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ABSTRACT

The oncogenic transformation of normal cells into
malignant, rapidly proliferating cells requires ma-
jor alterations in cell physiology. For example, the
transformed cells remodel their metabolic processes
to supply the additional demand for cellular build-
ing blocks. We have recently demonstrated essential
metabolic processes in tumor progression through
the development of a methodological analysis of
gene expression. Here, we present the Metabolic
gEne RApid Visualizer (MERAV, http://merav.wi.mit.
edu), a web-based tool that can query a database
comprising ∼4300 microarrays, representing human
gene expression in normal tissues, cancer cell lines
and primary tumors. MERAV has been designed as a
powerful tool for whole genome analysis which offers
multiple advantages: one can search many genes in
parallel; compare gene expression among different
tissue types as well as between normal and cancer
cells; download raw data; and generate heatmaps;
and finally, use its internal statistical tool. Most im-
portantly, MERAV has been designed as a unique tool
for analyzing metabolic processes as it includes ma-
trixes specifically focused on metabolic genes and
is linked to the Kyoto Encyclopedia of Genes and
Genomes pathway search.

INTRODUCTION

During recent years, gene expression data from many stud-
ies have been made publicly available through resources
such as the NCBI GEO repository (http://www.ncbi.nlm.
nih.gov/geo, (1)). These public resources are widely used

to analyze changes in gene expression between different
cells. For instance, in normal tissue, gene expression anal-
ysis can be used to identify housekeeping genes and tissue-
selective expression patterns (2,3). In cancer cells, the onco-
genic transformation is associated with major alterations in
gene expression (4). These changes result in a unique ex-
pression profile found in each tumor type and is considered
a key molecular marker for diagnostic and prognostic as-
sessment of cancer (5,6). For example, breast cancers can be
categorized into subtypes (Luminal, Basal A and Basal B)
solely through their unique gene expression profiles (5,7,8).
Thus, analyzing databases generated from a superset of gene
expression experiments across cancer types can potentially
yield further categorization into new tumor subtypes. How-
ever, tumor-specific gene expression analysis is not limited
to the identification of molecular markers but can also serve
as a tool to identify unknown mechanism essential for the
cancer cells.

Among the six cancer hallmarks which were proposed
more than a decade ago is ‘sustained proliferation signal-
ing’ (9). Many of these unregulated signaling cascades in-
duce the expression of genes needed to support the prolif-
eration machinery. Metabolic remodeling was recently sug-
gested as one of the emerging hallmarks of cancer (10), with
the notion that cells must generate and supply the build-
ing blocks needed for proliferating cells (reviewed in (11–
14)). This remodeling includes nucleotide biosynthesis, as
the expression and activity of many enzymes in this path-
way, such as thymidylate synthase (TYMS) and ribonu-
cleotide reductase (RRM1 and RRM2), are elevated in pro-
liferating cells (15). Because of their proliferative-related
activity and expression, many of these metabolic enzymes
are the targets of common chemotherapeutic drugs. Thus,
a comparison in the gene expression between normal rest-
ing cells and the counterpart tumors may result in the iden-
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tification of molecular mechanism needed to support the
proliferation machinery. Among them are uncharacterized
metabolic processes that generate metabolites needed to sat-
isfy the proliferative cells metabolic demand.

The unique expression profile of each cancer strongly
indicates on the existence of subtype-specific mechanisms.
For instance, some metabolic genes demonstrate selec-
tive expression in specific cancer types, suggesting unique
metabolic demand in these cells. Phosphoglycerate dehy-
drogenase (PHGDH) is upregulated primarily in estro-
gen receptor-negative breast cancer and melanoma (16,17).
Similarly, serine hydroxymethyltransferase 2 (SHMT2) and
glycine decarboxylase (GLDC) are upregulated in human
glioblastoma multiforme (18); alkylglycerone phosphate
synthase (AGPS) in aggressive breast cancers (19); and the
mesenchymal metabolic signature genes in mesenchymal-
like cancers (20). Therefore, a systemic analysis of cancer-
dependent gene expression can serve as a tool to identify
unknown mechanisms essential for the tumor cells. Any
method to detect novel cancer-related mechanisms needs to
include the ability to identify genes essential for prolifera-
tion as well as those critical for only a subset of tumors.
Since these types of analysis across many different sam-
ples can be challenging, pre-processed expression compen-
dia could be a powerful tool for assisting gene expression
studies.

The increase in gene expression analysis usage in recent
years was followed by the development of web-based tools,
which provide a relatively easy and convenient method for
analysis. One of the advantages of analyzing Affymetrix ex-
pression arrays is the ability to assemble arrays generated
in different experiments but in a very consistent manner
(2,20). This results in a large-scale expression profile that
has more statistical power and can better overcome non-
biological biases which could confound data generated in
a single experiment (21). The optimal usage of these web-
sites is dependent on particular scientific question as each
one of them contains different features. Among the com-
monly used websites is BioGPS (http://biogps.org (22,23))
which displays gene expression in many different datasets.
Similar to BioGPS, Oncomine (https://www.oncomine.org
(24,25)) has a large variety of samples, but also allows
the user to compare expression between normal tissues
and tumors. However, in this commercially available web-
site paid subscription is required for enhanced support
and features. Web-based tools such as the GTEx portal
(http://www.gtexportal.org (26,27)) are resources for study-
ing human gene expression in the context of genetic varia-
tion. The EBI Expression Atlas (https://www.ebi.ac.uk/gxa/
home (28,29)) provides information on gene expression pat-
terns under multiple biological conditions. Other websites
such as the Human Protein Atlas (http://www.proteinatlas.
org (30)) are not limited to RNA profiles but also pro-
vide information on protein levels, including images of
their spatial distribution. More recent gene expression anal-
ysis tools include GENT (http://medical-genome.kribb.re.
kr/GENT/ (31)) and BioXpress (https://hive.biochemistry.
gwu.edu/tools/bioxpress/ (32)). Despite the existence of
many gene expression analysis tools, a resource providing
the ability to quickly compare the expression of multiple

genes in parallel between normal tissues, primary tumors
and cancer cell lines, is still limited.

The Metabolic gEne RApid Visualizer (MERAV) web-
site was generated in order to provide additional and more
advanced tools in analyzing gene expression. In MERAV,
all microarrays were normalized together, providing a more
accurate way to compare the expression between the differ-
ent cell types (normal tissues, primary tumors and cancer
cell lines). The user is not limited to the analysis of a single
gene, as the website provide the option to analyze multiple
genes in parallel. The search option is flexible as one can
pinpoint and filter the search on specific tissues at multi-
ple levels. In addition, all the arrays have detailed annota-
tion, providing a reference to the original experiments. The
website also offers the option to calculate the correlation
between pairs of genes and to present the data in multiple
ways (barplot, boxplot and heatmap). MERAV is linked to
two other databases, NCBI Entrez Gene (http://www.ncbi.
nlm.nih.gov) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (http://www.genome.jp/kegg/) pathway
search (33,34), which allow the user to obtain more com-
prehensive information for each of the genes selected. Im-
portantly, as opposed to many other tools, MERAV uses
updated Affymetrix probeset definitions. These updated
probesets are much more accurate than those from the ar-
ray’s original design and produce one value per gene, rather
than multiple values which can be inconsistent and more
difficult to interpret (35). Finally, the MERAV database
has been generated and designed as a preferred tool for
the specific analysis of metabolic gene expression. We des-
ignated a specific matrix that contains the expression data
of metabolic genes only, resulting in a faster analysis for
these gene sets. Additionally, the website provides an easy
option to compare the expression level of all the genes which
belong to the same metabolic pathway as determined by
KEGG. The MERAV advanced attributes are expected to
facilitate a wide range of studies of gene expression across
a broad spectrum of biological processes, and in particular
to analyze metabolic genes expression both in normal and
tumor tissues.

MATERIALS AND METHODS

Database content

MERAV database was assembled from the human gene ex-
pression data obtained from the NCBI GEO repository. In
particular, we manually curated Affymetrix U133 Plus 2.0
arrays (GPL570 platform in GEO). This platform was cho-
sen over other Affymetrix designs because it includes a rel-
atively recent set of probes and comprises a wide range of
experiments (115,886 in GEO as of August 2015). The as-
sembled arrays reflect the human gene expression in nor-
mal tissues, cancer cell lines and primary tumors, and were
collected from the following sources (Figure 1A and Ta-
ble 1): (i) Cancer Cell Line Encyclopedia (CCLE) (36), a
joint project between Novartis and the Broad Institute, rep-
resenting the expression of 729 cell lines; (ii) GlaxoSmithK-
line (GSK) representing the expression of 870 cell lines (37);
(iii) Expression Project for Oncology (ExpO), a gene ex-
pression database representing the expression of 1,312 pri-
mary tumors generated by the International Genomic Con-

http://biogps.org
https://www.oncomine.org
http://www.gtexportal.org
https://www.ebi.ac.uk/gxa/home
http://www.proteinatlas.org
http://medical-genome.kribb.re.kr/GENT/
https://hive.biochemistry.gwu.edu/tools/bioxpress/
http://www.ncbi.nlm.nih.gov
http://www.genome.jp/kegg/


D562 Nucleic Acids Research, 2016, Vol. 44, Database issue

Figure 1. Generation of the MERAV database. (A) Schematic presentation of the procedures used to generate the MERAV database. (I) Human gene
expression data were collected from the following resources: Cancer Cell Line Encyclopedia (CCLE), GlaxoSmithKline (GSK), Gene Expression Omnibus
database (GEO), Human Body Index (HBI) and Expression Project for Oncology (ExpO). (II) The data were assembled and normalized together, followed
by quality control and removal of low quality arrays. (III) The database was renormalized and non-specific probes were removed. (IV) The arrays were
annotated to obtain a more complete and unified annotation style. (B) Relative proportion of each component array type in the database. The number in
parenthesis indicates the number of arrays of each type. (C) Identical cell lines demonstrate a higher Pearson correlation, despite having been generated in
different experiments. Using all arrays from cancer cell lines (2,016 samples), the Pearson correlation between each one pair was calculated. The boxplot
represent the distribution in the correlation between the non-identical and the identical cell lines. The p values for the indicated comparisons were determined
using Student’s t-test.

sortium (GEO accession: GSE2109); (iv) Human Body In-
dex (HBI) that represents the expression of 426 normal hu-
man tissues (GEO accession: GSE7307); (v) Gene Expres-
sion Omnibus database (GEO) (1,38), human microarray
data is publicly available from the NCBI GEO database. In
order to retrieve the GEO arrays we manually searched the
NCBI GEO dataset for the most relevant experiments. This
dataset includes gene expression data from normal tissues
(N, 317 arrays), primary tumors (P, 292 arrays) and cancer
cell lines (C, 508 arrays) and were labeled GEO-N, GEO-P,
GEO-C respectively.

Array quality control

The assembled microarrays were initially normalized by ro-
bust multichip analysis using the ‘affy’ package from Bio-
conductor, resulting in a database composed of 4,644 ar-
rays. Due to the heterogeneity of sources, we applied stan-
dard quality parameters, which included normalized un-
scaled standard error, relative log expression (39) and the
deletion of duplicate arrays. In addition, if <35% of the
genes in a given array were found to be ‘present’ based on
the absent/present call, the array was removed (39). In to-

Table 1. Number of arrays from each source

Source Number of arrays

EXPO 1,312
GSK 870
CCLE 729
GEO-C 506
HBI 426
GEO-N 317
GEO-P 292

The MERAV database was generated from the indicated sources, with the
number of constituent arrays shown.

tal, 190 arrays did not meet the quality standard and were
removed from our compendium (Figure 1A). The remain-
ing arrays were then reassembled and normalized together
as before. Combined, there are 4,454 arrays, including nor-
mal tissues (726 arrays), cancer cell lines (2,016 arrays), pri-
mary tumors (1,460 arrays), non-cancer cell lines (79 arrays)
and metastatic tumors (173 arrays) (Figure 1B). We found
the analysis of the metastatic samples to be challenging as
their expression demonstrated a combination of both the
primary tumors and the host tissues. Due to this complex-
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ity, we decided to omit the option to analyze metastatic tu-
mor tissues from the website, despite their presence in the
database, leaving a total of 4,281 arrays (Figure 1A).

Probe quality control

Basing the analysis on standard Affymetrix probesets can
complicate the analysis. First, the annotation of Affymetrix
probes relies on earlier genome and transcriptome models
that in some cases have been found to contain errors (35).
In addition, each gene in the array is represented by several
probesets. In some cases, different probesets can demon-
strate differing or even opposing changes in expression lev-
els, making the analysis challenging. We therefore took ad-
vantage of redefined probesets, assigning a single probeset
per gene using the method proposed by Dai et al. (35). This
reorganization not only eliminated non-specific probes, but
was demonstrated to improve the precision and accuracy of
the microarray (40). However, the elimination of these non-
specific probes resulted in the loss of 247 genes, which in-
cluded 72 metabolic genes (Supplementary Table S1). The
remaining arrays and genes were then assembled to generate
the MERAV database.

Annotation

The Affymetrix arrays were gathered from a variety of
sources, each having its own sample annotation method.
To achieve consistency, we applied a more uniform anno-
tation standard across the arrays. This annotation includes
the type of sample (normal tissues, cancer cell lines, non-
cancer cell lines and primary tumors), tissue of origin, and
tissue subtype (in normal tissues) or cancer classification (in
primary tumors or cancer cell lines) (Supplementary Table
S2). Furthermore, we added the GSM accession number for
each array, which uniquely identifies the exact experiment in
the NCBI GEO Dataset (http://www.ncbi.nlm.nih.gov/gds)
in which the data were generated. Cell line names were as-
signed according to the following order of precedence: Can-
cer genome project >ATCC> DSMZ>Web search.

Batch effects

The accuracy of high-throughput genome analysis is some-
times subject to non-biological errors, which may affect the
interpretation of the data. One of the most common sources
of error is batch effects (21), where experimental measure-
ments are influenced by batch-specific biases. Due to batch
effects, replicated samples obtained from the same source
can demonstrate a greater similarity than those from dif-
ferent sources. In order to assay the magnitude of any such
non-biological effects, we compared the expression profile
of the same cell lines obtained from different sources when
available (Table 2). This was accomplished by downloading
the entire set of cancer cell line arrays (2,016 arrays) assay-
ing expression of the entire transcriptome (17,789 genes).
Using Pearson correlation, the gene profile of each array
was compared to that of each other array. Analyzing the
correlation between the arrays showed that the same cell
lines demonstrate a higher correlation between the repli-
cates (mean = 0.962, +/−0.035) than with non-identical

Table 2. Number of cell line replicates

Number of representative arrays Number of cell lines

1 469
2 83
3 128
4 143
5 33
6 23
7 and up 3

Some of the cell lines in the MERAV database are represented by multiple
arrays, summarized in this table.
For example, 469 cell lines have data from a single array, 83 have data from
two arrays, etc.

cell lines (mean = 0.845, +/−0.035). The high correlation
between identical cell lines indicates a low magnitude of
batch effect (Figure 1C) in the MERAV database. Also,
given that MERAV contains data from a large variety of
sources (Table 1), results that are consistent across sources
reflect higher reproducibility than results from only a single
source. In order to maximally reduce the batch effect, we
adjusted the samples with ComBat (41,42), using the sam-
ple description as a covariate. As shown by Principal Com-
ponent Analysis (PCA) (Supplementary Figure S1), batch
adjustment, as expected, effectively removed much of the
dataset component of the expression profiles of the cell line
samples, many of which are present in multiple datasets. The
primary tumors and normal tissue samples displayed lower
batch correction, largely because most samples were present
in only one dataset.

WEBSITE IMPLEMENTATION

MERAV is written in Perl CGI and JavaScript, specifically
using Ajax/jQuery. In addition, scripts for boxplots were
implemented in R. Heatmap data can be visualized in Java
TreeView (43). Data are stored in simple text files.

WEBSITE PROPERTIES

Metabolic genes

We generated the MERAV database to assist in the anal-
ysis of gene expression in normal tissues and cancer sam-
ples. Even though MERAV is designed to analyze the whole
genome, we implemented multiple features, which can fur-
ther facilitate the study of metabolic genes. First, we added
the option to search for a subset of genes that were previ-
ously identified as ‘metabolic genes’ (17,20). This metabolic
set includes 1,704 genes, which encode enzymes that modify
small molecules. This list was generated by cross-referencing
metabolic pathway maps with their corresponding KEGG
pathways (17). In addition, MERAV is linked to KEGG
pathway search; when the user searches for the presence
of gene(s) of interest in the matrix, a pop-up search re-
sult window appears to provide additional information: this
window includes a direct link to KEGG pathway search,
which indicates the corresponding pathways (metabolic or
signaling) to which the gene of interest belongs. Finally,
we provide the user with the ability to search for multiple
genes from the same metabolic pathway, as determined by

http://www.ncbi.nlm.nih.gov/gds
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Figure 2. MERAV can detect known gene expression profiles. (A) Expression of Aldolase isoenzymes in different normal tissues. The three Aldolase
isoenzymes were subjected to a search in MERAV for their expression in selected normal tissues. The results represent the bar graph, (generated by
MERAV). The bars colors were manipulated (a feature in the MERAV) in order to indicate the tissue of origin. The color legend is shown in the upper
right-hand corner. CNS-Central Nervous System. (B) Expression of Aldolase isoenzymes in different normal tissues. The same search parameters as in
(A), with the results presented as a boxplot. This figure was generated using MERAV without any additional tools. CNS-Central Nervous System. (C)
RRM1, RRM2 and TYMS expression is elevated in cancer cell lines. These three genes were subjected to a search in MERAV. For each tissue, a boxplot
was generated that demonstrates the expression in normal tissues (orange) and cancer cell lines (green). This figure was generated using MERAV without
any additional tools. CNS-Central Nervous System. (D) RRM1, RRM2 and TYMS expression is elevated in cancer cell lines. A table represents the p
values for each tissue and gene as indicated in (C). The expression data was downloaded and the distribution between the normal tissues and cancer cell
lines for each tissue was determined. The p values for the indicated comparisons were determined using Student’s t-test and calculated in R.

KEGG. Thus, although MERAV can be used to analyze
gene expression in the entire human genome, we also pro-
vide a convenient predefined subset particular to metabolic
genes.

Examples

Many metabolic genes demonstrate a tissue-specific expres-
sion profile (44). For example, the three isoenzymes of the
glycolytic gene aldolase (ALDOA, ALDOB and ALDOC)
are expressed in distinct tissues. ALDOA is expressed in the
muscle, ALDOB in the liver and kidney, and ALDOC in
the brain and central nervous systems (45,46). Searching
ALDO isoenzymes in MERAV yields similar tissue expres-
sion as can be found in the literature (Figure 2A and B),
suggesting that MERAV can be used as a tool to identify
tissue-selective genes.

Several metabolic genes, such as RRM1, RRM2 and
TYMS, are overexpressed in cancer cells. TYMS, a gene
essential for cell viability, is inhibited by 5-fluorouracil, a
known chemotherapeutic drug (15). Searching the MERAV
database for the expression of these metabolic enzymes both
in normal tissues and in cancer cell lines shows that the ex-
pression levels of all three genes are significantly elevated

in cancer cells (Figure 2C and D). This identification of
metabolic genes known to be upregulated in cancer cells in-
dicates that MERAV has the potential to effectively identify
uncharacterized cancer-induced genes.

CONCLUSION

We created the MERAV database and analysis tools in
order to harness aggregate array data for deeper insights
into gene expression across the entire human genome and
across normal cell lines, primary tumors and cancer cell
lines. In order to provide investigators with a tool to ac-
curately determine under which conditions and in which
primary tumors and cell types the expression of a gene or
set of genes of interest is altered, we collected and curated
a matrix comprised of data from multiple public reposito-
ries and developed analysis tools for the study of changes in
gene expression between cell types. Furthermore, MERAV
was additionally designed to facilitate the identification of
metabolic genes known to be upregulated in cancer cells
therefore promoting the identification of uncharacterized
cancer-induced genes.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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