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Efficient Generation of Myostatin 
Gene Mutated Rabbit by CRISPR/
Cas9
Qingyan Lv1,*, Lin Yuan1,*, Jichao Deng1,*, Mao Chen1, Yong Wang1, Jian Zeng1, Zhanjun Li1 & 
Liangxue Lai1,2

CRISPR/Cas9 has been widely used in generating site-specific genetically modified animal models. 
Myostatin (MSTN) is a negative regulator of muscle mass, related to muscle growth and differentiation. 
The knockout of MSTN with the desired phenotype of double muscle has been successfully generated 
in mice, goats, pigs and cattle, but not in rabbits. In this study, the MSTN knockout (KO) rabbits were 
generated by co-injection of Cas9 mRNA and sgRNA into zygotes. The typical phenotype of double 
muscle with hyperplasia or hypertrophy of muscle fiber was observed in MSTN KO rabbits. Furthermore, 
a similar phenotype was found in the F1 generation, suggesting that the mutation of MSTN could be 
stably inherited in the MSTN KO rabbits. In summary, we have successfully generated MSTN KO rabbits 
using CRISPR/Cas9 system with high efficiency, which is a reliable and effective animal model for the 
study of muscle development and related diseases.

Gene editing technologies have been developed to study the function of genes, generate genetically modified 
animal models for biomedical research and improve animal traits in agriculture. CRISPR/Cas9 system consists of 
a single guide RNA (sgRNA) and a human codon-optimized Cas9 nuclease, which can induce targeted mutations 
by nonhomologous end joining (NHEJ). Co-injection of Cas9 mRNA and sgRNA into zygotes has been used as 
an efficient tool to generate gene-targeted animal models in mice1, sheep2, monkeys3 and pigs4.

Rabbits are a promising animal model for biomedical research, as they show more similarities to human 
beings in terms of physiology and anatomy than mice and rats, and require low cost maintenance and short preg-
nancy period compared to pigs and monkeys5. Currently, rabbits have been extensively used as a more appropri-
ate animal model for studying cardiovascular/metabolic and ophthalmic diseases6,7.

Myostatin (MSTN) is a member of the transforming growth factor beta (TGF-β ) superfamily, which acts as a 
negative regulator of muscle growth8,9. It has been reported that spontaneous mutations of MSTN in cattle10 and 
sheep11 causes muscle hypertrophy. A double-muscled phenotype with the characteristics of increased muscle 
mass was also obtained in MSTN KO sheep2, pigs12 and dogs13, which encourages us to generate MSTN KO rab-
bits for the study of muscle development and improvement of animal traits for agriculture in the future.

Here, in order to generate MSTN KO rabbits, the in vitro transcribed mRNA encoding for Cas9 and sgRNA 
targeting the MSTN gene, was microinjected into the cytoplasm of rabbit pronuclear-stage embryos. We demon-
strated the high efficiency of CRISPR/Cas9 system-mediated gene editing and the desired phenotype of double 
muscle was obtained in the MSTN KO rabbits.

Results
CRISPR/Cas9-mediated MSTN KO in rabbit zygotes. In order to disrupt the function of MSTN in 
rabbits, two sgRNAs targeting the CDS of the rabbit MSTN gene were designed using the CRISPR/Cas9 online 
design tool (http://tools.genomeengineering.org) (Fig. 1A). To determine the efficiency of CRISPR/Cas9 system 
in zygotes, the Cas9 mRNA and sgRNAs were microinjected into rabbit zygotes and cultured until the blastocyst 
stage. Then 12 blastocysts were harvested and subjected to PCR amplification and T7E1 cleavage assay. As shown 
in Fig. 1B,C, the mutation of MSTN was found in 10 tested blastocysts (83.3%), in which 3 blastocysts (25%) 

1Jilin Provincial Key Laboratory of Animal Embryo Engineering, Institute of Zoonosis, College of Veterinary Medicine, 
Jilin University, Changchun 130062, China. 2CAS Key Laboratory of Regenerative Biology, South China Institute for 
Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy 
of Sciences, Guangzhou 510530. *These authors contributed equally to this work. Correspondence and requests for 
materials should be addressed to Z.L. (email: lizj_1998@jlu.edu.cn) or L.L. (email: lai_liangxue@gibh.ac.cn)

Received: 10 December 2015

Accepted: 08 April 2016

Published: 26 April 2016

OPEN

http://tools.genomeengineering.org
mailto:lizj_1998@jlu.edu.cn
mailto:lai_liangxue@gibh.ac.cn


www.nature.com/scientificreports/

2Scientific RepoRts | 6:25029 | DOI: 10.1038/srep25029

displayed biallelic mutations, suggesting that the two sgRNAs-directed CRISPR/Cas9 system was an efficient tool 
for disrupting the rabbit MSTN gene in zygotes.

Generation of MSTN KO rabbits by CRISPR/Cas9 system. To generate MSTN KO rabbits, a total 
of 158 injected zygotes were transferred into the oviducts of 4 surrogate rabbits. After a full-term gestation, the 
4 surrogate mothers gave birth to 20 live pups successfully (Table 1). The T-cloning and PCR-sequence results 
showed that the MSTN mutation was detected in 16 pups, and the indels ranged from 3 bp to 76 bp (Fig. 2A), 
which was also confirmed by T7E1 assay (Fig. 2B,C). In addition, fragment deletions between the two sgRNAs 
targeting sites were frequently observed in this study (81.3%). Furthermore, the typical phenotype of double 
muscle was observed in F0 MSTN KO rabbits at 4 months of age, which compared with their wild type (WT) 
counterparts (Fig. 2D).

Off-target effect is a major concern of the CRISPR/Cas9 system. To test whether off-target effect occurred 
in these genetically modified rabbits, a total of 5 potential off-target sites (POTS) for each sgRNA were pre-
dicted by the CRISPR design online tool. All POTS were PCR amplified and subjected to T7E1 cleavage and 
Sanger sequence. The results showed that no mutation was detected in these POTS, indicating that the Cas9/

Figure 1. CRISPR/Cas9-mediated gene knockout of MSTN in zygote. (A) Schematic diagram of sgRNA 
targeting the rabbit MSTN gene loci. Two sgRNA sequences, sgRNA1 and sgRNA2, are marked in red and the 
protospacer adjacent moti (PAM) sequences are presented in green. (B) Mutation detection in blastocyst by 
T-cloning and Sanger sequencing. The WT sequence is shown at the top of the targeting sequence. E: embryos; 
WT: wild type; deletions “− ”; insertion “+ ”. (C) Mutation detection in blastocyst by T7E1 cleavage assay. M, 
DL2000; 1–12 represent different blastocysts used in this study.
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sgRNA system did not induce undesirable off-target effect in the MSTN KO rabbits (Supplementary Table S2 and 
Supplementary Fig. S1).

Heritability of the MSTN KO rabbits. To determine whether the MSTN KO could be stably transmitted 
to the offspring, the female founder F01–7 was mated with male rabbit F01–5. T-cloning sequence analysis and 
T7E1 cleavage assay demonstrated that 7 out of 9 newborn F1 rabbits carried MSTN mutations. In these pups, 
the F12, F15, F16, F18, F19 were monoallelic, while F13, F17 were biallelic MSTN KO rabbits (Fig. 3A,B). To inves-
tigate whether gene mutations abolished the MSTN protein translation, western blot analysis was carried out 
using the protein extracted from gluteus maximus tissue of MSTN−/−, MSTN+/− and WT rabbits. As shown in 
Fig. 3C, the MSTN protein was significantly decreased in MSTN−/− and MSTN+/− rabbits, compared to their WT 
counterparts.

Increased body weight and muscle mass in MSTN KO rabbits. In order to investigate the differences 
in muscle development in MSTN KO rabbits, the body weight of MSTN+/− and WT groups (n =  4) were recorded 
weekly. As shown in Fig. 4A, the body weight was not significantly different between the two groups during the 
first 6 weeks. However, the MSTN+/− rabbits were obviously heavier than WT rabbits after 6 weeks of age. In 
addition, the typical double-muscled phenotype was also found in MSTN+/− rabbits at 2 months of age (Fig. 4B).

To determine if the increase in body weight was caused by enlarged muscle mass in MSTN KO rabbits, the 
average weight of heart, tongue, gluteus maximus and vastus lateralis from MSTN+/− and WT groups was deter-
mined at 2 months of age. As shown in Fig. 4C,D, no abnormal development was observed, while the average 
weight of individual muscles was dramatically increased in the MSTN KO rabbits, which compared to the WT 
counterparts.

Hyperplasia and/or hypertrophy of muscle fibers in MSTN KO rabbits. To determine whether the 
increase in muscle mass is due to hyperplasia and/or hypertrophy of muscle fibers, histological analysis was per-
formed in the tongue and gluteus maximus from WT and MSTN KO rabbits (Fig. 5A). The results showed that 
the average size of tongue myofibers in MSTN+/− rabbits (1539.20 ±  132.52 μ m2, p <  0.05) was substantially larger 
than in WT rabbits (1055.81 ±  257.57 μ m2) (Fig. 5B). Additionally, the average myofiber size in gluteus maximus 
was significantly increased in the MSTN+/− (2011.01 ±  169.79 um2, p <  0.05) rabbits, compared to the WT rabbits 
(1318.51 ±  261.48um2). Furthermore, the average fiber density in gluteus maximus from the MSTN+/− rabbits 
(327.79 ±  21.12, p <  0.001) was significantly higher than in the WT rabbits (211.37 ±  19.89) (Fig. 5B).

These results therefore suggest that the enlarged tongue in the MSTN KO rabbits is due to fiber hypertrophy. 
Whereas, it seems that the increased muscle mass of gluteus maximus in the MSTN KO rabbits is due to both fiber 
hyperplasia and hypertrophy.

Discussion
In recent years, with the aim to study muscle development and increase meat production, MSTN has been mod-
ified in various species such as mice14, goats15, sheep2 and pigs12. In this study, we successfully generated MSTN 
KO rabbits by microinjection of Cas9/sgRNA into one-cell stage embryos, demonstrating that this system could 
be used to efficiently generate gene knockout rabbits. Moreover, fragment deletions were frequently detected 
between the two sgRNAs targeting sites in MSTN KO rabbits, suggesting that the dual sgRNA-directed CRISPR/
Cas9 system could provide an efficient tool for gene knockout in the mammal genome16.

Off-target mutation has been frequently reported in Cas9-mediated gene editing system17–19, however, no 
off-target effect was detected in the MSTN KO rabbits. We believe that it might be due to the low concentration 
of Cas9/sgRNA, which degraded immediately after targeting the aimed gene. In addition, the strict match of 
seed sequences (8–12 bases close to PAM) is a critical factor for ensuring the site-specific cleavage of CRISPR/
Cas9 system20. Furthermore, to avoid the off-target effect, two modified forms of Cas9, namely, D10ACas921 and 
FokI-dCas9 (fCas9)22 can be used for gene editing in the future.

Although the increased muscle mass makes it attractive to create MSTN KO livestock, the calving difficulty 
induced by enlarged body size of fetus is a big problem in these MSTN-mutant animals23. It has been demon-
strated that the MSTN-deficient animals exhibit disorders similar to large offspring syndrome (LOS)8,24. In our 
study, although the MSTN KO rabbits showed a typical double-muscled phenotype and a dramatically increased 
body weight, there was no significantly difference in body size and weight at birth compared to the WT controls. 
In addition, the MSTN KO rabbits appears normal, healthy, and without reproduction problems, indicating that 
MSTN KO rabbits generated by CRISPR/Cas9 system are suitable for the study of muscle development and related 
diseases.

Animals with MSTN mutations are characterized by increased muscle mass, which results from a combina-
tion of increased muscle fiber size and number8. Previous studies have demonstrated that the enlarged muscle is 

Recipients
gRNA/Cas9 

mRNA(ng/μL)
Embryos 

transferred Pregnancy
Pups obtained 
(% transferred)

Pups with 
mutations (% pups)

Bi- allelic 
modified (% pups)

1 40/180 40 YES 5(12.5%) 4(80%) 0(0%)

2 40/180 38 YES 4(10.5%) 2(50%) 0(0%)

3 40/180 40 YES 5(12.5%) 5(100%) 2(40%)

4 40/180 40 YES 6(15%) 5(83.3%) 4(66.7%)

Table 1.  Generation of the MSTN KO rabbits via CRISPR/Cas9.
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Figure 2. Generation of MSTN KO rabbit via zygote injection. (A) T-cloning and Sanger sequencing of 20 
pups. F01-1–F01–9 represent the F0 pups from the first time of microinjection. F02-1–F02–11 represent the F0 
pups from the second microinjection. The sequences of sgRNA are shown in red and the PAM sequences are 
presented in green. The length of deletions is noted to the right of each sequence (- deletion). WT: wild type; 
deletions “− ”; insertion “+ ”. (B) T7E1 cleavage assay for the mutation detection of F01-1–F01–9. M, DL2000; 
1–9 represent the pups used in this study. (C) T7E1 cleavage assay for the mutation detection of F02-1–F02–11. 
M, DL2000; 1–11 represent the pups used in this study. (D) Photos of MSTN−/− (F02–3), MSTN+/− (F02–6) 
and WT (F02–11) rabbits (4-month old) in F0. Note that an obvious double muscular phenotype was found in 
MSTN−/− and MSTN+/− rabbits, which compared to the WT.
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Figure 3. Heritability of the MSTN KO rabbit. (A) T-cloning and Sanger sequencing analyses of MSTN KO 
rabbits in F1. F11–F19 represent the F1 MSTN KO rabbits. The sequences of sgRNA are shown in red and the 
PAM sequences are presented in green. WT: wild type; deletions “− ”. (B) The mutation detection of F1 rabbits 
by T7E1 cleavage assay. M, DL2000; F11–F19 represent the offspring pups used in this study. (C) Determination 
of MSTN protein in skeletal muscle by Western blot. Equal amounts of protein were used and the β-actin was 
used as reference control.

Figure 4. Increased body weight and muscle mass in MSTN KO rabbits. (A) The average body weight of 
MSTN+/− and WT rabbits from F1 (n =  4). (B) Photos of MSTN+/− (F1 6) and WT (F1 1) rabbits (2-month 
old) in F1. (C) The average weight of heart (H), tongue (T), gluteus maximus (G) and vastus lateralis (V) from 
MSTN+/− and WT rabbits (n =  4). Data are expressed as mean ±  SEM. *p <  0.05, **p <  0.01, ***p <  0.001, 
Student’s t test. (D) Representative of heart (H), tongue (T), gluteus maximus (G) and vastus lateralis (V) from 
MSTN+/− and WT rabbits.
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Figure 5. A hyperplasia and/or hypertrophy of muscle fibers was observed in MSTN KO rabbits. (A) H&E 
staining of the muscle fibers from tongue and gluteus maximus. (a) Cross and longitudinal section in tongue; 
(b) Cross section in gluteus maximus. (B) The statistical analysis of the fiber size and number in tongue and 
gluteus maximus from MSTN+/− and WT rabbits (2-month old). Average fiber size and number in tongue (a,b); 
and in gluteus maximus (c,d). Data are expressed as mean ±  SEM. *p <  0.05, **p <  0.01, ***p <  0.001, Student’s 
t test.
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attributed to muscle fiber hyperplasia rather than hypertrophy in MSTN−/− pigs12 and Belgian Blue cattle25. While 
both fiber hypertrophy and hyperplasia led to the increased muscle mass in MSTN KO mice9. In our study, both 
enlarged fiber size and increased fiber cell number were found in gluteus maximus, while the fiber hypertrophy 
was mainly responsible for the enlarged tongue in MSTN+/− rabbits. Therefore we believe that the increased 
muscle phenotype in the MSTN KO rabbits is attributed to hyperplasia and/or hypertrophy of muscle fibers. 
Besides, the MSTN-regulated muscle proliferation and differentiation are also affected by expression levels of 
MSTN mRNA, the health state and the individual developmental stage of the organism.

In conclusion, the MSTN KO rabbits were efficiently generated by microinjection Cas9/sgRNA mixture into 
the pronuclear-stage embryos, and the typical double-muscled phenotype was obtained in the founder and off-
spring MSTN KO rabbits. These MSTN KO rabbits can be a promising tool for studying muscle development and 
improving economically important traits in livestock.

Materials and Methods
Ethics statement. All experiments involving animals were conducted according to the guidelines for the 
animal care and use of laboratory animals established by the Animal Care Center and Use Committee of Jilin 
University. All experimental protocols were approved by the Ethics Committee of Jilin University. New Zealand 
rabbits were housed under standard laboratory conditions of a 12-h light and 12-h dark cycle in individual cages, 
and were fed twice a day with commercial rabbit basic diet (Animal center of Jilin University) and water ad libi-
tum. The sexually mature rabbits were used for embryo collection and embryo transfer recipients.

Vector construction and in vitro transcription. The 3×  FLAG-NLS-SpCas9-NLS vector (Addgene 
ID 48137) was linearized with NotI and in vitro transcribed to mRNA using the mMessage mMachine SP6 Kit 
(Ambion). Then the product was purified with the RNeasy Mini Kit (Qiagen) according to the manufacturer’s 
instructions.

To prepare the vector of in vitro transcription of sgRNA, the pair of complementary 20-nt DNA oligos 
were annealed to generate a double-stranded DNA fragment, and then sub-cloned into the BbsI-linearized 
pUC57-T7-gRNA vector (Addgene ID 51306). The sequence of two sgRNAs is shown in Supplementary 
Table S1. The PCR products for in vitro transcription of sgRNA were amplified using T7 primers (T7-F: 
5′-GAAATTAATACGACTCACTATA-3′  and T7-R: 5′-AAAAAAAGCACCGA CTCGGTGCCAC-3′ ). Then  
in vitro transcription was performed using T7 RNA Synthesis Kit (Ambion) and the synthesized mRNA was 
purified using miRNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. The concentration and 
quality of the synthesized mRNA were determined by Nandrop 2000 and agarose gel electrophoresis, respectively.

Zygote injection with Cas9/sgRNA. Zygotes were collected through surgical oviduct flushing from 
donors after superovulation treatment and natural mating, as described previously5. Rabbit embryos at the pro-
nuclear stage (around 18–20 h post-mated) were transferred into oocyte manipulation medium, containing 9.5 g 
TCM-199, 0.05 g NaHCO3 (Sigma, S4019), 0.75 g Hepes (Sigma, H3784), 0.05 g penicillin, 0.06 g streptomycin, 
1.755 g NaCl, 3.0 g BSA, and 1 L Milli Q H2O. A mixture of in vitro transcribed sgRNA (40 ng/μ L) and Cas9 
mRNA (180 ng/μ L) was injected into the cytoplasm of pronuclear stage embryos. The injected embryos were 
transferred to embryo culture medium for 30–60 min culture at 38.5 °C, 5% carbon dioxide and humidity con-
ditions. Then approximately 30–50 injected embryos were transferred into the oviduct of the recipient mother.

Genotyping of MSTN mutation in embryos and pups. To test the mutation patterns, the injected 
embryos developed to blastocyst stage were collected and the genomic DNA was extracted with embryo 
lysis containing 1% NP40 at 50 °C for 20 minutes and 90 °C for 5 minutes in BIO-RAD PCR machine. The 
genomic DNA from ear punch tissues of newborn pups was isolated using the TIANamp Genomic DNA 
Kit (TIANGEN, Beijing, China). Then the target site was PCR amplified using the primers as follows: F 
5′ GGAGCAAGAGCCAATCATAGA 3′  and R 5′ TGAGGCTGTGAAGGCATAAG 3′ . The PCR products were 
subjected to T7EI assay and T-cloning sequence.

The T7EI assay was performed as described previously26. Briefly, PCR products were purified with TIANgel 
Midi Purification Kit (TIANGEN, Beijing, China) and were denatured and annealed in NEBuffer 2 (NEB) using 
a thermocycler. Hybridized PCR products were digested with T7 endonuclease 1 (NEB, M0302L) for 30 minutes 
at 37 °C and subjected to 2% agarose gel electrophoresis.

Off-target analysis. The POTS of the two sgRNAs were predicted using the CRISPR design tool (http://
tools.genomeengineering.org). The top 5 POTS were selected for each sgRNA according to ranking scores. The 
PCR primers used in this study are shown in Supplementary Table S2. The PCR products were analyzed by T7EI 
assay and then cloned into the pGM-T (Tiangen, Beijing, China) for Sanger sequence.

Western blotting and histology analysis. Samples from gluteus maximus tissue in MSTN KO and WT 
rabbits (euthanized at 2 months of age) of F1 generation were homogenized and lysed in RIPA buffer supple-
mented with 2.5 μ L/mL protease inhibitor cocktail (Roche) on ice for 30 min. The protein concentrations were 
determined by Bradford method (Bio-Rad). 35 μ g of protein sample was subjected to a 5% stacking/12% separat-
ing SDS-polyacrylamide gel. The antibodies used in this study include: anti-MSTN polyclonal antibody (Abcam) 
and goat anti-rabbit IgG conjugated with horseradish peroxidase (HRP) (Santa Cruz, USA). The β-actin antibody 
(Santa Cruz) was used as an internal control.

The tissues of tongue and gluteus maximus from MSTN KO and WT rabbits (euthanized at 2 months old) of 
F1 generation were fixed with 4% paraformaldehyde, then embedded in paraffin wax and slide sectioned. The 
sections were stained with hematoxylin and eosin (H&E) and analyzed by microscope (Nikon ts100).

http://tools.genomeengineering.org
http://tools.genomeengineering.org
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Body weight, carcass dissection, and sample collection. Four MSTN+/− rabbits of F1 and four WT 
counterparts controls were bred under the same conditions and used in this study. All rabbits were weaned at 
30 days of age and housed in individual cages of the same litter. The body weight was recorded weekly from 1–8 
weeks. At 2 months of age, the rabbits were anesthetized with isofluorane, following the injection of beuthanasia 
(1 mL/4 kg). Then the carcasses were dissected and the heart, tongue, gluteus maximus and vastus lateralis of the 
MSTN KO and WT groups were weighed and recorded separately.

Statistical analysis. Data was statistically analyzed by Graphpad prism software (T test) and a p value <  0.05 
was considered statistically significant. *p <  0.05, **p <  0.01, ***p <  0.001.
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