial NCT01727076). On
the basis of observations made on a renal cancer model, IL-15 initi-
ates the EMT process in tumoural and paratumoural cell lines in con-
trast to normal cells where it inhibits the drift towards EMT [103]. On
the other hand, Spink et al. obtained evidence against these findings

[104]. Co-culture of normal and cancer cell lines, the same as used
by Pistone et al., revealed that normal epithelial cells inhibit tumour
cell proliferation and demonstrated the utility of this co-culture sys-
tem as a model of early paracrine control of breast cancer [102, 104].
IL-15 is also known to be connected with the Wnt signalling pathway
[105]. Results obtained on a rheumatoid arthritis fibroblast-like syno-
viocyte model revealed that expression of Wnt influences expression
of IL-15 [105]. A similar link between these two may exist in neoplas-
tic cells as well. In a colon cancer model, not only does Wnt initiate a
plethora of cell-intrinsic alterations in epithelial cells, but it also
impacts on how epithelial cells communicate with macrophages
[106]. Inactivation of the b-catenin allele in the colonic epithelial cell
line HCT116 significantly altered its interaction with macrophages. In
fact, macrophages failed to promote Wnt signalling and to protect
HCT116 WT cells from apoptosis. This is consistent with an earlier
report stating that the expression of dnTCF4 in tumour cells pre-
vented signalling between macrophages and the tumour [107, 108].
Moreover, production of IL-15 by colon cancer cells was associated
with depletion of tumour-associated macrophages (TAMs) [109]. All
these studies demonstrate that acquisition of oncogenic mutations
alters the interaction of epithelial cells with the adjacent stroma. Acti-
vation of oncogenic pathways, such as Wnt, not only triggers cell-
intrinsic changes but also induces stromal alterations that are
required for tumour progression [106].

Wnt also shows a link to the inducible nitric oxide synthase
(iNOS) and Src kinase [110, 111]. Both iNOS and Src are involved in
tumour progression and apoptosis [112, 113]. In both normal and
cancer cells, iNOS is regulated by Src kinase [114]. It is possible that
tumour cells secreting pro-inflammatory cytokines, such as IL-15
which also enhances nitric oxide production, may influence phos-
phorylation of iNOS by Src in lung tissue epithelium [114, 115]. That
in turn plays an important role in the regulation of iNOS and nitric
oxide production and hence could account for some Src-related roles
in inflammation and cancer [114].

In agreement with the cited results presented above, we suggest
that it is not the predisposition of the normal tissue which allows for
secondary tumour formation, but the ability to properly respond to
factors secreted by neoplastic cells that is most crucial here. The
response manifests itself in the adjustment of the secretome, the pro-
teome, the transcriptome, the expression of cell surface molecules
and the deregulation of signal transduction pathways, all of which
favour metastasis.

Cancer cell–pleural and peritoneal
cells interaction in cancer progression

Limited data are currently available on factors associated with pleural
and peritoneal metastasis, even though malignant mesothelioma, i.e.
the primary tumour arising from mesothelial surface, could be con-
sidered as a specific model for such interaction. Those have been pre-
sented on Figure 2, together with the factors associated with
metastases to lung and interaction with normal cells. Unfortunately,
some peculiarities of malignant mesothelioma (e.g. its asbestos-
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related pathogenesis, or the putative role of polioma virus SV40 in
enhancing asbestos-related tumourigenesis) make the results
achieved so far in this tumour hardly transferable in other solid neo-
plasms metastasizing to the pleural surface. However, it is also clear
in case of this tumour that cancer cells instigate tumour-associated fi-
broblasts, promoting tumour progression via a malignant cytokine
network [116].

In matched primary breast cancers and pleural effusions (PE),
MMP-2 levels were found to be elevated at metastatic sites [117].
MMP-2 is considered as a biomarker in many other cancer types
including retinoblastoma [118], colon cancer [119], lymphoma [120],
thyroid cancer [121], lung cancer [122], glioblastoma multiforme
[123], gastric cancer [124]. MMP-2 does not seem to be specific or
unique. Thus, there is an urgent need to investigate other potential
factors involved in this process. However, in oesophageal SCC, MMP-
2 is regulated in vivo and in vitro inter alia by S100A4 (positively) and
E-cadherin (negatively), these are important factors involved in con-
trol of invasion and metastasis [125].

A large body of evidence supports the calcium-binding protein
S100A4 role in control of invasion and metastasis in many invasive

tumours. For example, cDNA microarray analysis of peritoneal metas-
tasis in gastric adenocarcinoma indicates that the S100A4 and
CTNNB1 genes encoding a subunit of E-cadherin–b-catenin were up-
regulated in the examined cell lines [126]. S100A4 was also found to
mediate the attraction and/or activation of T cells associated with pro-
motion of metastatic spread [58]. In pulmonary metastasis, S100A4
deficiency was shown to determine low vascularity, which in turn
suppresses development of secondary tumours [58]. Moreover, in
lung cancer patients, a mutation in exon 3 of the CTNNB1 gene TCT
[(Ser) –> TGT (Cys)] was correlated with the formation of metastatic
sites [127]. All this facts indicates that a mutation in the CTNNB1
gene favours the formation of pulmonary metastases, while malfunc-
tion of the S100A4 gene may prevent from this mechanism. S100A4
also positively regulates MMP-2. Taken together mentioned interac-
tions, also with other described factors, this data emphasize the need
for further investigation of MMP-2 signal transduction pathway com-
ponents to obtain information about molecules mediating pleural and
peritoneal metastasis.

Observed elevated levels of SDF-1alpha/CXCL12 in pleural malig-
nant exudates may indicate its correlation with metastasis and its

Fig. 2 The figure shows interaction mechanisms between cancer cells and: (1) Hepatocytes: overexpression of TIMP (Tissue inhibitor of metallopro-

teinase) is presumed to cause poor prognosis in patients. At the same time, TWIST1 (Twist Basic Helix–Loop–Helix Transcription Factor 1) and
FAM27L (Family With Sequence Similarity 27-Like) expression disruption, as well as the same probably in case of insulin growth factor 1 (IGF-1)

may lead to metastases formation. (2) Normal healthy cells: overexpression of Wnt protein causes the up-regulation of IL-15 (interleukin-15), which

is the probable cause of the excessive epithelial to mesenchymal transition (EMT). After several subsequent processes, the process of carcinogene-
sis is presumably induced. (3) Interactions between cancer cells and pleural/peritoneal cells, as well as between cancer cells and cancer-associated

fibroblasts (CAFs) have one significant molecule in common—it is TGF-b (transforming growth factor beta), whose overexpression leads to CAFs

recruitment. The main probable reasons of TGF-b overexpression is the expression of angiopoietin-like 4 (ANGPT4L) which acts via Smad signalling

pathway.
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possible participation in pleural trafficking in lung cancer [128]. This
hypothesis was confirmed by observation that cancer cells express
CXCR4 in malignant PE and also mesothelial cells of the pleura
stained positive for SDF-1a [129]. Furthermore, the CXCR4 receptor
was functionally expressed in lung cancer cell lines, where it regulates
their migration, adhesion and morphological change [130]. In addi-
tion, a post-transcriptional expression protein level of SDF-1a/
CXCL12 was positively correlated with functional pleural fluid charac-
teristics like lactate dehydrogenase and/or glucose. Furthermore, in
malignant mesothelioma (again the prototype model of interaction of
cancer cell with normal mesothelial cells), SDF-1a/CXCL12 was
proved to be involved in recruitment of mesothelioma stem-like pro-
genitor cells [131].

The connection between SDF-1a/CXCL12 and glucose metabolism
may have an impact on dissemination of malignant cells into pleural
space. This is in accordance with results obtained from oligonucleo-
tide microarray on tissue sample cohorts [132]. Lin et al. demon-
strated that genes related to cellular metabolism, aldolase A, sorbitol
dehydrogenase, transketolase, and tuberous sclerosis 1 are important
in malignant PE pathogenesis [132]. According to these data, authors
concluded that glucose metabolic reprogramming may play a crucial
role in pleural metastasis. On the other hand, altered expression pat-
tern of genes related to glucose metabolism in cancer tissue samples
is obviously dependent on the Warburg effect [133].

Surprisingly, lung tumours exhibiting pleural invasion also
showed elevated expression of apoptosis-related markers: caspase-3
(94.5%), p53 (60%) and bcl-2 (54.5%). As these proteins show
rather an anticancer function, their role in metastasis is controversial
and unclear [134], as is the role of the gene encoding Semaphorin-3B
(SEMA3B) in promotion of metastasis. Research carried out on
human cancerous cells derived from tumours that metastasized to
the lung revealed that paradoxically, SEMA3B inhibited growth of pri-
mary tumours, but induced metastasis in vivo [135]. SEMA3B-
expressing tumours exhibited notable defects of pericyte recruitment
to blood vessels compared with control xenografts. In tumour cells,
SEMA3B expression induced the secretion of IL-8 [135], a cytokine
also associated with tumour progression and metastasis as well
[136]. Moreover, IL-8 activity is required to mediate the recruitment
of TAMs and metastatic dissemination in SEMA3B-expressing
tumours. Data indicate that SEMA3B activity is mediated by NP1-
dependent activation of p38, subsequent activation of mitogen-
activated protein kinase stimulating p21 protein, which in turn inhibits
cancer cell proliferation and IL-8 biosynthesis promoting invasiveness
[135].

Another cytokine involved in lung metastasis is TGF-b [137]. TGF-
b is produced by the cancer cells themselves, macrophages and mes-
enchymal cells. TGF-b primes tumour cells for metastatic seeding
and its signalling enhances mammary tumour dissemination to the
lungs [137]. Crucial to this process is the induction of angiopoietin-
like 4 (ANGPTL4) via the Smad signalling pathway. Upon entering
blood circulation and reaching lung capillaries, these cells secrete
Angptl4 which disrupts endothelial cell junctions, facilitating more
efficient transfer to the lung parenchyma [137].

Investigation of breast cancer model also revealed a specific
gene expression pattern in primary tumours that predestinates them

for lung metastasis. Minn et al. found 54 genes overexpressed in
primary breast tumours that promote lung metastases as well [138].
Most of these genes encode extracellular products including growth
and survival factors for example the HER/ErbB receptor ligand epi-
regulin, chemokines (CXCL1), cell adhesion receptors like ROBO1
and extracellular proteases like MMP-1. Minn et al. have also
included intracellular enzymes like COX2 and transcriptional regula-
tors like Id1.

These genes encode the epidermal growth factor family member
epiregulin (EREG), MMP2, MMP1, the chemokine GRO1/CXCL1, the
cell adhesion molecule SPARC, and the cell adhesion receptor
VCAM1 [138]. It is worth noting as well that these genes seem to be
not only markers but also functional mediators of lung-specific
metastasis [137, 139, 140]. Inhibition of EGFR and COX2 can
decrease the lung metastatic progression in a clinically relevant
model of breast cancer [140]. The Id1 gene encoding a transcrip-
tional regulator and its expression in breast cancer cells has a signif-
icant impact on the ability of breast cancer cells to metastasize to
the lungs in xenograft models [140]. Further investigations revealed
that the expression of Id1, CXCL1, COX2, EREG, and MMP1 mRNAs
increases with lung metastatic ability but is not restricted to aggres-
sive lung metastasis populations. The protein levels were correlated
with mRNA levels [138]. However, additional analyses indicated that
only cells overexpressing Id1 alone were slightly more active at
forming lung metastases than cells infected with vector controls
[140]. Considering these data, one may assume that perturbation in
Id1 expression/function may entail other aberration in activity of
CXCL1, COX2, EREG and MMP1 resulting in the metastatic proclivity
of a tumour.

Research into genes that predestine the development of pleural
metastases has led to the finding of a set of genes named Lung
Metastasis Signature (LMS). LMS includes 18 genes encoding cell
surface proteins and secreted products that affect the interaction of
tumour cells with the microenvironment [140]. Previously mentioned
EREG, COX2, MMP1 and MMP2 are a subset of LMS genes that
reconstitute a multi-functional vascular remodelling programme
which promotes metastatic progression. This set of genes determines
lung vasculature branching and enables extravasation of cancer cells
on their dissemination from mammary tumours to the lungs. In addi-
tion, LMS causes inhibition of EGFR and COX2, which in turn,
decrease lung metastatic progression in a clinically relevant model of
breast cancer [139]. Nevertheless, upon retroviral infection, only cells
overexpressing Id1 alone were slightly more active at forming lung
metastases than cells infected with vector controls which indicates its
crucial function in metastasis [138]. Indeed immunohistochemistry
results demonstrate that emergent lung metastases also express
abundant levels of nuclear Id1 in a subset of tumour cells within these
lesions [140]. However, the enforced overexpression of Id1 alone is
not sufficient to render parental MDA-MB-231 cells efficiently meta-
static to the lungs [138].

It appears that not only Id1 but also Id3 is involved in this
process [140]. Interestingly, there were statistically significant
effects of individual Id1 and Id3 knock-down on decrease in lung
metastatic outgrowth, where the combined Id1/Id3 knock-down
resulted in complete suppression of lung metastatic colonization
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Fig. 3 As a result of the interaction between normal healthy cells and cancer cells, it is possible that under pathological conditions, interactions

between normal cells and its extracellular matrix (ECM) become disrupted. This in turn causes inter alia the overexpression of hyaluronic acid which
has been shown in several publications to be probably responsible for pre-malignant changes. Concerning the interactions between cancer cells and

lung epithelial cells, there are several factors which differently but altogether lead to tumour cell invasion and metastases. Among them, there are

ITGA3, ITGB4 (integrin receptors A3 and B4), DSP (desmoplakin), plakoglobin and SDC3 (desmosome complex 3) which act directly. On the other
hand, SDC-1 (syndecan-1) becomes down-regulated to cause the same process, while TGFa, TGFb (transforming growth factors alpha and beta),

EGF (epidermal growth factor) and bombesin act through epidermal growth factor receptor (EGFR), forming a ‘vicious circle’: TGFa causes EGFR

up-regulation, which in turn causes TGFb, EGF and bombesin overexpression. This loop results simultaneously in metastases formation. Finally, can-

cer cells interact with pleural and peritoneal cells via overexpression of S100A4 calcium-binding protein (resulting in the attraction and activation of
T cells) and CTNNB1 (catenin beta 1 – causes frameshift mutation which results in cysteine instead of serine production). The final step in each

case is mostly cancer promotion.
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suggesting that both Id1 and Id3 proteins are required for lung
metastasis [140].

In 2008, Landemaine et al. [141] described another new set of six
genes that contribute to lung metastasis: DSC2, TFCP2L1, UGT8,
ITGB8, ANP32E and FERMT1. These encode adhesion molecules that
belong to various protein families including desmosome proteins
(DSC2), integrins (ITGB8) and focal adhesion molecules (FERMT1);
molecules involved in regulation of transcription (TFCP2L1), glyco-
sphingolipid biosynthesis (UGT8) and phosphatase inhibitor activity
(ANP32E) [141]. Hence, it is difficult to ascertain exactly which
should belong to the LMS list.

Tumour cells exhibit a selective attachment pattern and growth
preference on specific sites within peritoneal tissues [142]. Tumour
cells are localized specifically to the CD45 immune aggregates and
are not found in the surrounding areas of the omentum. Moreover,
their growth is aggressive indicating that the vasculature in these
areas may be especially conducive to supporting cell growth. Indeed,
research has revealed that vessels within aggregates moderately
express CD105: a proliferation-associated antigen located predomi-
nately on endothelial cells undergoing active angiogenesis, [143] in
contrast to vessels outside of the aggregate which are low or negative
for CD105 [142]. The vessels within the immune aggregates are in a
pro-angiogenic state distinct from the vessels in the surrounding tis-
sue [142]. In this case, a question arises whether some features of
target tissue alter the gene expression pattern of cancer cells to
favour their motility, proliferation, invasiveness and growth of sec-
ondary tumours.

Summary

It is well-established that the TME affects tumour growth and metas-
tasis [144]. The overall view on interactions between tumour cells
and other types of cells is presented on Figure 3. A growing body of
evidence indicates that direct interactions between healthy/normal
cells and neoplastic ones contribute to tumour growth as well. Hence,
in recent years researchers expanded the field of interest in cancer
study to surrounding cells and their interactions with cancer cells and
this topic has become the focus of intense research. Looking ahead,
our growing understanding of the alterations that occur in the stromal
cells in TME might prove useful in prognosis and generate new thera-
peutic targets.
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