
A
rticle

A Stochastic Simulator of Birth–Death Master Equations with
Application to Phylodynamics
Timothy G. Vaughan*,1,2 and Alexei J. Drummond1,3

1Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
2Institute of Veterinary Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
3Department of Computer Science, University of Auckland, Auckland, New Zealand

*Corresponding author: E-mail: t.g.vaughan@massey.ac.nz.

Associate editor: Asger Hobolth

Abstract

In this article, we present a versatile new software tool for the simulation and analysis of stochastic models of population
phylodynamics and chemical kinetics. Models are specified via an expressive and human-readable XML format and can be
used as the basis for generating either single population histories or large ensembles of such histories. Importantly,
phylogenetic trees or networks can be generated alongside the histories they correspond to, enabling investigations into
the interplay between genealogies and population dynamics. Summary statistics such as means and variances can be
recorded in place of the full ensemble, allowing for a reduction in the amount of memory used—an important consid-
eration for models including large numbers of individual subpopulations or demes. In the case of population size
histories, the resulting simulation output is written to disk in the flexible JSON format, which is easily read into numerical
analysis environments such as R for visualization or further processing. Simulated phylogenetic trees can be recorded
using the standard Newick or NEXUS formats, with extensions to these formats used for non-tree-like inheritance
relationships.

Key words: stochastic simulation, population genetics, phylogenetic trees, chemical kinetics simulation, epidemic
modeling.

Introduction
Regardless of their composition, biological populations are
subject to a huge variety of influences and complexities
that are not easily quantified or incorporated into a mathe-
matical analysis. It is for this reason that the most realistic and
generally applicable models are often stochastic in nature, and
cannot generally be analyzed without simulation. Combined
with the increasing prevalence of genetic data sampled from
measurably evolving populations (Drummond et al. 2003),
particularly in the context of pathogen evolution (Pybus
and Rambaut 2009; Kühnert et al. 2011), there is a clear
need for accessible software capable of simultaneously ana-
lyzing the demographic and genealogical predictions under
general stochastic models of population dynamics.

As such models abound, it is unsurprising that a corre-
spondingly large variety of stochastic simulators also exists. In
the context of population genetics, recent examples include
Nemo (Guillaume and Rougemont 2006) and FFPopSim
(Zanini and Neher 2012), both of which perform simulations
under models which assume discrete generation times and
allow for direct simulation of sequence evolution. Nemo is an
application and flexible programming framework suitable for
performing such simulations and is agent-based in design,
meaning that it is capable of directly simulating complex
life cycles that correspond to non-Markovian dynamics at
the population level. In contrast, FFPopSim is a collection of
library routines scriptable in the Python programming

language that can perform similar simulations using either
an agent-based approach or by grouping individuals into ge-
netically homogeneous subpopulations. Although the latter
approach restricts the number of loci that can be treated, it
allows for the modeling of larger populations evolving under
sophisticated fitness landscapes.

Although useful for studying traditional population genet-
ics models, neither of these programs allow for genealogy
simulation. Another population genetics simulator, TreesimJ
(O’Fallon 2010), allows for joint simulation of the population
history, genetic sequences and the genealogy of the individ-
uals present at each (discrete) generation, discarding extinct
lineages along the way. This clever technique enables gener-
ation of reasonably large genealogies conditional on the final
population. However, TreesimJ only permits variation in the
population size itself under a fixed number of hard-coded
deterministic models.

The connection between models of population dynamics
and those of chemical kinetics has a long history; indeed, the
Lotka–Volterra equations for predator–prey dynamics
(Volterra 1926) were originally developed to model a set of
self-catalyzing chemical reactions (Lotka 1920). As such, it is
important to be aware of the wide variety of stochastic chem-
ical kinetics simulators which exist. An important example is
Dizzy (Ramsey et al. 2005), which is a sophisticated reaction
modeling system allowing the simulation of the progress of
arbitrary reaction systems using a variety of stochastic (and

� The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any
medium, provided the original work is properly cited. Open Access
1480 Mol. Biol. Evol. 30(6):1480–1493 doi:10.1093/molbev/mst057 Advance Access publication March 16, 2013

deterministic) simulation algorithms. Models are specified
using either the polished graphical interface or can be im-
ported (and exported) using either the systems biology
markup language (SBML) format (Hucka et al. 2003) or a
custom human-readable text format. The package
StockKit2 (Sanft et al. 2011) also allows specification using
SBML, although there the emphasis is on the efficiency of the
simulation engines themselves.

In contrast to the population genetics simulators, the
chemical kinetics software above deals with continuous-
time models where individual “demographic” events occur
at times separated by exponentially distributed intervals. This
is a more appropriate model of real population dynamics for
settings in which demographic events are not constrained to
occur at discrete times. However, due to their focus on chem-
ical kinetics, these software packages are not capable of sim-
ulating genealogies under their reaction systems and thus do
not meet our requirement.

In general, none of the software packages described above
allow for both flexible simulation of arbitrary stochastic pro-
cesses and the simultaneous generation of genealogies under
these processes. We have therefore developed a new package
to fill this lacuna. Named MASTER (moments and stochastic
trees from event reactions), this tool takes descriptions of
continuous time stochastic chemical-kinetics style models
expressed in a succinct and human-readable XML format as
its input, generates one or more simulated population size
histories and genealogies, then writes the results to portable
output files for easy visualization or further analysis using
third party tools such as R (R Core Team 2012) and FigTree
(Rambaut 2012). By default, simulations are performed using
the exact direct method (Gillespie 1976), although alternative
approximate methods can be employed when simultaneous
genealogy generation is not required, leading to a significant
performance boost in these cases. Simulations can be set up
to terminate at a specific time or when some condition is
met. Being primarily a population rather than agent-based
simulator, MASTER does not currently simulate sequence
evolution. However, MASTER has extensive support for struc-
tured populations, which can be used to represent allele fre-
quencies, individual genotypes with small numbers of loci or
lumped regions of sequence space as in the error class model
of Swetina and Schuster (1982).

Note that in contrast to TreesimJ, MASTER typically sim-
ulates genealogies forward in time rather than maintaining
genealogies conditional on surviving lineages. On the one
hand, this allows us to generate a wider variety of genealogies
containing even those lineages which have become extinct.
On the other hand, it means that MASTER’s genealogies tend
to grow continually as the simulation progresses and may
eventually become unwieldy. Partly to combat this,
MASTER allows one to track the genealogy of a subset of
the population present at the start of the simulation,
making genealogy simulation feasible even when extremely
large populations are involved. This is also desirable when
simulating the genealogy of the population descendent
from an invader, or when modeling pathogen transmission

trees where it is only the genealogy of an infected subpopu-
lation that is of interest.

At its heart, MASTER is an “add-on” to version 2 of the
popular phylogenetics software package BEAST (Drummond
and Rambaut 2007; Drummond et al. 2012), although expe-
rience with BEAST is not required for its use. Interested read-
ers should refer to the project’s web page, which is located at
http://tgvaughan.github.com/MASTER/ (last accessed March
29, 2013), where the software, installation instructions and
links to additional documentation and tutorials can be found.
The software is distributed under the GNU General Public
License version 3.

Results
MASTER can perform a variety of simulations under models
having the form presented in later section. Each simulation
falls into one the following generic “simulation types”:

Trajectory: This encompasses simulations that generate a
single history (i.e., a stochastic realization) of the size of
populations present in the model.

Ensemble: This describes calculations that produce sev-
eral independent population size trajectories.

Ensemble Summary: This is another type of simulation
that involves multiple population size trajectories, but
in this case the results are summarized on-the-fly in
terms of time-dependent summary statistics or
moment estimates.

Inheritance Trajectory: This encompasses joint simula-
tions of the dynamics of population sizes and a tree
or network describing the inheritance relationships be-
tween a subset of individuals within those populations.

Inheritance Ensemble: This allows for the production of
several independent inheritance trajectory simulations.

In this section, we explore the use of these simulation types,
demonstrating their application to the treatment of stochas-
tic population dynamical models of increasing complexity
(a more complete description of the syntax of the XML
input files is provided in later section). Additionally, we pre-
sent a brief analysis of the computational efficiency of the
software.

A Simple Epidemiological Model

We begin by demonstrating the application of MASTER to
the simulation of a basic but fundamental model of epidemic
dynamics. What is now known among mathematical epide-
miologists as the SIR model is a special case of a formalism
introduced nearly a century ago by Kermack and McKendrick
(1927). It is so-named because it involves dividing individuals
in an otherwise homogeneous population into three classes
or “compartments” named S, I, and R. Members of compart-
ment S are considered susceptible to infection by individuals
from compartment I, which contains infected and (impor-
tantly) infectious individuals. Compartment R contains those
individuals for whom the infection has run its course and can
therefore be considered recovered (although removed might

1481

Stochastic Simulator of Birth–Death Master Equations . doi:10.1093/molbev/mst057 MBE

http://tgvaughan.github.com/MASTER/

be a better description, as the model applies equally well to
lethal pathogens).

Although originally presented as a deterministic model in
which the population sizes in each compartment are de-
scribed by continuous variables evolving under a system of
ordinary differential equations, stochastic extensions have
been studied for almost as long as the deterministic model
(see Britton 2010 for a recent survey). Employing the chemical
reaction formalism discussed in later section, we can express
such a model in the following way:

S + I!
�

2I ð1Þ

I!
�

R ð2Þ

The first reaction describes the infection of a single suscepti-
ble individual by an infectious neighbor at average rate � (per
susceptible individual per infectious individual), whereas the
second describes a recovery event at average rate � (per in-
fectious individual). Together, these two reactions completely
determine a master equation for continuous-time evolution
of the probability distribution PðNSðtÞ, NIðtÞ, NRðtÞÞ with
NiðtÞ being the population size of compartment i at time t.

The basic MASTER input file, which can be used to simu-
late the population size dynamics under this model, is shown
in figure 1. Here, we have selected the “Trajectory” simulation
type and have used the simulationTime attribute to spe-
cify that the simulation should run for 50 time units. The
<model> element has been used to specify that the
model contains the three compartment populations, and

that these populations are subject to the two reactions
given earlier. The <initialState> element has been
used to initialize the simulation with 1,000 individuals, includ-
ing 999 susceptible and 1 infected (note that we do not
need to explicitly set the R compartment population size to
zero, as this is the default). Finally, the <output> element
is used to specify a JSON-formatted output file named
“SIR_output.json.”

To actually run the simulation, the file containing this XML
must be provided to MASTER. Exactly how this is done de-
pends on the details of the installation and the user’s oper-
ating system, and is described on the project’s website. Once
complete, we can read the resulting output file into an active
R session using the fromJSON function of the rjson library
(Couture-Beil 2013) in the following way:

> library(rjson)
> df fromJSON(file= ‘SIR_output.json’)

The df variable then contains the simulation results in-
cluding the times at which the simulated infection/recovery
events occurred and the sizes of the compartment popula-
tions immediately following those events. This can be used to
create plots of the simulated population dynamics. For in-
stance, a graph of the infected population dynamics can be
produced using:

> plot(dft, dfI, ‘s’)

Figure 2 displays each of the simulated compartment pop-
ulation size histories visualized in this way.

FIG. 1. MASTER input file specifying a single fixed time length simulation of a stochastic SIR model.

1482

Vaughan and Drummond . doi:10.1093/molbev/mst057 MBE

Modeling Epidemics in Structured Populations

An obvious extension to the basic SIR model is one in which
the community in which the epidemic is taking place is struc-
tured in some way. This occurs naturally in real populations
due to geography-imposed segregation, where localities such
as cities can be considered approximately homogeneous but
where the relatively slower migration between cities prevents
this approximation from holding in the meta-population.

We simulate this situation by considering the following
simple extension to reactions of the previous model:

Si + Ii!
�

2Ii ð3Þ

Ii!
�

R ð4Þ

Si!
MS

ij

Sj ð5Þ

Ii!
MI

ij

Ij ð6Þ

Here, the susceptible and infected compartments S and I have
been subdivided into compartments indexed by i, with dif-
ferent values of i representing different geographical locations
or demes. The revised infection reaction limits contact to
infectious and susceptible individuals belonging to compart-
ments having the same location. The two additional reactions
account for movement of infectious and susceptible individ-
uals between locations. Note that there is no need to subdi-
vide the recovered compartment R, as these individuals do
not affect the progress of the dynamics.

The MASTER script listed in Appendix (see Structured
Epidemiological Model) uses the “Ensemble” simulation
type to generate a set of five independent trajectories from
a two-location version of this model. The number of trajec-
tories is specified using the nTraj attribute of the <run>
element. The model specification is similar to that of the
unstructured SIR model, but there are three important differ-
ences. First, <populationType> elements are used in
place of <population> for the S and I compartments,
allowing the nonunity number of locations to be specified.
Second, the reaction elements have been grouped using
named<reactionGroup> elements, each containing sim-
ilar reactions repeated across different locations. Finally, the

reaction specifications themselves specifically include popu-
lation locations for the S and I types. Note that this input file
specifies symmetric migration rates between the two loca-
tions, and infected individuals are just as likely to migrate as
their healthy counterparts.

The use of internally structured population types also re-
sults in a slightly different specification of the initial state: full
<population> elements of spec value Population are
needed to specify the initial compartment occupancies. We
have again specified a population of 1,000 individuals, but in
this case we have split them evenly between the two locations
and chosen 100 individuals in location 0 to be infected at the
start of the simulation period.

Figure 3 shows the simulated dynamics of the infected
populations at each of the two locations for each of the
five trajectories generated by MASTER and deposited in its
output file. The structure of the population leads to a clear
delay in the progress of the epidemic in location 1 relative to
that in location 0, precisely as one would expect.

Stochastic Models of Viral Infection

Up to this point, we have given no consideration at all to how
the simulated trajectories produced by MASTER are gener-
ated. The default behavior of MASTER is to use Gillespie’s
direct method (Gillespie 1976), also known as the Stochastic
Simulation Algorithm or SSA. This is often regarded as an
“exact” method as it is capable of drawing trajectories from
the true solution to the master equation presented earlier as
equation (17). However, the computational complexity of this
method has a polynomial dependence on the size of the
population. This is due to the fact that it explicitly simulates
every reaction event and the rate of occurrence those events
is a function of the population size through equation (18).
Thus, when models involve large numbers of interacting in-
dividuals, another approach is necessary.

To address this issue, MASTER allows the user to specify
that the simulation should be conducted using either the
�-leaping method developed by Gillespie (2001), or the step
anticipation �-leaping (SAL) algorithm of Sehl et al. (2009).

We will demonstrate the use of this feature by considering
the basic model of within-host viral infection dynamics
(Perelson et al. 1993; Nowak and May 2000; Perelson 2002).

0 10 20 30 40 50

0
20

0
60

0
10

00

Time

C
om

pa
rt

m
en

t o
cc

up
an

cy

NS(t)
NI(t)
NR(t)

FIG. 2. Visualization of a typical SIR simulation result, using R in
combination with the rjson library.

0 10 20 30 40 50

0
50

10
0

15
0

Time

In
fe

ct
io

us
 c

om
pa

rt
m

en
t s

iz
e

NI0(t)
NI1(t)

FIG. 3. Histories generated using the two-deme structured SIR model.
Note the clear delay between peak infection in deme 0 and peak infec-
tion in deme 1.

1483

Stochastic Simulator of Birth–Death Master Equations . doi:10.1093/molbev/mst057 MBE

This model involves three distinct “populations”: uninfected
cells denoted X, productively infected cells Y and free-floating
viral particles (virions) V. Using the reaction formalism, the
stochastic form of this model can be written (Vaughan et al.
2011):

0!
�

X ð7Þ

X + V!
�

Y ð8Þ

Y!
k

Y + V ð9Þ

X!
d

0 ð10Þ

Y!
a

0 ð11Þ

V!
u

0 ð12Þ

The MASTER specification of this model can be found
in Appendix (see Stochastic Within-Host Viral Infection
Model). It follows the same general form as that of the un-
structured SIR model. Use of the �-leaping algorithm is spe-
cified by the addition of the following inside the <run>
element:

<stepper spec=‘TauLeapingStepper’
timeStep=‘0.01’/>

The time step is in units of simulation time, and should be
selected carefully. A sensible procedure is to reduce the time
step size until reducing it further produces no discernible
change in the results. To derive a quantitative understanding
of the stochastic variation in the results, we can use the
“Ensemble Summary” simulation type. Just as for the
“Ensemble” type used in the previous section, this requires
that the value of the nTraj attribute of the<run> element
be set to the number of individual trajectories to be gener-
ated. Additionally, however, the “Ensemble Summary” simu-
lation type requires the user to define moments to be
estimated from those trajectories. Suppose that we are inter-
ested in the dynamics of the expected sizes of the infected cell
and virus populations, and the dynamics of the covariance
between those two populations. We might then include the
following elements inside the <run> element:

<moment spec=‘Moment’ momentName=‘Y’>
<factor idref=‘Y’/>

</moment>
<moment spec=‘Moment’ momentName=‘V’>
<factor idref=‘V’/>

</moment>
<moment spec=‘Moment’ momentName=‘YV’>
<factor idref=‘Y’/>
<factor idref=‘V’/>

</moment>

The <factor> elements specify individual population
sizes to multiply together to form the contribution to the
moment estimate from each trajectory, as described in later
section. The third <moment> element thus specifies that a
moment with the name “YV” formed as the product of the

sizes of the unstructured populations Y and V should be
estimated. Together, these elements thus instruct MASTER
to produce estimates of EðNYðtÞÞ, EðNVðtÞÞ, and
EðNYðtÞNVðtÞÞ.

Finally, it may be desirable to exclude simulated trajectories
in which chronic infection fails to occur. The effect of such
exclusion can be very strong when starting from small num-
bers of infected cells or virions, which can easily be driven to
extinction by demographic noise. To condition the results on
cases where the infection takes hold, we can place the follow-
ing population size end condition element inside the<run>
element:

<populationEndCondition spec=‘PopulationEndCondition’
threshold=“0"
exceedCondition="false"
isRejection="true">

<population idref=‘Y’/>
<population idref=‘V’/>

</populationEndCondition>

This end condition is met when the sum of the sizes of the
populations specified by the <population> elements be-
comes equal to zero. The isRejection attribute causes
trajectories that meet the condition at any point during the
simulation to be immediately discarded.

Figure 4 illustrates the moment estimates obtained by
MASTER using 103 trajectories, with reaction rates chosen
from a previous publication (Vaughan et al. 2011) and an
initial virus count of 1. Figure 4a shows that the absolute
number of virions present in the trajectories at the time of
peak viremia is on the order of 1013, strongly justifying our use
of �-leaping. The effect of the conditioning on the survival of
the infection is evident in the tight confidence intervals about
the population size at this peak; although there remains a
wide uncertainty in the viral load before the peak. Figure 4b
shows the dynamics of the estimated relative covariance be-
tween the infected cell and virion populations, which we
define as

CovrelðNYðtÞ,NVðtÞÞ ¼
EðNYðtÞNVðtÞÞ

EðNYðtÞÞEðNVðtÞÞ
� 1 ð13Þ

Time (days)

V
iru

s
lo

ad

0 2 4 6 8 10

1
10

6
10

12

Mean viral load
95% CI

0 1 2 3 4 5 6

−
1

0
1

2
3

4
5

Time (days)

C
ov

re
l(N

Y
,N

V
)

(a) (b)

FIG. 4. Using MASTER to perform within-host infection dynamics sim-
ulations. (a) Expected viral load conditional on chronic infection.
(b) Relative covariance between infected cell and virion within-host
populations.

1484

Vaughan and Drummond . doi:10.1093/molbev/mst057 MBE

and can calculate based on MASTER’s estimates of
EðNYðtÞNVðtÞÞ together with those of the individual means.
The strong pre-peak-viremia correlation between the demo-
graphic fluctuations in each of these populations noted else-
where (Vaughan et al. 2011) is clearly visible.

Genealogy Simulation

We finally turn to the use of MASTER as a stochastic simu-
lator of phylogenetic trees and networks. The software is ca-
pable of introducing special individual population members
at arbitrary times during a simulation and keeping track of the
parent–child relationships of direct descendants of those in-
dividuals. This is a subtly different problem to that of using
stochastic simulation to solve master equations such as equa-
tion (17), as it requires specification of additional information
beyond that contained in reactions such as equation (19). In
particular, although such reactions are sufficient to discern
the effect an event has on the sizes of the populations in-
volved, it says nothing about the actual inheritance relation-
ships between the individual reactants and products.

Automatic Parentage Allocation
MASTER deals with this issue in two ways. First, it contains an
algorithm for automatically ascribing inheritance relation-
ships between pairs of reactant and product individuals.
This is as follows:

1) Select the first reactant individual on the left-hand side of
the reaction.

2) Assign all product individuals which do not already have
parents and have the same population type as the se-
lected reactant to be children of that reactant.

3) Select the reactant to the right of the previous one and
go back to step 2, repeating until either no reactants
remain or no orphan products remain.

This “greedy” algorithm always produces tree-like relation-
ships (every child has only one parent), which is often what is
desired for forward-time birth–death models.

As an example of the usefulness of this approach, consider
a birth–death model involving a single population of individ-
uals X subject to the following pair of reactions:

X!
b

2X ð14Þ

2X!
d

X ð15Þ

This is one example of a stochastic logistic model, and as such
describes a population with a carrying capacity. Note that this
model only contains competitive death and not spontaneous
decay, with the result that complete extinction of the popu-
lation is impossible.

The XML script that we use to draw the tree of descen-
dants from an individual chosen from this population is listed
in Appendix (see Stochastic Logistic Tree Simulation). The
form of the model specification is very similar to those we
have already seen; the only major difference is that the spec
attributes have been changed to reflect the fact that we are
now dealing with a model and reactions, which specify

inheritance relationships. We have chosen reaction rates
which correspond to a population with a carrying capacity
of 100.

Importantly, the reactions in this model specification use
precisely the same nomenclature as those in MASTER input
files for simulations which do not track inheritance relation-
ships. This is the signal for MASTER to assign its own parent–
child relationships according to its algorithm. In this case, the
algorithm results in the relationships shown in figure 5a: the
birth reaction assigns both products as children of the single
reactant, whereas the death reaction assigns the sole reactant
as the child of the first parent, leaving the lineage of the
second reactant to terminate.

The specification of the initial state of the simulated
system is perhaps what is most visibly different between
this input file and those we have seen previously:

<initialState spec=‘InitState’>
<populationSize spec=‘PopulationSize’

population=‘@X’ size=‘9’/>
<lineageSeed spec=‘Individual’

population=‘@X’/>
</initialState>

Here, the <populationSize> element is used to spe-
cify the initial number of individuals in the X population
whose descendant trees will not be recorded. If this were
the only component of the <initialState> element
the simulation would proceed without any inheritance track-
ing at all. The additional<lineageSeed> element specifies

X

X X

Birth Death

X X

X

3.0

(a)

(b)

FIG. 5. A stochastic logistic model with inheritance tracking.
(a) Inheritance relationships between reactants (top) and products
(bottom). (b) A typical tree produced by MASTER.

1485

Stochastic Simulator of Birth–Death Master Equations . doi:10.1093/molbev/mst057 MBE

an additional individual to include in the initial population
whose descendants will be traced.

Finally, we need to specify what to do with the simulated
tree once constructed. As discussed previously we have the
option of producing either Newick or NEXUS output. As
NEXUS allows for additional annotation, which MASTER
uses to store details of which reaction is associated with
each node, we opt for that here by including the following
element within the <run> element:

<output spec=‘NexusOutput’
fileName=‘BirthDeathTree.nexus’/>

A typical tree produced by this simulation is shown in
figure 5b (the graphic was produced using FigTree Rambaut
[2012]). The specification we have provided is fairly likely to
produce trees as large or larger than this, due to the initial
population bottleneck: there is a 10% chance that the descen-
dants of the seed individual will fix in the population.

Manual Parentage Allocation
Alternatively, MASTER allows users to manually specify
inheritance relationships between reactant and product indi-
viduals. We can demonstrate the utility of this by using
MASTER to simulate a tree conditional on a given number
of taxa under the coalescent process (Kingman 1982). This
process is a simple Markovian decay process in the backward-
time direction for the number of lineages L existing at a given
time:

2L!
�

L: ð16Þ

Here � ¼ ð2NegÞ�1, where Ne is the effective size of the
haploid population in which the sampled lineages are em-
bedded, and g is its generation time. In terms of building a
tree, the coalescent process proceeds in reverse time: starting
with n leaves, successive coalescent events (of which there are
n – 1) join lineages together until finally only one remains.
Thus, reactant pairs need to jointly “parent” a single “child”
product. This is not a tree-like structure when read in the
direction of the process, implying that the automatic alloca-
tion discussed previously will not produce the required
relationships.

To direct MASTER to simulate this process with the re-
quired relationships, we use the following reaction specifica-
tion for a coalescent process under a scaled effective
population size Neg ¼ 0:5:

<reaction spec=‘InheritanceReaction’
reactionName=‘Coalescence’
rate=‘1.0’>

L:1 + L:1! L:1
</reaction>

The “:1” following each reactant population identifier
causes MASTER to regard those reactants as parents of
each of the reaction products which carry the same suffix.
We could have used any integer following the colon, as long
as the same integer is appended to all products and reactants
which are to be regarded as parents/children of one another.

This particular reaction specification results in the inheritance
relationships shown in figure 6a.

Initialization of this simulation amounts to adding multiple
individuals whose “descendants” be tracked to form the
leaves of the coalescent tree. In this case, we use the following
state initializer:

<initialState spec=‘InitState’>
<lineageSeedMultiple

spec=‘MultipleIndividuals’
population=‘@L’ copies="20"/>

<lineageSeed spec=‘Individual’
population=‘@L’ time="1"/>

<lineageSeed spec=‘Individual’
population=‘@L’ time="2"/>

<lineageSeed spec=‘Individual’
population=‘@L’ time="3"/>

</initialState>

The first line uses a short-hand notation for specifying 20
lineage seeds at the start of the simulation. The following
three lines demonstrate how lineages can be seeded at
times other than the start of the simulation. In the case of
the coalescent, these lineages can represent serially or
noncontemporaneously sampled taxa (Rodrigo and
Felsenstein 1999). Note that in this calculation, we track the
inheritance of all individuals present in the simulation, so
there is no need for additional <populationSize> ele-
ments. (This may seem at odds with the assumptions of the
coalescent, which specifies statistical properties of ancestral
trees of individuals sampled from a much larger population.
However, the dynamics of the larger population are not mod-
eled stochastically by the coalescent, which absorbs the influ-
ence of that population into the rate parameter �.)

Finally, in the case of reverse-time coalescent tree simula-
tions, it makes particularly good sense to use a lineage-depen-
dent end condition to terminate the calculation rather than
specifying a fixed time. To accomplish this in MASTER, we
include the following inside the <run> element, which ter-
minates the calculation when a single lineage remains (i.e.,
when the most recent common ancestor of the sampled leaf
individuals is reached):

<lineageEndCondition spec=‘LineageEndCondition’
nLineages="1“/>

The full input file for this example is listed in Appendix (see
Serially Sampled Coalescent Tree Simulation). Figure 6b illus-
trates a typical generated tree. This figure was produced using
FigTree to visualize a NEXUS file generated using an <out-
put> element having spec value NexusOutput and the
reverseTime attribute set to “true”. (Failure to set this
attribute causes the resulting NEXUS file to contain an ex-
tended Newick representation of an upside-down tree.) It
shows the standard coalescent structure on the right, with
the modifications to this structure wrought by the “serially
sampled” leaves at times 1, 2, and 3 before the time of the
contemporaneous leaves. These additional leaves tend to in-
crease the age of the tree root.

1486

Vaughan and Drummond . doi:10.1093/molbev/mst057 MBE

Computational Efficiency of MASTER

We note that an important factor in determining the
usefulness of a given piece of simulation software is the
computational efficiency of the program. Here, we use
the term efficiency to mean the degree to which the program
uses either CPU cycles (time) or available digital memory
(space) effectively. The efficiency depends primarily on
the computational complexity of the algorithm used to per-
form the simulation. In practice, however, it can also depend
on the specifics of the implementation such as the combi-
nation of programming language and compiler used to
express it.

Figure 7 displays a comparison between run times for each
of the algorithms MASTER implements when applied to the
stochastic logistic model described in earlier section. The pop-
ulation size is initialized to 1 and the model propagated for
100 time units, with the total number of simulated events
varied by selecting different carrying capacities. We clearly see
that the time complexity under Gillespie’s SSA is linear with
respect to the total event count, in stark contrast to the fixed
time-step implementations of the approximate �-leaping and
SAL algorithms which have no explicit dependence on the
number of reactions that fire. Inheritance tracking is per-
formed using an extension of the standard SSA and thus
displays nearly equivalent O(n) scaling to that algorithm, al-
though there is an additional time penalty associated with
updating the tree.

The reader should be aware that the running times shown
in figure 7 for the approximate algorithms were generated for
fixed time-steps of 10�3 time units. Thus, the comparison is
not entirely “fair” as it fails to take into account the fact that
the SSA results are exact draws from the true trajectory prob-
ability distribution, whereas the time step size in the approx-
imate algorithms required to achieve a given absolute
accuracy may in general be an increasing function of the
population size. This is reflected in the form of the step size
selection function for the full adaptive �-leaping algorithm
(Gillespie 2001).

In contrast to running time, the memory usage (i.e., space
complexity) of MASTER depends not only the algorithm
used but also which of the specific calculation types and
output mechanisms is used. For example, the “Ensemble”
calculation type uses vastly more memory when generating
a given number of trajectories than the “Ensemble Summary”
type, as the former records all calculated trajectories in
memory before writing them to disk while the latter only
records the accumulating moment estimates (as noted pre-
viously, this is precisely the reason why we include this calcu-
lation type).

Users should be aware that lineage tracking in MASTER
can be very memory intensive, as each reaction event involv-
ing tracked lineages results in a new node in the graph (the
largest genealogy simulations used to generate figure 7, for
instance, resulted in inheritance trees with nearly 2� 107

nodes). This is something the user should keep in mind if
out-of-memory errors are encountered, and is one of the
reasons that the capability of tracking the genealogy of a
population subset has been included.

Discussion
MASTER is a new tool that we believe substantially improves
the ease and accuracy with which reasonably complex sto-
chastic simulations of population dynamics can be con-
ducted. In the earlier examples, we have sought to give a
feel for the kinds of simulations MASTER can handle, includ-
ing structured and unstructured epidemiological models,
within-host virus infection models. We have also shown
how MASTER bridges the gap between software, which effi-
ciently simulates the stochastic dynamics of large populations

L L

L

Coalescence

t=3 t=2 t=1

(a) (b)

FIG. 6. Simulating a serially sampled coalescent tree. (a) Inheritance
relationships between coalescing individuals. (b) A typical tree generated
using the chosen leaf times and coalescence rate. Note the late intro-
duction of lineages at times t ¼ 1, 2, 3, extending the age of the root
substantially.

●

●

●

●

●

●

0.
1

0.
5

5.
0

50
.0

Events

C
al

cu
la

tio
n

tim
e

(s
ec

on
ds

)

105 106 107 108

●
●

● ● ● ● ●
● ●

● ● ● ● ●●

●

●

●

●

●

●

●

●

SSA
Tau−leaping
SAL
Genealogy
O(n) gradient

FIG. 7. Elapsed computation times used in simulating population dy-
namics under a stochastic logistic model for 100 units for a range of
total event counts (selected by adjusting the carrying capacity), using
each of the calculation methods currently implemented in MASTER.
The gray line depicts the gradient associated with strict linear depen-
dence on the number of events simulated. Tau-leaping and SAL algo-
rithms were simulated using a fixed time step � ¼ 0:001 (computations
performed on an Intel Core i5 CPU operating at 3.0 GHz).

1487

Stochastic Simulator of Birth–Death Master Equations . doi:10.1093/molbev/mst057 MBE

and software which is capable of generating phylogenetic
trees under the same models.

MASTER has additional capabilities beyond those exem-
plified in this article. These include the ability to simulate
phylogenetic networks and other non-tree-like inheritance
structures. A limited amount of post-processing on simulated
genealogies can also be performed, such as pruning all nodes
besides those ancestral to a random subset of leaves, simu-
lating the effect of sampling bias on the shape of the simu-
lated genealogy. Details regarding these and other features
can be found on the project’s web page.

Materials and Methods

Mathematical Background

Here, we describe the actual mathematical problem that
MASTER sets out to solve, as well as introducing nomen-
clature MASTER uses when dealing with structured
populations.

Master Equations and Reaction Schemes
Fundamentally, MASTER is designed to simulate models
composed of a fixed number of populations. The true state
of the system at a particular time t is denoted ~NðtÞ, where the
vector is composed of integer elements representing the sizes
of the constituent populations. As we consider stochastic
models, the precise value of ~NðtÞ is unknown. Instead, we
deal with the probability distribution over possible values of
the state vector, that is, Pð~NðtÞ ¼ ~nÞ.

The dynamical models we consider are continuous-time
Markovian stochastic models described by the following
master equation:

@

@t
Pð~n,tÞ ¼

X

k

Tkð~n� ~vkÞPð~n� ~vk,tÞ � Tkð~nÞPð~n,tÞ
� �

,

ð17Þ

where we have used the short-hand notation
Pð~n,tÞ � Pð~NðtÞ ¼ ~nÞ. The index k represents individual sto-
chastic reactions, each of which are specified by a vector vk

and a propensity function Tkð~nÞ. The vector ~vk specifies the
change to the system state that occurs when reaction k
“fires”. For instance, if reaction k is the only reaction which
fires in the time interval ½t, t + ��, we can say that
~Nðt + �Þ ¼ ~NðtÞ+ ~vk. The propensity function Tkð~nÞ de-
scribes the average rate at which reaction k will fire given a
particular system configuration ~n. It takes the form

Tkð~nÞ ¼ �k

Y

i

n
�i

k

i ð18Þ

where �k is the state-independent reaction rate constant, i
labels individual population elements of ~n and �i

k is the
number of individuals from population i involved in this re-
action. The under-bar represents the falling factorial:
n
�i

k

i ¼ niðni � 1Þ . . . ðni � �
i
k + 1Þ.

Chemistry provides us with a particularly useful notation
for describing stochastic models of this kind. We can express

the components of reaction k relevant to our stochastic
model in the following way:

X

i

�i
kXi!

�k
X

j

	j
kXj: ð19Þ

The symbol Xi represents an individual chosen from popula-
tion i. The left-hand side specifies the numbers �i

k of each
type i of individual, which must be in contact in order for the
reaction to proceed. These individuals are referred to as the
reactants. The right-hand side specifies the numbers 	j

k of
each type j which are produced by the reaction. These indi-
viduals are referred to as the reaction products. Knowledge of
�i

k, 	j
k, and �k is sufficient to reconstruct the master equa-

tion, as Tkð~nÞ depends only on �k and�i
k and the elements of

the state change vector ~vk can be obtained directly from
	i

k � �
i
k.

MASTER allows one to specify a stochastic model in terms
of a collection of individual reactions of this form, using a
simple syntax very similar to the chemical reaction form given
earlier.

Population Structure
Many populations in the real world are structured in some
way. This structuring can be due to geographical constraints,
but it can also signify other logical partitions of the full
population.

As far as the mathematics is concerned, there is little fun-
damental difference between a collection of distinct yet con-
nected populations and a single “structured” population
containing the same number of subpopulations. However,
in specifying a simulation and interpreting the output, it is
very useful to be able to refer to individual populations within
a larger meta-population in a way that is at least reminiscent
of the real-world relationship between the components.

MASTER achieves this goal by grouping all populations
within the scope of the model into one or more population
types. The populations within each type are arranged into a
j ~d j-dimensional array where ~d is a vector of positive integers
specifying the size of the array in each dimension. The general
effect of this is that both a type name and a cell location
within the corresponding array are necessary to specify a
particular population in a MASTER model. The relationship
between populations and population types is illustrated in
figure 8.

Note that although MASTER internally represents single
isolated populations in terms of a zero-dimensional popula-
tion type, its XML interface provides a short-hand notation
for this. In other words, users need not usually deal directly
with population types if their model does not involve popu-
lation structure.

XML Syntax Overview

MASTER reads the specification of the model from a XML
input file and uses this to determine what calculations to run
and what output to write. In this section, we will present a
general overview of the syntax of these files.

1488

Vaughan and Drummond . doi:10.1093/molbev/mst057 MBE

The general outline of the structure of a MASTER input file
is shown in figure 9. As noted in the introduction, MASTER
operates as an add-on to BEAST 2 (BEAST 2 development
team 2013). It thus uses an extension of the XML format of
that software. As a result, every MASTER input file opens with
a <beast> element specifying the version of the input file
format and location of the Java classes that the file will refer
to. This first line and the closing tag </beast> can be
copied verbatim into all standard MASTER simulation speci-
fication files. Every element within the XML file must define
the attribute spec. This attribute specifies the actual
MASTER entity (BEAST plug-in) associated with that element.
Additionally, any element may be given the attribute
id=‘idString‘, which causes BEAST to use “idString” to
uniquely identify this element in the XML file. The contents of
this element can then be referred to by other elements
through the idref attribute. Additionally, the value of at-
tributes can be set to point to the identified element by using
attribute=’@idString’ syntax. Further information
about the general form of BEAST 2 XML can be found on
the BEAST 2 project web page.

The <run> element specifies the actual simulation. In
this case, the value of spec attribute specifies the particular
kind of simulation which will be run. Possible values are
“Trajectory,” “Ensemble,” “EnsembleSummary,” “Inheritance
Trajectory,” and “InheritanceEnsemble”; corresponding to
the simulation types discussed in the introduction. Each of
these simulation types is associated with a set of options,
which are specified as additional attributes of the <run>
element and are described in detail on the website. There
are three attributes that are valid for all simulation types,
however. The first is the simulationTime attribute,
which takes a numeric value and is used to specify the time
at which the simulation will end. It is mandatory in the case of
the “Ensemble Summary” simulation type, as moment esti-
mation requires many trajectories of equal length. In all other
cases it is optional, as termination may be brought about via
state-dependent end conditions to be discussed later.

The second common attribute is nSamples which, if
specified, determines the number of evenly spaced times at
which population sizes (or moment estimates) should be re-
corded. As with simulationTime, this is mandatory for
“Ensemble Summary” calculations but optional for all other
simulation types. The default behavior when it is omitted
from those types varies, but generally causes the simulator
to record population sizes at times determined by the simu-
lation algorithm in use (i.e., at each reaction time if the default
stochastic simulation is used, or following each integration
interval if either of the finite time-step algorithms described
later are used).

The final common attribute is verbosity, which takes
integer values in the range from 0 to 2. This attribute controls
the level of detail in the messages displayed by MASTER in-
dicating the progress of the calculation, with 0 entirely pre-
venting the display of such messages.

X0,0

X1,0

X2,0

X0,1

X1,1

X2,1

X0,2

X1,2

X2,2

X0,3

X1,3

X2,3

Population type X
with �d = {3, 4}

Population X1,3

FIG. 8. Relationship between populations and population types in
MASTER.

FIG. 9. General structure of a MASTER XML file.

1489

Stochastic Simulator of Birth–Death Master Equations . doi:10.1093/molbev/mst057 MBE

Algorithm Selection
For simulation types that do not allow for genealogy tracking,
any one of three algorithms may be used to generate the
stochastic trajectories. If none is specified, the default
behavior is to use the direct method (Gillespie 1976).
Otherwise, including the <stepper> element with spec

value TauLeapingStepper inside <run> can be used to
select �-leaping as the preferred algorithm. This implementa-
tion uses a fixed time-step set using the attribute stepSize.
Likewise, the step anticipation �-leaping (SAL) algorithm of
Sehl et al. (2009) can be selected by replacing the spec value
with SALStepper.

Model Specification
A stochastic population dynamical model in MASTER is com-
posed of

1) a list of named population types, each associated with
one or more populations, and

2) a list of reactions or reaction groups involving individual
members of those populations.

In the XML file, a model is contained within the<model>
element which uses the spec value Model. Within this, pop-
ulation types are specified using the <populationType>
element. Each population type has a name, which is specified
as a string value for the typeName attribute, and a dim

attribute, which takes a space-delimited list of integers speci-
fying the dimension of the array of populations contained
within this type.

In the instance that a single isolated population with no
internal structure is required, a <population> element
can be used in place of <populationType>. A name is
still required, although in this case it is specified using the
string value of the populationName attribute. The effect of
using this element is still to add a population type to the
model having the specified name, but one which has only a
single constituent population.

The reactions that give rise to dynamics in the model are
specified individually using the very readable syntax of the
<reaction> element, which has the spec value
Reaction. For instance, an exponential birth process,
which proceeds by taking an individual belonging to popula-
tion f1,2g of type X and duplicating it according to the
reaction

X1,2!
�

2X1,2 ð20Þ

with � ¼ 1 can be included in the model using the element:

<reaction spec=‘Reaction’
reactionName=‘birth’
rate=‘1.0’>

X[1,2]! 2X[1,2]
</reaction>

Note that in the case of “Inheritance Trajectory” and
“Inheritance Ensemble” simulations, a slightly different
syntax must be used allowing for the specification of

inheritance relationships between reactant and product indi-
viduals. This syntax is described in earlier section.

It is sometimes sensible to group similar reactions together.
One example is a model involving migration of individuals
between island populations. In this case, it would make sense
to group together the reactions specifying migrations be-
tween all possible pairs of island populations. This can be
achieved using the <reactionGroup> element (spec
value ReactionGroup), which allows the user to name
such a reaction group using the reactionGroupName at-
tribute and can itself contain an arbitrary number of individ-
ual <reaction> elements.

Initial States
To begin a dynamical simulation, the initial state of the
system must be specified. This is achieved through the
use of the <initialState> element, which resides
inside the <model> element. For simulations dealing
only with population size dynamics, the initial state is
completely defined by the starting sizes of each of the pop-
ulations in the model. To specify these starting population
sizes, <populationSize> elements (with spec value
PopulationSize) are added to <initialState>.
Each of these elements has a size attribute which specifies
an initial population size, as well as a population attribute
used to tie the size to a particular population. The population
itself is in turn specified with its own element, <popula-
tion> (spec value Population) which uses the attrib-
utes type and location to specify a particular MASTER
population (further details are available in the examples
which follow).

In the case of “Inheritance Trajectory” simulations, addi-
tional special individuals are added to the starting popula-
tions using the <lineageSeed> element with spec

attribute value Individual. Just as for
<populationSize>, these elements have an attribute
population which specifies the population that the indi-
vidual is to be added to. By default, these individuals are
added at the very start of the simulation. However, the at-
tribute time can be used to specify their addition at partic-
ular times following the start of the simulation. This is
particularly useful for the simulation of coalescent trees
from serially sampled data.

Estimating Moments
As noted previously, the goal of “Ensemble Summary” simu-
lations is to use a large number of trajectories to determine
the dynamics of estimated moments of the population size
variables. As the calculation of the moments/summary statis-
tics is done during the course of the calculation, this is much
more memory efficient than combining the trajectories after
they have been generated using the “Ensemble” simulation
style.

An “Ensemble Summary” simulation specification is essen-
tially the same as one specifying an “Ensemble” simulation,
with the addition of one or more <moment> or
<momentGroup> elements. The <moment> element
(with spec value Moment) has a momentName attribute
which is used to specify a unique name for the moment.

1490

Vaughan and Drummond . doi:10.1093/molbev/mst057 MBE

Each <moment> element must contain one or more
<factor> elements which are linked to individual popula-
tions either via the idref attribute or through directly spe-
cifying a population with the Population spec value. For
each time point at which the population sizes are sampled,
populations specified by<factor> elements are multiplied
together and the product averaged across all trajectories to
obtain the moment estimate.

If more general polynomial moments of the population
sizes are required, the <momentGroup> element (with
spec value Moment) can be used. This takes a unique
name via the momentGroupName attribute and can itself
include one or more <moment> elements. An additional
Boolean attribute sum can be set to true to cause the indi-
vidual estimates from each of the<moment>s contained int
the group to be summed together. In the case that sum is
missing or set to “false”, the <momentGroup> element
merely provides a means of logically grouping similar mo-
ments together in a way that is reflected in structure of the
output.

State-Dependent End Conditions
MASTER allows for one or more state-dependent end condi-
tions to be set. These end conditions result in immediate
cessation of the simulation of a trajectory, regardless of the
time at which the condition is met. Then, depending on the
type of end condition, the trajectory can be accepted as a
completed calculation or it can be rejected and the calcula-
tion begun anew.

End conditions come in two flavors. First, end conditions
which depend only on the total number of individuals pre-
sent in a particular population are specified using one or more
<populationEndCondition> elements (each having
spec value PopulationEndCondition). Within each
of these elements, one or more <population> elements
must be provided. These indicate those populations
whose sizes are summed together to produce the condition-
ing value. The attribute threshold specifies the magnitude
of the population size sum at which the condition comes into
effect. Additionally, a Boolean attribute exceedCondition
is used to specify whether the condition is met by exceeding
or dipping below that threshold value.

A final attribute to this element is the Boolean
isRejection attribute, which specifies whether trajectories
meeting this criterion are to be discarded or are accepted as a
result of the simulation. Note that all end conditions must
result in rejection in the case of “Ensemble Summary” simu-
lations, as these calculations require generation of many tra-
jectories of exactly the same length.

The second flavor of end condition is specific to the
“Inheritance Trajectory” simulation type, and depends on
the number of lineages remaining. These are specified using
instances of the <lineageEndCondition> element
(spec value LineageEndCondition). This element
takes the attribute nLineages, which is used to set the
number of remaining lineages at which the condition is
met, and the attribute isRejection, which behaves
in the same way as for population size end conditions.

The optional attribute population can be used to specify
that the condition applies only to lineages belonging to a
particular population.

Output Files
The final component of the MASTER XML file is the specifi-
cation of the form the output should take. In all cases besides
“Inheritance Trajectory” simulations there is currently a single
option: to have the results written to a file using the hierar-
chical JSON format. Although not traditionally used as a
scientific data format, JSON is both versatile and portable,
with parsers available for many commonly used numerical
analysis and visualization platforms including R, Matlab, and
Python. This output is specified using the jsonOutput ele-
ment (spec value JsonOutput) whose single attribute
fileName sets the name of the file the output will be
written to.

For “Inheritance Trajectory” calculations, there are two
possible output options. The first is to have the simulated
inheritance graph written to a file in extended Newick format
(Cardona et al. 2008). This is similar to the standard Newick
format for representing phylogenetic trees, but applies equally
well to phylogenetic networks. Note that in the case that the
simulated network is tree-like, the extended Newick repre-
sentation reduces to the standard Newick format. This
output option is specified using the <newickOutput> el-
ement (spec value NewickOutput) which, in addition to
the fileName attribute, takes a Boolean reverseTime at-
tribute. This attribute causes the output generator to traverse
the simulated network in the backward time direction, allow-
ing networks which are tree-like in this direction to be ex-
pressed using the standard Newick format rather than the
extended format.

The second output specifically applicable to “Inheritance
Trajectory” calculations is the Nexus format. This format of
output file contains an (extended) Newick representation
of the graph with detailed annotations specifying the
names of the reactions corresponding to each of the nodes.
In the case of a tree-like network, this file can be read by the
software FigTree and used to generate detailed visualizations
of the inheritance process. This output option is specified
using the <nexusOutput> element (spec value
NexusOutput) which takes exactly the same attributes as
the <newickOutput> element.

Note that the <jsonOutput> element is still valid in
the case of an “Inheritance Trajectory” calculation, but the
population sizes will only be recorded if this behavior is spe-
cifically requested in the simulation-specific attributes of
<run>.

Acknowledgments

This work was supported by a postdoctoral fellowship from
the Allan Wilson Centre for Molecular Ecology and Evolution
to T.G.V. and by a Rutherford Discovery Fellowship from the
Royal Society of New Zealand to A.J.D.

1491

Stochastic Simulator of Birth–Death Master Equations . doi:10.1093/molbev/mst057 MBE

Appendix

MASTER Input Files

This appendix contains listings of the MASTER XML
input files used in all examples bar the first, which is listed
in figure 1.

Structured Epidemiological Model

<beast version=‘2.0’ namespace=‘master.beast:beast.core.parameter’>

<run spec=‘Ensemble’

simulationTime=‘50’

nTraj=“5">

<model spec=‘Model’ id=‘model’>

<populationType spec=‘PopulationType’ id=‘S’ typeName=‘S’ dim=“2"/>

<populationType spec=‘PopulationType’ id=‘I’ typeName=‘I’ dim=“2"/>

<population spec=‘Population’ id=‘R’ populationName=‘R’/>

<reactionGroup spec=‘ReactionGroup’ reactionGroupName=“Infection">

<reaction spec=‘Reaction’ rate=“0.001">

S[0] + I[0]! 2I[0]

</reaction>

<reaction spec=‘Reaction’ rate=“0.001">

S[1] + I[1]! 2I[1]

</reaction>

</reactionGroup>

<reactionGroup spec=‘ReactionGroup’ reactionGroupName=“Recovery">

<reaction spec=‘Reaction’ rate=“0.2">

I[0]! R

</reaction>

<reaction spec=‘Reaction’ rate=“0.2">

I[1]! R

</reaction>

</reactionGroup>

<reactionGroup spec=‘ReactionGroup’ reactionGroupName=“Migration">

<reaction spec=‘Reaction’ rate=“0.01">

S[0]! S[1]

</reaction>

<reaction spec=‘Reaction’ rate=“0.01">

S[1]! S[0]

</reaction>

<reaction spec=‘Reaction’ rate=“0.01">

I[0]! I[1]

</reaction>

<reaction spec=‘Reaction’ rate=“0.01">

I[1]! I[0]

</reaction>

</reactionGroup>

</model>

<initialState spec=‘InitState’>

<populationSize spec=‘PopulationSize’ size=‘400’>

<population spec=‘Population’ type=‘@S’ location=“0"/>

</populationSize>

<populationSize spec=‘PopulationSize’ size=‘500’>

<population spec=‘Population’ type=‘@S’ location=“1"/>

</populationSize>

<populationSize spec=‘PopulationSize’ size=‘100’>

<population spec=‘Population’ type=‘@I’ location=“0"/>

</populationSize>

</initialState>

<output spec=‘JsonOutput’ fileName=‘StructuredSIR_output.json’/>

</run>

</beast>

Stochastic Within-Host Viral Infection Model

<beast version=‘2.0’ namespace=‘master.beast:beast.core.parameter’>

<run spec=‘EnsembleSummary’

nSamples=“1001"

nTraj=“1000"

simulationTime=‘10’>

<stepper spec=‘TauLeapingStepper’ stepSize=‘0.01’/>

<model spec=‘Model’ id=‘model’>

<population spec=‘Population’ id=‘X’ populationName=‘X’/>

<population spec=‘Population’ id=‘Y’ populationName=‘Y’/>

<population spec=‘Population’ id=‘V’ populationName=‘V’/>

<reaction spec=‘Reaction’ reactionName=“CellBirth” rate=“2.5e8">

0! X

</reaction>

<reaction spec=‘Reaction’ reactionName=“Infection” rate=“5e-13">

X + V! Y

</reaction>

<reaction spec=‘Reaction’ reactionName=“NewVirion” rate=“1e3">

Y! Y + V

</reaction>

<reactionGroup spec=‘ReactionGroup’ reactionGroupName=“Death">

<reaction spec=‘Reaction’ rate=“1e-3">

X! 0

</reaction>

<reaction spec=‘Reaction’ rate=“1">

Y! 0

</reaction>

<reaction spec=‘Reaction’ rate=“3">

V! 0

</reaction>

</reactionGroup>

</model>

<populationEndCondition spec=‘PopulationEndCondition’

threshold=“0"

exceedCondition=“false"

isRejection=“true">

<population idref=‘Y’/>

<population idref=‘V’/>

</populationEndCondition>

<initialState spec=‘InitState’>

<populationSize spec=‘PopulationSize’ population=‘@X’ size=‘2.5e11’/>

<populationSize spec=‘PopulationSize’ population=‘@V’ size=‘1’/>

</initialState>

<moment spec=‘Moment’ momentName=‘X’>

<factor idref=‘X’/>

</moment>

<moment spec=‘Moment’ momentName=‘Y’>

<factor idref=‘Y’/>

</moment>

<moment spec=‘Moment’ momentName=‘V’>

<factor idref=‘V’/>

</moment>

<moment spec=‘Moment’ momentName=‘YV’>

<factor idref=‘Y’/>

<factor idref=‘V’/>

</moment>

<output spec=‘JsonOutput’ fileName=‘HIV_output_cond.json’/>

</run>

</beast>

Stochastic Logistic Tree Simulation

<beast version=‘2.0’ namespace=‘master.beast:beast.core.parameter’>

<run spec=‘InheritanceTrajectory’

simulationTime=“100"

samplePopulationSizes=“true"

verbosity=‘1’>

1492

Vaughan and Drummond . doi:10.1093/molbev/mst057 MBE

<model spec=‘InheritanceModel’>

<population spec=‘Population’ populationName=‘X’ id=‘X’/>

<reaction spec=‘InheritanceReaction’ reactionName=‘Birth’ rate=“1.0">

X! 2X

</reaction>

<reaction spec=‘InheritanceReaction’ reactionName=‘Death’ rate=“0.01">

2X! X

</reaction>

</model>

<initialState spec=‘InitState’>

<populationSize spec=‘PopulationSize’ population=‘@X’ size=‘9’/>

<lineageSeed spec=‘Individual’ population=‘@X’/>

</initialState>

<output spec=‘NexusOutput’ fileName=‘out.nexus’/>

<output spec=‘JsonOutput’ fileName=‘out.json’/>

</run>

</beast>

Serially Sampled Coalescent Tree Simulation

<beast version=‘2.0’ namespace=‘master.beast:beast.core.parameter’>

<run spec=‘InheritanceTrajectory’

verbosity=‘2’>

<model spec=‘InheritanceModel’>

<population spec=‘Population’ populationName=‘L’ id=‘L’/>

<!— Coalescent process with N_e*g=0.5. –>

<reaction spec=‘InheritanceReaction’ reactionName=‘Coalescence’

rate=“1.0">

2L:1! L:1

</reaction>

</model>

<initialState spec=‘InitState’>

<lineageSeedMultiple spec=‘MultipleIndividuals’ population=‘@L’

copies=“20"/>

<lineageSeed spec=‘Individual’ population=‘@L’ time=“1"/>

<lineageSeed spec=‘Individual’ population=‘@L’ time=“2"/>

<lineageSeed spec=‘Individual’ population=‘@L’ time=“3"/>

</initialState>

<lineageEndCondition spec=‘LineageEndCondition’ nLineages=“1"/>

<output spec=‘NexusOutput’ fileName=‘out.nexus’ reverseTime=“true"/>

</run>

</beast>

References
BEAST 2 Development Team. 2013. BEAST version 2 [Internet].

Available from: http://beast2.cs.auckland.ac.nz (last accessed March
29, 2013).

Britton T. 2010. Stochastic epidemic models: a survey. Math Biosci. 225:
24–35.

Cardona G, Rossell F, Valiente G. 2008. Extended Newick: it is time for a
standard representation of phylogenetic networks. BMC
Bioinformatics 9:532.

Couture-Beil A. 2013. rjson: JSON for R (version 0.2.12) [Internet].
Available from: http://cran.r-project.org/web/packages/rjson/ (last
accessed March 29, 2013).

Drummond AJ, Pybus OG, Rambaut A, Forsberg R, Rodrigo AG. 2003.
Measurably evolving populations. Trends Ecol Evol. 18:481–488.

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis
by sampling trees. BMC Evol Biol. 7:214.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylo-
genetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 29:
1969–1973.

Gillespie DT. 1976. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J Comput
Phys. 22:403.

Gillespie DT. 2001. Approximate accelerated stochastic simulation of
chemically reacting systems. J Chem Phys. 115:1716.

Guillaume F, Rougemont J. 2006. Nemo: an evolutionary and population
genetics programming framework. Bioinformatics 22:2556–2557.

Hucka M, Finney A, Sauro HM, et al. (44 co-authors). 2003. The systems
biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 19:
524–531.

Kermack WO, McKendrick AG. 1927. A contribution to the mathemat-
ical theory of epidemics. Proc R Soc Lond A. 115:700–721.

Kingman J. 1982. The coalescent. Stochastic Process Appl. 13:235–248.
Kühnert D, Wu CH, Drummond AJ. 2011. Phylogenetic and epidemic

modeling of rapidly evolving infectious diseases. Infect Genet Evol. 11:
1825–1841.

Lotka A. 1920. Undamped oscillations derived from the law of mass
action. J Am Chem Soc. 42:1595–1599.

Nowak MA, May RM. 2000. Virus dynamics. Oxford: Oxford University
Press.

O’Fallon B. 2010. TreesimJ: a flexible, forward time population genetic
simulator. Bioinformatics 26:2200–2201.

Perelson AS. 2002. Modelling viral and immune system dynamics. Nat
Rev Immunol. 2:28.

Perelson AS, Kirschner DE, Boer RD. 1993. Dynamics of HIV infection of
CD4 + T cells. Math Biosci. 114:81–125.

Pybus OG, Rambaut A. 2009. Evolutionary analysis of the dynamics of
viral infectious disease. Nat Rev Genet. 10:540–550.

R Core Team. 2012. R: a language and environment for statistical
computing. Vienna (Austria): R Foundation for Statistical
Computing.

Rambaut A. 2012. Figtree version 1.4.0 [Internet]. Available from: http://
tree.bio.ed.ac.uk/software/figtree/ (last accessed March 29, 2013).

Ramsey S, Orrell D, Bolouri H. 2005. Dizzy: stochastic simulation of large-
scale genetic regulatory networks. J Bioinformatics Comput Biol. 3:
415–436.

Rodrigo A, Felsenstein J. 1999. Coalescent approaches to HIV population
genetics. In: Crandall KA, editor. The evolution of HIV. 1st ed.
Baltimore (MD): Johns Hopkins University Press.

Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR. 2011. StochKit2:
software for discrete stochastic simulation of biochemical systems
with events. Bioinformatics 27:2457–2458.

Sehl M, Alekseyenko AV, Lange KL. 2009. Accurate stochastic simulation
via the step anticipation tau-leaping (SAL) algorithm. J Comput Biol.
16:1195–1208.

Swetina J, Schuster P. 1982. Self-replication with errors: a model for
polynucleotide replication. Biophys Chem. 16:329–345.

Vaughan TG, Drummond PD, Drummond AJ. 2011. Within-host demo-
graphic fluctuations and correlations in early retroviral infection.
J Theor Biol. 295:86.

Volterra V. 1926. Fluctuations in the abundance of a species considered
mathematically. Nature 118:558–560.

Zanini F, Neher RA. 2012. FFPopSim: an efficient forward simulation
package for the evolution of large populations. Bioinformatics 28:
3332–3333.

1493

Stochastic Simulator of Birth–Death Master Equations . doi:10.1093/molbev/mst057 MBE

http://beast2.cs.auckland.ac.nz
http://cran.r-project.org/web/packages/rjson/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/

