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ABSTRACT
Mendelian randomization analyses are often performed using summarized data. The causal estimate from

a one-sample analysis (in which data are taken from a single data source) with weak instrumental variables

is biased in the direction of the observational association between the risk factor and outcome, whereas

the estimate from a two-sample analysis (in which data on the risk factor and outcome are taken from

non-overlapping datasets) is less biased and any bias is in the direction of the null. When using genetic

consortia that have partially overlapping sets of participants, the direction and extent of bias are uncertain.

In this paper, we perform simulation studies to investigate the magnitude of bias and Type 1 error rate

inflation arising from sample overlap. We consider both a continuous outcome and a case-control setting

with a binary outcome. For a continuous outcome, bias due to sample overlap is a linear function of the

proportion of overlap between the samples. So, in the case of a null causal effect, if the relative bias of

the one-sample instrumental variable estimate is 10% (corresponding to an F parameter of 10), then the

relative bias with 50% sample overlap is 5%, and with 30% sample overlap is 3%. In a case-control setting,

if risk factor measurements are only included for the control participants, unbiased estimates are obtained

even in a one-sample setting. However, if risk factor data on both control and case participants are used,

then bias is similar with a binary outcome as with a continuous outcome. Consortia releasing publicly

available data on the associations of genetic variants with continuous risk factors should provide estimates

that exclude case participants from case-control samples.
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1 INTRODUCTION

Mendelian randomization is the use of genetic variants as

instrumental variables to assess and estimate the causal

effect of a risk factor on an outcome from observational

data (Davey Smith & Ebrahim, 2003; Burgess & Thompson,

2015). A recent methodological development in Mendelian

randomization is the use of summarized data on associa-

tions of genetic variants with the risk factor and with the

outcome to obtain causal effect estimates (Johnson, 2013;

Burgess, Butterworth, & Thompson, 2013). These summa-

rized data comprise the associations of the individual genetic

variants with the risk factor and with the outcome taken

from univariable regression analyses (beta-coefficients and
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standard errors from linear or logistic regression as appro-

priate). Suitable summarized data for such analyses have

been made publicly available for hundreds of thousands of

genetic variants by some large consortia (Burgess et al.,

2015a). Examples include associations of genetic variants

with lipid fractions from the Global Lipids Genetics Con-

sortium (The Global Lipids Genetics Consortium, 2013) and

with type 2 diabetes from the DIAGRAM consortium (Morris

et al., 2012). Mendelian randomization analyses using sum-

marized data have suggested causal effects of adiponectin

on type 2 diabetes risk (Dastani et al., 2012), insulin levels

on endometrial cancer risk (Nead et al., 2015), and telom-

ere length on risk of lung adenocarcinoma (Zhang et al.,

2015).
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The validity of a Mendelian randomization investigation

depends on the instrumental variable (IV) assumptions being

satisfied for all genetic variants (Lawlor, Harbord, Sterne,

Timpson, & Davey Smith, 2008). In particular, any genetic

variant used as an IV is assumed to be:

1. Associated with the risk factor;

2. Independent of confounders of the risk factor–outcome

association; and

3. Independent of the outcome conditional on the risk fac-

tor and confounders of the risk factor–outcome association

(Greenland, 2000; Sussman, Wood, & Hayward, 2010).

In this paper, we assume that the IV assumptions are sat-

isfied for all genetic variants in the analysis. Variants can be

weak (i.e., they do not explain much variation in the risk fac-

tor), but they are all assumed to be valid IVs.

Although estimates from IV analysis in a one-sample set-

ting (that is, genetic variants, risk factor and outcome are all

measured in the same participants) are asymptotically unbi-

ased, they can have substantial bias in finite samples (Stock,

Wright, & Yogo, 2002; Burgess & Thompson, 2011). This

bias (known as weak instrument bias) acts in the direction

of the confounded observational association between the risk

factor and outcome (Nelson & Startz, 1990; Bound, Jaeger,

& Baker, 1995). Its magnitude depends on the strength of

association between the IV(s) and the risk factor (Staiger

& Stock, 1997). Weak instrument bias also leads to inflated

Type 1 error rates (over-rejection of the null) (Stock & Yogo,

2002). One way of combatting weak instrument bias in prac-

tice is a two-sample analysis strategy, in which the asso-

ciations of IVs with the risk factor and with the outcome

are obtained from two non-overlapping datasets (Angrist

& Krueger, 1992; Inoue & Solon, 2010). In a two-sample

Mendelian randomization analysis, any bias due to weak

instruments is in the direction of the null (Pierce & Burgess,

2013). Bias in the direction of the null is less serious than

bias in the direction of the observational association, as it

is conservative, and so will not lead to inflated Type 1 error

rates and false-positive findings. This bias may lead to lower

power to detect a causal effect and increased probability of

a Type 2 error, although the standard errors typically also

attenuate, mitigating this somewhat (Burgess, Dudbridge, &

Thompson, 2016b).

The use of summarized data in Mendelian randomization

is motivated by the increasing availability of suitable data

in large sample sizes. A fortuitous side-effect is that genetic

associations with the risk factor and with the outcome are

often obtained from separate datasets, leading to a two-sample

IV analysis. However, due to the nature of major interna-

tional genetics consortia, often the datasets are not completely

disjoint, and some studies and participants are in common

between the two datasets. When there is some overlap, it is

unclear whether bias due to weak instruments would be in

the direction of the null (as in the case of zero overlap) or

in the direction of the observational association (as in the

case of complete overlap). While the sliding scale of bias

toward the observational association as the proportion of over-

lap increases has previously been demonstrated (Pierce &

Burgess, 2013), it is unclear in specific investigations whether

this bias should be of concern.

The aim of this paper is to investigate the direction

and degree of bias in a “two-sample” instrumental variable

analysis in which there is overlap between the two samples.

This is achieved by theoretical considerations and a series

of simulation studies with realistic parameters for Mendelian

randomization. The structure of the paper is as follows. First,

we explain why weak instrument bias occurs and the reason

for the direction of the bias (Section 2). Next, we present sim-

ulation studies and discuss their results (Section 3 for a con-

tinuous outcome, Section 4 for a binary outcome). We present

illustrations of the potential bias due to participant overlap in

example Mendelian randomization investigations using sum-

marized data from two large consortia (Section 5). Finally, we

discuss the wider relevance of these results, and in particular

the case of a two-sample investigation in which the genetic

variants were discovered in one of the datasets under analysis

(Section 6).

2 WEAK INSTRUMENT BIAS

We initially assume that the outcome is continuous and that

all regression analyses use a linear model. In the simplest case

with a single IV, the causal effect of the risk factor on the out-

come can be estimated as a ratio of regression coefficients

(Martens, Pestman, de Boer, Belitser, & Klungel, 2006). The

ratio estimate is the coefficient from regression of the out-

come on the IV divided by the coefficient from regression

of the risk factor on the IV (Didelez & Sheehan, 2007). In a

one-sample setting, weak instrument bias arises due to cor-

relation between the regression coefficients in the numera-

tor and denominator as a result of confounding between the

risk factor and outcome (Nelson & Startz, 1990). In a two-

sample setting, the numerator and denominator in the ratio

method will be uncorrelated. Bias with a single IV is diffi-

cult to quantify, as the expected value of the ratio estimate is

undefined, because of the small but finite probability that the

denominator in the ratio estimator (the IV–risk factor associ-

ation) is arbitrarily close to zero (Hahn, Hausman, & Kuer-

steiner, 2004). However, if the IV–risk factor association is

close to zero, then an IV analysis is unlikely to be performed

in practice, as the first IV assumption (the only one that can

be tested directly) appears to be violated. In simulation stud-

ies, the median ratio estimate across simulations is usually

close to the true value of the causal effect even with complete

sample overlap (a one-sample analysis) except in the case of
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extremely weak instruments (those for which the expected

strength of association with the risk factor corresponds to a

P-value above 0.05 Burgess & Thompson, 2011), indicating

that the practical consequences of bias with a single IV are

unlikely to be substantial (Angrist & Pischke, 2009).

2.1 Two-stage least squares method

When there are multiple IVs, the two-stage least squares

(2SLS) estimate can be obtained in a one-sample setting

with individual-level data by (i) regressing the risk factor on

the IVs (first-stage regression), and then (ii) regressing the

outcome on fitted values of the risk factor from the first-

stage regression (second-stage regression). Weak instrument

bias can be explained as arising from overfitting in the first-

stage regression model, which occurs at least in part due to

chance correlations of the IVs with confounders (Burgess &

Thompson, 2011). In a one-sample setting, the fitted val-

ues from the first-stage regression are therefore correlated

with the outcome in finite samples even in the absence of

a causal effect. This leads to finite-sample bias of the 2SLS

estimate. The expected magnitude of this bias depends on

the strength of association between the IVs and the risk fac-

tor through the concentration parameter. The concentration

parameter (𝜇) is related to the expected value of the F statistic

from the regression of the risk factor on the IVs: for large sam-

ples, 𝔼(𝐹 ) = 𝜇

𝐾
+ 1, where 𝐾 is the number of IVs (Cragg &

Donald, 1993). We refer to the expected value of this F statis-

tic as the F parameter, to emphasize that this is a characteristic

of the population, and not simply a function of the observed

data.

In a two-sample setting with individual-level data, the

2SLS estimate can be calculated by obtaining estimates of

the first-stage regression parameters in one dataset, and con-

structing fitted values of the risk factor in the second dataset

using these estimates and the values of the IVs in the second

dataset (measurements of the risk factor in the second dataset

are not required). The outcome and the fitted values of the

risk factor in the second-stage regression are no longer cor-

related due to confounding. This approach is also known as

split-sample 2SLS (Angrist & Krueger, 1995). The fitted val-

ues of the risk factor are also equivalent (up to an additive

constant) to values of an externally weighted allele score (an

analysis approach used in Mendelian randomization (Burgess

& Thompson, 2013)) in the second dataset using the first

sample to obtain the external weights. Any bias due to weak

instruments is in the direction of the null (Pierce & Burgess,

2013; Burgess et al., 2016b). This arises for the same reason

as regression dilution bias in observational studies (Frost &

Thompson, 2000). If the fitted values of the risk factor are

imprecisely estimated (as will be the case with weak instru-

ments), then they will suffer from non-differential measure-

ment error, and bias in the second-stage regression will be in

the direction of the null.

2.2 Inverse-variance weighted method and
equivalence to 2SLS method

If individual-level data are not available, but instead summa-

rized data on the associations of the genetic variants with the

risk factor and with the outcome, then the 2SLS method can-

not be implemented. Instead, an inverse-variance weighted

(IVW) method is often employed that combines the ratio esti-

mates calculated separately for each IV, using a formula for

performing a fixed-effect meta-analysis (Burgess et al., 2013).

This method assumes that the IVs are uncorrelated (i.e., not

in linkage disequilibrium), although extensions for correlated

genetic variants have been proposed (Burgess et al., 2016b).

The estimate from the IVW method is equal to the estimate

from the 2SLS method asymptotically. The two estimates are

also equal in finite samples when the correlations between the

IVs are exactly zero (Burgess et al., 2016b). The level of weak

instrument bias in the IVW method has been shown to be the

same as that from the 2SLS method in realistic simulations

(Burgess et al., 2013). We therefore expect the results of this

paper to apply equally to analyses performed using the 2SLS

method and individual-level data, as to using the IVW method

and summarized data.

Although we use the 2SLS method in some simulation

studies of this paper for computational convenience, and we

refer to theoretical results for weak instrument bias derived

using the 2SLS method, the focus of this paper is the sum-

marized data setting. Results from the 2SLS method are pre-

sented because of their similarity with those from the IVW

method that can be performed using summarized data. If

individual-level data were available, then several alternative

approaches for mitigating weak instrument bias would be

possible, such as using either the limited information max-

imum likelihood (LIML) or the continuously updating esti-

mator (CUE) method (Davies et al., 2015), using a jack-

knife IV estimator (Angrist et al., 1999) (or equivalently

an allele score approach using leave-one-out cross-validated

weights Burgess & Thompson, 2013), or using an allele score

approach using equal or externally specified weights (Burgess

& Thompson, 2013). However, with summarized data, only

the final option (equal or externally specified weights) is pos-

sible (Burgess et al., 2016b).

2.3 Magnitude of bias in a one-sample setting

The ordinary least squares (OLS, also known as standard least

squares regression) estimate is obtained by regressing the out-

come on the risk factor. This “observational” estimate is typi-

cally biased due to confounding. The relative bias of the 2SLS

estimate —the bias of the 2SLS estimate divided by the bias

of the OLS estimate—is approximately and asymptotically

equal to 1∕𝔼(𝐹 ) (Staiger & Stock, 1997), where 𝔼(𝐹 ) is the

“F parameter.” An F parameter of 10 therefore corresponds

to a 1∕10 = 10% relative bias of the 2SLS estimate compared
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to the OLS estimate. However, this calculation cannot be

directly employed for bias correction in an applied setting, as

the F statistic in a given dataset may differ substantially from

the F parameter due to random variation (Burgess, Thomp-

son, & CRP CHD Genetics Collaboration, 2011). As weak

instrument bias occurs due to chance correlations with con-

founders, the reference OLS estimate should ideally be unad-

justed for measured confounders, unless these confounders

are also adjusted for in the IV estimate.

2.4 Expected bias of 2SLS estimator

The bias of the 2SLS estimator in a one-sample setting has

been considered theoretically (Nagar, 1959). One approxima-

tion to the bias is:

Bias of 2SLS estimator (one sample) =
𝜎𝑋𝑌 (𝐾 − 2)

𝜎2
𝑋
𝜇

≈
𝜎𝑋𝑌

𝜎2
𝑋
𝔼(𝐹 )

(1)

where 𝜇 is the concentration parameter, 𝐾 is the number of

IVs, 𝜎2
𝑋

is the variance of the error in the first-stage regres-

sion model, and 𝜎𝑋𝑌 is the covariance of the error terms in

the first- and second-stage regression models (Bun & Wind-

meijer, 2011). In a two-sample setting, this formula may not

be directly applicable, as the sample sizes for the first- and

second-stage regressions (and so the lengths of the error term

vectors) may differ, in which case a covariance cannot be cal-

culated. If the sample sizes are equal, then we can decom-

pose the covariance into a term corresponding to individu-

als included in both regressions, and a term corresponding

to unrelated individuals that will have expectation zero. If

the sample sizes differ, dependence between these two error

terms is still driven by individuals in common between these

two regressions, and the presence of individuals in only one

or other of the regressions will dilute this dependence. As

covariance is a linear operator in both its arguments, we

may therefore expect the bias of the 2SLS estimator to be

approximately linear in the proportion of overlap between the

samples.

3 SIMULATION STUDY—CONTINUOUS
OUTCOME

To investigate the degree and direction of bias in a “two-

sample” Mendelian randomization investigation where there

is overlap between the samples, we conduct a simulation

study. The data-generating model is given below.

𝑔𝑖𝑘 ∼ Binomial(2, 0.3) independently for 𝑘 = 1,… , 20 (2)

𝑥𝑖 =
20∑
𝑘=1

𝛼𝑔𝑖𝑘 + 𝑢𝑖 + 𝜖𝑋𝑖

𝑦𝑖 = 𝛽𝑋𝑥𝑖 + 𝛽𝑈𝑢𝑖 + 𝜖𝑌 𝑖

𝑢𝑖 ∼  (0, 1), 𝜖𝑋𝑖 ∼  (0, 1), 𝜖𝑌 𝑖 ∼  (0, 1) independently

The 20 IVs (𝑔𝑖𝑘, 𝑘 = 1,… , 20) are indexed by 𝑘 and indi-

viduals are indexed by 𝑖. The IVs are modeled as indepen-

dently distributed biallelic single nucleotide polymorphisms

(SNPs) with a minor allele frequency of 0.3. The risk factor

(𝑥𝑖) is a linear function of the IVs, a confounder (𝑢𝑖), and an

independent error term (𝜖𝑋𝑖). The outcome (𝑦𝑖) is a linear

function of the risk factor, confounder, and another indepen-

dent error term (𝜖𝑌 𝑖). The IVs all have the same per allele

effect on the risk factor (𝛼). The causal effect of the risk fac-

tor on the outcome is 𝛽𝑋 , and the effect of the confounder on

the outcome is 𝛽𝑈 .

We consider the cases of a positive causal effect (𝛽𝑋 =
0.2) and a null causal effect (𝛽𝑋 = 0), and take three

values of the confounder effect on the outcome (𝛽𝑈 =
0.6, 1, 2). The IV strength is varied by taking three values of

𝛼 = 0.04, 0.06, 0.08. We consider cases where there is 0%

overlap, increasing in increments of 10% up to a 100% over-

lap. This is achieved by simulating data on 20, 000 individu-

als. Estimates were obtained using the 2SLS and IVW meth-

ods. The first-stage regression is undertaken (or for the IVW

method, IV–risk factor associations are estimated) in the first

10, 000 individuals, and the second-stage regression (IV–

outcome associations) in individuals 10, 001–20, 000 (0%

overlap), individuals 9,001–19, 000 (10% overlap), individu-

als 8,001–18, 000 (20% overlap), and so on. Hence all associ-

ations were estimated using 10, 000 individuals. Total 10, 000

simulations were considered for each set of parameters.

Although some aspects of the simulation study are not var-

ied here, we repeated the simulation study varying the num-

ber of IVs, and the total sample size (results not shown). In

each case, the amount of bias was almost identical between

scenarios in which the F parameter (expected value of the F

statistic) was similar. Hence, we would expect the results of

this simulation study to be generalizable to other situations,

and would view the F parameter (which depends on the sam-

ple size, number of IVs, and the proportion of variance in the

risk factor explained by the IVs) as the key measure of bias.

3.1 Results

Results are given in Table 1 and displayed visually in Figure 1.

For each set of parameters, the mean estimate from the 2SLS

method across simulations is given. Mean estimates from the

IVW method were equal to those from the 2SLS method to 3

decimal places, and median estimates across simulations from

both methods were similar to mean estimates. The Monte

Carlo standard error for the mean estimates is 0.002 or less in

all scenarios. Mean F and 𝑅2 (coefficient of determination)

statistics from regression of the risk factor on the IVs based

on 10, 000 participants are provided to judge the strength of
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T A B L E 1 Simulation 1 with continuous outcome and different overlap proportions

Mean Mean Percentage 𝜷𝑿 = 𝟎.𝟐 𝜷𝑿 = 𝟎

𝜶 𝑭 𝑹𝟐 overlap 𝜷𝑼 = 𝟎.𝟔 𝜷𝑼 = 𝟏 𝜷𝑼 = 𝟐 𝜷𝑼 = 𝟎.𝟔 𝜷𝑼 = 𝟏 𝜷𝑼 = 𝟐

0.04 4.4 0.9% OLS 0.498 0.697 1.193 0.298 0.497 0.993

0% 0.156 0.157 0.161 −0.001 0.000 0.004

10% 0.167 0.173 0.186 0.006 0.012 0.024

20% 0.178 0.187 0.211 0.012 0.022 0.045

30% 0.189 0.203 0.237 0.019 0.033 0.067

40% 0.200 0.218 0.262 0.026 0.044 0.087

50% 0.211 0.233 0.287 0.033 0.055 0.108

60% 0.223 0.249 0.313 0.040 0.066 0.130

70% 0.234 0.264 0.339 0.047 0.077 0.152

80% 0.245 0.280 0.363 0.053 0.088 0.172

90% 0.256 0.294 0.389 0.060 0.098 0.194

100% 0.266 0.309 0.415 0.066 0.109 0.215

0.06 8.5 1.7% OLS 0.495 0.692 1.185 0.295 0.492 0.985

0% 0.178 0.179 0.176 0.000 0.000 −0.002

10% 0.184 0.186 0.189 0.003 0.005 0.009

20% 0.189 0.193 0.203 0.006 0.011 0.020

30% 0.194 0.201 0.215 0.009 0.016 0.031

40% 0.200 0.209 0.228 0.013 0.022 0.041

50% 0.206 0.216 0.242 0.016 0.027 0.052

60% 0.211 0.224 0.255 0.019 0.032 0.063

70% 0.216 0.231 0.268 0.023 0.038 0.074

80% 0.221 0.239 0.282 0.026 0.043 0.086

90% 0.226 0.246 0.295 0.028 0.048 0.097

100% 0.232 0.254 0.309 0.031 0.054 0.109

0.08 14.4 2.8% OLS 0.492 0.687 1.174 0.292 0.487 0.974

0% 0.187 0.187 0.187 0.000 0.000 0.000

10% 0.191 0.191 0.195 0.002 0.003 0.007

20% 0.194 0.195 0.203 0.004 0.006 0.014

30% 0.197 0.199 0.211 0.006 0.009 0.020

40% 0.200 0.204 0.218 0.008 0.011 0.026

50% 0.203 0.208 0.225 0.010 0.014 0.032

60% 0.206 0.213 0.232 0.012 0.018 0.038

70% 0.210 0.218 0.240 0.014 0.022 0.044

80% 0.213 0.222 0.248 0.016 0.024 0.050

90% 0.217 0.226 0.255 0.018 0.027 0.056

100% 0.220 0.230 0.264 0.020 0.030 0.064

Notes: Mean two-stage least squares (or equivalently, inverse-variance weighted) estimates with true causal effect 𝛽𝑋 = 0.2 (positive effect) and 𝛽𝑋 = 0 (null

effect) for three values of genetic associations with the risk factor (𝛼), three values of the confounder effect on the outcome (𝛽𝑈 ), and 11 values of the percentage

overlap between the two samples. The mean F statistic (𝐹 ), mean coefficient of determination (𝑅2), and mean ordinary least squares (OLS) estimate are given

to judge the strength of the instrumental variables and the degree of confounding.

the instrumental variants. Ordinary least squares (OLS) esti-

mates are also provided to help judge the level and direction

of confounding.

With a positive causal effect, the results demonstrate

clearly the transition from bias in the direction of the null with

no overlap, to bias in the direction of the confounded asso-

ciation with increasing overlap. This transition happens ear-

lier when the confounding is stronger, although the balance

point where the biases cancel out does not seem to depend

on the strength of the IVs: for 𝛽𝑈 = 0.6, it is around 40%; for

𝛽𝑈 = 1, it is around 28%; and 𝛽𝑈 = 2, it is around 16%. Fur-

ther simulations (not shown) suggest that the balance point

also depends on the magnitude of the causal effect, so the

precise balance points in this simulation will not necessarily
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F I G U R E 1 Mean two-stage least squares/inverse-variance weighted estimates plotted against sample overlap for different values of instrument strength

(𝛼 = 0.4, circle; 𝛼 = 0.6, triangle; 𝛼 = 0.8, plus) and different values of the confounder effect on the outcome (𝛽𝑈 = 0.6, black solid line; 𝛽𝑈 = 1, mid-gray

dashed line; 𝛽𝑈 = 2, light-gray dotted line). Left panel: positive causal effect (𝛽𝑋 = 0.2); right panel: null causal effect (𝛽𝑋 = 0)

hold in other cases. With a null causal effect, there is no bias

with 0% overlap, and bias increases as the degree of overlap

increases.

3.2 Deriving analytic formulae for the expected bias
under the null and type 1 error rate
The relationship between the level of overlap and the mean

estimate appears to be linear throughout, both with a posi-

tive and with a null causal effect. Equally, with a null causal

effect, the bias is proportional to the effect of the confounder

(𝛽𝑈 ), which in turn is proportional to the OLS estimate. This

suggests that a formula can be derived for the amount of bias

expected under the null hypothesis:

Bias under null = OLS estimate ×
Percentage overlap

100
× Relative bias (3)

where the relative bias is the reciprocal of the F parameter.

Given the bias and the standard error of an estimate, the

expected Type 1 (false positive) error rate for a two-sided test

of size 5% can be approximated analytically as:

Type 1 error rate = 2 − Φ
(
1.96 − bias

standard error

)

−Φ
(
1.96 + bias

standard error

)
(4)

whereΦ is the cumulative standard normal function. The vari-

ance of the IV estimate (the 2SLS or the IVW estimate) can

be approximated as:

Variance of IV estimate ≃
var(𝑅𝑌 )

𝑁 var(𝑋) 𝜌2
(5)

where 𝑁 is the sample size for the IV–outcome association,

𝑅𝑌 is the residual outcome after subtracting the causal effect

of the risk factor (𝑅𝑌 = 𝑌 − 𝛽𝑋𝑋), and 𝜌 is the correlation

between the IVs and the risk factor (the 𝑅2 statistic – the pro-

portion of variance in the risk factor explained by the IVs – is

an estimate of 𝜌2) (Nelson & Startz, 1990). The variance of

𝑅𝑌 is equal to the variance of 𝑌 when the causal effect of the

risk factor on the outcome is zero. The relationship between

the F statistic and the 𝑅2 statistic (Dobson, 2001) is:

𝐹 = 𝑁 −𝐾 − 1
𝐾

𝑅2

1 − 𝑅2 (6)

where 𝐾 is the number of IVs. For small values of 𝑅2, this

means that the F and 𝑅2 statistics are approximately linearly

related.

Hence, given the sample size, sample overlap percentage,

OLS estimate (in standard deviation units for the risk factor

and outcome, otherwise the standard deviations of risk factor

and outcome are required), and an estimate of the strength of

the IVs (either the F statistic or the 𝑅2 statistic), the bias and

Type 1 error rate can be calculated. R code for performing

these calculations is given in Web Appendix A1.

3.3 Validating the analytic formulae

To assess the validity of the analytic formulae for the bias

and Type 1 error rate, we conducted a further set of 10, 000

simulations in 10, 000 participants using model (2) under the

causal null (𝛽𝑋 = 0), with the strongest level of confounding

(𝛽𝑈 = 2) and 100% sample overlap, with a wider range of

values for the IV strength (𝛼 = 0.01, 0.02,… , 0.1, 0.15, 0.2)

to estimate the relative bias and empirical Type 1 error rate
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T A B L E 2 Simulation 2 with continuous outcome to validate bias and type 1 error rate formulae

Mean Mean Relative Empirical Expected

𝜶 Mean 𝑭 Mean 𝑹𝟐 OLS estimate IV estimate bias (Mean 𝑭 )−𝟏 Type 1 error Type 1 error

0.01 1.2 0.2% 0.999 0.829 0.829 0.825 84.8% 89.5%

0.02 1.8 0.4% 0.998 0.531 0.532 0.545 65.5% 69.8%

0.03 2.9 0.6% 0.996 0.333 0.334 0.346 46.9% 46.1%

0.04 4.4 0.9% 0.993 0.216 0.218 0.229 32.5% 30.6%

0.05 6.3 1.2% 0.990 0.149 0.151 0.160 24.1% 21.8%

0.06 8.6 1.7% 0.985 0.109 0.111 0.117 19.2% 16.8%

0.07 11.3 2.2% 0.980 0.082 0.083 0.089 15.6% 13.6%

0.08 14.4 2.8% 0.974 0.062 0.064 0.069 12.4% 11.5%

0.09 18.0 3.5% 0.967 0.050 0.052 0.056 11.0% 10.1%

0.10 22.0 4.2% 0.960 0.040 0.042 0.046 9.8% 9.0%

0.15 48.3 8.8% 0.914 0.019 0.021 0.021 7.5% 6.6%

0.20 85.0 14.5% 0.856 0.010 0.012 0.012 5.9% 5.8%

Notes: Simulation results with null causal effect 𝛽𝑋 = 0, and confounder effect 𝛽𝑈 = 2 to estimate the relative bias and empirical Type 1 error rate (5% nominal

significance level) of the two-stage least squares (or equivalently, inverse-variance weighted) instrumental variable (IV) estimate; the relative bias is the bias

of the IV estimate divided by the bias of the ordinary least squares (OLS) estimate. The relative bias is theoretically predicted to be close to the reciprocal of

the mean value of the F statistic, (Mean 𝐹 )−1.

(proportion of simulations for which the Wald test for the IV

estimate rejected the null) in each case.

These results are given in Table 2. The relative bias esti-

mates are close to 1∕𝔼(𝐹 ), as theoretically predicted (Staiger

& Stock, 1997). The expected Type 1 error rate was calculated

using the mean values of the 𝐹 statistic, 𝑅2 statistic, variance

of the risk factor and outcome, and the OLS estimate across

simulations. The empirical and expected Type 1 error rates

showed fairly close agreement, with the expected Type 1 error

rate tending to be a slight underestimate of the empirical rate

for all but the weakest of instruments. The Monte Carlo stan-

dard error for the empirical Type 1 error rate was around 0.2%.

Additional simulations are provided in Web Appendix A2.

We varied the number of IVs (𝐾 = 10) and considered differ-

ent overlap proportions from 0% to 100% (Web Table A1).

In this case, closer correspondence was observed between

the expected and observed Type 1 error rates throughout,

although these were across a narrower range. We also varied

the sample size (𝑁 = 1, 000, Web Table A2), and considered

the case of a binary risk factor (Web Table A3). In both these

cases, there was close agreement between the expected and

observed values of the relative bias and the Type 1 error rate.

There was some deviation in Type 1 error estimates with a

smaller sample size, with Type 1 error rates underestimated

with stronger instruments (F parameter 5–10). However, this

discrepancy appeared to be due to problems of maintaining

nominal Type 1 error rates with weak instruments more gener-

ally rather than mis-estimation of the relative bias, and would

be resolved by using methods for inference that do not rely

on the IV estimate having a normal distribution (for exam-

ple, Fieller’s theorem (Burgess, Small, & Thompson, 2015)

or inversion of the Anderson–Rubin test statistic Mikusheva,

2010).

3.4 The F parameter and the F statistic

The bias of an IV estimate depends on the expected value

of the F statistic (referred to here as the F parameter). How-

ever, in practice, the F parameter will be unknown and only

the measured F statistic (an estimate of the F parameter) will

be available in a single dataset. The F statistic can be highly

variable. For example, we previously took a large study and

divided it into 16 equally sized substudies at random (Burgess

et al., 2011). By construction, each of these substudies should

have had the same expected F statistic. However, the mea-

sured F statistics ranged from 3.4 to 22.6 (mean was 10.8).

One practical suggestion is to use an estimate of the

F statistic based on an external dataset to ensure that the esti-

mate of bias is not dependent on the F statistic in the data

under analysis. This can be achieved by taking the value of

𝑅2 (which is independent of sample size) from the exter-

nal dataset and calculating the corresponding F statistic for

the sample size under investigation; the 𝑅2 for a single SNP

is 2 �̂�2 ×𝑀𝐴𝐹 × (1 −𝑀𝐴𝐹 ), where the genetic association

with the risk factor �̂� is in standard deviation units, and 𝑀𝐴𝐹

is the minor allele frequency. Additionally, the bias calcula-

tion can be repeated taking a lower value of the F statistic

to address the problem that the F statistic in the data under

analysis may be an overly optimistic estimate of the F param-

eter. For example, one could take the lower limit from a confi-

dence interval for the F parameter (such as the lower limit of a

one-sided 95% confidence interval—only the lower tail of the

interval is relevant). A method for constructing a confidence

interval for the non-centrality parameter of an F distribution

(from which a confidence interval for the F parameter can be

obtained) has been considered previously (Venables, 1975);

this method is outlined in Web Appendix A3, and code for

implementing the method is provided.
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4 SIMULATION STUDY—BINARY
OUTCOME

With a binary outcome in a case-control setting (as is com-

mon for Mendelian randomization with a disease outcome),

the ratio estimate is calculated by dividing the IV–outcome

coefficient from logistic regression by the IV–risk factor coef-

ficient from linear regression (Didelez, Meng, & Sheehan,

2010b). A two-sample method can also be performed by

replacing the linear model in the second-stage regression of

the outcome on the fitted values of the risk factor with a

logistic model. When summarized data are available, a causal

effect estimate can be obtained based using the IVW method

to combine the ratio estimates, as in the case of a continu-

ous outcome. There are some technical issues relating to the

interpretation of these estimates with a binary outcome and a

logistic regression model due to the non-collapsibility of odds

ratios (they approximate a population-averaged log odds ratio

per unit change in the distribution of the risk factor Burgess

& CHD CRP Genetics Collaboration, 2013), but each is a

consistent estimator under the null, and each provides a valid

test of the null hypothesis of no causal effect (Vansteelandt,

Bowden, Babanezhad, & Goetghebeur, 2011).

In principle, similar analytical formulae for bias under the

null and Type 1 error rate could be developed with a binary

outcome (𝑌 = 0, 1). This would require a different formula for

the variance of the IV estimate, as this depends on the num-

ber and ratio of participants with outcome events (Burgess,

2014):

Variance of IV estimate (binary)

≃ 1
𝑁 var(𝑋) 𝜌2 ℙ(𝑌 = 1)ℙ(𝑌 = 0)

. (7)

However, if the data on the outcome are derived from a

case-control sample, then typically the associations with the

risk factor are estimated in control participants only (Bow-

den & Vansteelandt, 2011). This is for three main reasons: to

avoid reverse causation, particularly if the risk factor is mea-

sured after the outcome event in cases; to avoid biases due to

outcome-dependent sampling (associations may be present in

the case-control sample even if they are absent in the under-

lying population) (Didelez, Kreiner, & Keiding, 2010); and

because the controls are a more representative sample of the

population as a whole (Didelez & Sheehan, 2007). Hence,

even if there is overlap between datasets with a binary out-

come, then provided that the IV–risk factor associations are

estimated in the controls only, bias may not be substantial.

To investigate this, we simulated data using a similar data-

generating mechanism as previously:

𝑔𝑖𝑘 ∼ Binomial(2, 0.3) independently for 𝑘 = 1,… , 20

(8)

𝑥𝑖 =
20∑
𝑘=1

𝛼𝑔𝑖𝑘 + 𝑢𝑖 + 𝜖𝑋𝑖

logit(𝜋𝑖) = −3 + 𝛽𝑋𝑥𝑖 + 𝛽𝑈𝑢𝑖

𝑦𝑖 ∼ Binomial(1, 𝜋𝑖)

𝑢𝑖 ∼  (0, 1), 𝜖𝑋𝑖 ∼  (0, 1) independently

A logistic-linear relationship is assumed between the proba-

bility of an outcome event (𝜋𝑖) and the risk factor and con-

founder. A case-control sample was generated by simulat-

ing data on 100, 000 individuals, and taking the first 5,000

with an event (𝑦𝑖 = 1) as cases, and the first 5,000 without

an event (𝑦𝑖 = 0) as controls. IV–outcome associations were

estimated in all participants using logistic regression. The IV–

risk factor associations were estimated both on the controls

only, and in all participants (controls and cases). This was a

one-sample analysis (100% sample overlap). We set 𝛽𝑋 = 0
(null causal effect) and 𝛽𝑈 = 1, and considered scenarios with

𝛼 = 0.01, 0.02, 0.03, 0.04, 0.05, 0.08.

4.1 Results

The mean estimates and empirical Type 1 (false positive)

error rates based on 10, 000 simulated datasets are given in

Table 3. With IV–risk factor associations estimated in the

controls only, there was no detectable bias in the IV esti-

mates even with extremely weak instruments, nor was there

any inflation of Type 1 error rates. This suggests that a con-

ventional Mendelian randomization analysis with a binary

outcome in which the associations of the IV with the risk

factor are only estimated in control participants provides a

natural robustness against weak instrument bias, even in a

one-sample setting. With IV–risk factor associations esti-

mated in all participants, bias was similar to that with a con-

tinuous outcome, with relative bias close to 1∕𝔼(𝐹 ) on the

log odds ratio scale and empirical Type 1 error rates close to

the predicted values. However, the approximations were less

accurate compared with the continuous outcome case, partic-

ularly for the weakest of instruments. This suggests that the

same analytic formulae can be used with a binary outcome as

with a continuous outcome, except with a different expression

for the standard error of the IV estimate. R code for perform-

ing these calculations is given in Web Appendix A1.

5 EXAMPLES: SAMPLE OVERLAP
BETWEEN LARGE CONSORTIA

We consider several Mendelian randomization analyses that

could be undertaken using published summarized data from

large consortia, and discuss the potential for bias due to par-

ticipant overlap in each case.
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T A B L E 3 Simulation 3 with binary outcome to validate bias and type 1 error rate formulae

Mean observational Mean IV Relative Empirical Expected

𝜶 Mean 𝑭 Mean 𝑹𝟐 estimate estimate bias (Mean 𝑭 )−𝟏 Type 1 Type 1

Risk factor measurements taken in controls only

0.01 1.1 0.4% 0.481 0.001 0.002 - 4.9% -

0.02 1.4 0.6% 0.481 0.000 0.000 - 5.2% -

0.03 2.0 0.8% 0.479 −0.003 0.007 - 4.8% -

0.04 2.7 1.1% 0.478 −0.001 −0.001 - 5.0% -

0.05 3.7 1.5% 0.476 0.000 0.000 - 5.2% -

0.08 7.9 3.1% 0.469 0.000 0.001 - 4.7% -

Risk factor measurements taken in all participants

0.01 1.2 0.3% 0.481 0.360 0.748 0.837 24.4% 29.1%

0.02 1.8 0.4% 0.481 0.237 0.493 0.561 17.4% 21.1%

0.03 2.8 0.5% 0.479 0.149 0.311 0.363 12.8% 15.2%

0.04 4.1 0.8% 0.478 0.099 0.207 0.242 10.0% 11.7%

0.05 5.9 1.2% 0.476 0.068 0.142 0.170 8.4% 9.6%

0.08 13.6 2.6% 0.469 0.030 0.064 0.074 6.3% 6.9%

Notes: Mean instrumental variable (IV) estimates and empirical Type 1 error rate (5% nominal significance level) from inverse-variance weighted method

with binary outcome for null causal effect (𝛽𝑋 = 0) and six values of genetic associations with the risk factor (𝛼) in a case-control setting, with the risk factor

measurements taken in control participants only and with the risk factor measurements taken in all participants. Observational estimates are log odds ratios from

logistic regression of the outcome on the risk factor, and IV estimates are log odds ratios calculated using logistic regression for the IV–outcome association

and linear regression for the IV–risk factor association.

1. Body mass index and lipid traits: We consider an analy-

sis to estimate the causal effect of body mass index (BMI)

on various lipid traits using data from the GIANT (Gen-

etic Investigation of Anthropometric Traits) consortium

(Locke et al., 2015) and the GLGC (Global Lipids Genet-

ics Consortium) (The Global Lipids Genetics Consortium,

2013). 55 common studies are mentioned in the papers

authored by these two consortia, comprising around 71%

of participants in the GLGC. The 97 genetic variants

reported as associated with BMI at a genome-wide level of

significance explain around 2.7% of the variance in BMI in

the GIANT dataset (sample size = 339 224), correspond-

ing to an F statistic of approximately
0.027

1−0.027 ×
339 126

97 =
97.0. The lower limit of a one-sided 95% confidence inter-

val for the F parameter is 93.7 (see Web Appendix A3

for calculation). Hence, despite the substantial overlap

between the two consortia, considerable weak instrument

bias would not be expected.

2. Body mass index and coronary heart disease risk:
Although the F statistic suggests that weak instrument

bias would not be substantial in any case, we consider

the binary outcome of coronary heart disease (CHD), and

investigate the degree of overlap between participants in

the GIANT consortium above and the CARDIoGRAM-

plusC4D consortium (The CARDIoGRAMplusC4D Con-

sortium, 2013). Of the 38 studies that appear in CAR-

DIoGRAMplusC4D, 27 appear in GIANT in some form.

In many cases, both case and control participants are

included in GIANT. Hence, even though CHD is a binary

outcome, the sample overlap between the two consortia

could lead to weak instrument bias if the F parameter for

BMI were lower.

3. Educational attainment: A genetic score for an indi-

vidual’s number of years of schooling (“EduYears”)

constructed using five genetic variants associated with

EduYears at a genome-wide level of significance (𝑃 < 5 ×
10−8) explained about 0.1% of the variance in EduYears

in the discovery sample of 101, 069 individuals (corre-

sponding F statistic = 20.2) (Rietveld et al., 2013). Asso-

ciations were also reported for a follow-up sample of

25, 490 individuals (corresponding F statistic = 5.1). The

corresponding lower limits of the one-sided 95% confi-

dence intervals for the F parameter are 14.0 and 2.3 (see

Web Appendix A3). Hence, a Mendelian randomization

investigation using associations from the discovery sample

should not lead to substantial weak instrument bias, but an

investigation using associations from the follow-up sam-

ple may be severely affected by weak instruments. How-

ever, if associations from the discovery sample are used

in a Mendelian randomization investigation, then bias (in

particular, selection bias) may be more serious due to win-

ner’s curse; this issues is explored further in the discussion.

These examples suggest that sample overlap between major

international consortia may be substantial. Bias from weak

instruments in very large consortia may not be substantial,

but in moderately large consortia, potential bias, and inflated

Type 1 error rates should be investigated.
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6 DISCUSSION

In this paper, we have shown that bias in a Mendelian ran-

domization investigation with a continuous outcome in a two-

sample setting is linearly related to the proportion of sample

overlap between the two datasets. We have provided and val-

idated analytical formulae for the expected bias and Type 1

error rate under the null given the F parameter (the expected

value of the F statistic), the observational (OLS) estimate,

the sample size, and the sample overlap percentage. With a

binary outcome, provided that the IV–risk factor associations

are estimated in the control participants only, bias due to sam-

ple overlap is negligible and Type 1 error rates are at nominal

levels. If IV–risk factor associations are estimated in all par-

ticipants, then bias is similar with a binary outcome (on the

log odds ratio scale) as with a continuous outcome. Formulae

for estimating the bias and Type 1 error rate under the null are

given, and R code for calculating these quantities is given in

Web Appendix A1. This code is implemented in a web appli-

cation at https://sb452.shinyapps.io/overlap.

6.1 Overlap with datasets of different size

If the datasets are of different size, then the percentage over-

lap in these formulae should be taken with respect to the larger

dataset, as this determines the correlation between the associ-

ation estimates. This is because only individuals in both stud-

ies will lead to correlation between the association estimates,

and additional individuals in either the association with the

risk factor or with the outcome will attenuate any correlation.

For example, if the smaller dataset has 1,000 participants, and

the larger dataset has 10, 000 participants, then the sample

overlap is only 10% even if all of the participants from the

smaller dataset are included in the larger dataset.

6.2 Additional bias from genetic discovery

Weak instrument bias will be accentuated if the genetic vari-

ants were initially discovered in the data under analysis. This

is due to winner’s curse; if several genetic variants in truth

have similar magnitudes of association with the risk factor,

the association of the one that is the strongest in the data

under analysis is likely to be overestimated (Burgess et al.,

2011; Taylor et al., 2014). As this overestimation will gen-

erally mean that the associations with confounders are by

chance stronger than expected, bias will occur if the discovery

dataset is used in the estimation of the IV–risk factor or the

IV–outcome associations. In a binary outcome setting, pro-

vided that only control participants were used in the discovery

dataset, this should not lead to bias. However, if controls and

cases were both used in the discovery dataset, this will lead

to weak instrument bias.

There is no clear way to evaluate the bias due to overlap

between the discovery sample and the dataset(s) used in a

Mendelian randomization investigation. Hence, in such cases

caution should be expressed, particularly if a genetic variant

is close to the threshold statistical significance level for dis-

covery or for inclusion in the Mendelian randomization analy-

sis. In particular, data-driven approaches for choosing genetic

variants to be included in a Mendelian randomization analysis

should be avoided. Analytical approaches to correct genetic

associations for winner’s curse may be useful in such a situa-

tion (Bowden & Dudbridge, 2009).

6.3 Increased bias in MR-egger method

The recently introduced MR-Egger method method has

advantages over the conventional two-stage least squares and

inverse-variance weighted methods in terms of some robust-

ness to the instrumental variable assumptions being vio-

lated (Bowden, Davey Smith, & Burgess, 2015). Although

weak instrument bias using data from large consortia may

be low for conventional methods, bias for the MR-Egger

method has been shown to be considerably more pronounced,

both attenuation in a two-sample setting and bias toward the

observational association in a one-sample setting (Bowden,

Davey Smith, Haycock, & Burgess, 2016a; Burgess, Bow-

den, Dudbridge, & Thompson, 2016a). This means that bias

due to sample overlap may be more serious for the MR-Egger

method. In a two-sample setting, bias in the MR-Egger esti-

mate does not depend on the proportion of variance explained

by the IVs, but rather on the variability between the IV associ-

ations with the risk factor. Hence, for the MR-Egger method,

an I2 heterogeneity statistic is a better indicator of bias than

the F statistic (Bowden et al., 2016). Further research is

needed to derive an analytical formula for weak instrument

bias in the MR-Egger method in the one-sample setting.

6.4 Practical recommendations

If there is sample overlap that is likely to lead to substan-

tial bias and inflated Type 1 error rates in a “two-sample”

Mendelian randomization investigation, several approaches

are available. If possible, the genetic associations with the risk

factor could be derived from another non-overlapping data

source (possibly a subset of the original studies). A disadvan-

tage of this is the potential loss of efficiency if the genetic

associations are estimated less precisely (Burgess & Thomp-

son, 2013). Alternatively, equal weights can be used, although

again, there is a potential loss of power to detect a causal effect

(Burgess et al., 2016b). (Software code for performing a sum-

marized data analysis equivalent to a equally weighted allele

score analysis is provided in Web Appendix A4.) Finally, sen-

sitivity analyses can be performed using fewer but stronger

genetic variants (and hence increasing the F parameter).

For consortia that publish genetic association estimates

with continuous risk factors, we recommend that such esti-

mates do not include case participants from case-control
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studies. This will help reduce sample overlap in future

Mendelian randomization studies that investigate the causal

effect of the continuous risk factor on disease risk.
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