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The lack of adequate physical activity and obesity created a worldwide pandemic. Obesity is characterized by the deposition of
adipose tissue in various parts of the body; it is now evident that adipose tissue also acts as an endocrine organ capable of secreting
many cytokines that are though to be involved in the pathophysiology of obesity, insulin resistance, and metabolic syndrome.
Adipokines, or adipose tissue-derived proteins, play a pivotal role in this scenario. Increased secretion of proinflammatory
adipokines leads to a chronic inflammatory state that is accompanied by insulin resistance and glucose intolerance. Lifestyle change
in terms of increased physical activity and exercise is the best nonpharmacological treatment for obesity since these can reduce
insulin resistance, counteract the inflammatory state, and improve the lipid profile. There is growing evidence that exercise exerts
its beneficial effects partly through alterations in the adipokine profile; that is, exercise increases secretion of anti-inflammatory
adipokines and reduces proinflammatory cytokines. In this paper we briefly describe the pathophysiologic role of four important
adipokines (adiponectin, leptin, TNF-𝛼, and IL-6) in the metabolic syndrome and review some of the clinical trials that monitored
these adipokines as a clinical outcome before and after exercise.

1. Introduction

The metabolic syndrome refers to a group of symptoms
including obesity, high blood pressure, insulin resistance, and
hyperlipidemia, in which the role of central obesity is critical
[1, 2]. The increased prevalence of obesity in both industrial-
ized and developing countries is associatedwith a surge in the
preponderance of metabolic syndrome. In North America,
55% of 97 million adults are either overweight or obese (with
a body mass index (BMI) ≥25) [3]. In a study of 12363 US
men and women using the National Cholesterol Education
Program Adult Treatment Panel III guidelines, the metabolic
syndrome was diagnosed in 22.8% and 22.6% of the men
and women, respectively [4]. The metabolic syndrome can
be present in different forms, according to the combination
of the various components of the syndrome, and it is well
established that themetabolic syndrome increases the risk for
the development of cardiovascular disease, type II diabetes,
and cancer [5–7]. It is not yet known how the metabolic

syndrome is triggered or how the different components are
causally linked, but insulin resistance is strongly suspected
as a common pathophysiologic link [8, 9]. It is clear that
there is a positive correlation between body weight and
insulin resistance; moreover, the risk of developing all the
metabolic abnormalities is strongly associated with insulin
resistance [9]. Dramatic increases in the prevalence of obesity
during the second half of the last century have squarely
placed adipose tissue at the center of scientific interest. This
tissue now is not considered only as passive reservoir for
storing excess energy substrates. Instead, adipose tissue is
currently regarded as a highly metabolically active tissue that
secretes many cytokines. Adipose tissue-derived cytokines
or adipokines are involved in regulation of many vital
processes such as energy metabolism, inflammation, and
atherosclerosis. Thus, increased levels of adipokines and
proinflammatory cytokines, such as TNF-𝛼, have promi-
nent roles in the pathogenesis of the metabolic syndrome.
Many studies confirm that the presence of the metabolic
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syndrome or any of its components correlates with the levels
of adipokines [10]. Several studies have established an inverse
relationship between the amount of physical activity and
proinflammatory cytokines in obesity, diabetes, and the
metabolic syndrome.Many believe that the beneficial effect of
exercise is partlymediated through changes in the adipokines
profile, that is, by increasing anti-inflammatory cytokines and
decreasing proinflammatory ones [11–13].This effect has been
described at the levels of gene expression, protein ligands, and
receptor bindings [14]. For instance, exercise increases insulin
sensitivity through reduction of resting levels of TNF-𝛼
and CRP and augmentation of adiponectin levels [15]. This
review summarizes some of the recent findings on the role of
adipokines in obesity and the metabolic syndrome and how
exercise may affect these changes. Unfortunately, there are
not enough data available for most of the adipokines; thus,
we selected adiponectin, leptin, TNF-𝛼, and IL-6 as there is
a reasonable amount of data on exercise induced changes on
the profile of these adipokines.

2. Physiologic Role of Adipokines

2.1. Adiponectin. Human adiponectin consists of 244 amino
acids and has a distinct domain structure with a collagen-like
and a globular C1q-like domain (similar to the complement
component C1q). This adipokine circulates in the blood in
at least three homomeric complexes: trimer (low-molecular
weight form, LMW), hexamer (medium molecular weight
form, MMW), and higher order multimers (high molecular
weight form, HMW) [16, 17]. Plasma concentrations reveal a
sexual dimorphism, with females having higher levels than
males [18]. The HMW form may be the most biologically
active form regulating glucose homeostasis [19, 20]. Although
some studies show that the HMW form has a greater associ-
ation with cardiovascular diseases [21], it has similar utility
for the identification of insulin resistance and metabolic
disturbances as does total adiponectin [22]. As opposed to
other adipocytokines, plasma levels of adiponectin inversely
correlates with body mass index (BMI), intra-abdominal
fat, and indices of insulin resistance [23]. Plasma levels of
adiponectin decrease with weight gain and are increased by
weight loss [24, 25]. Many studies suggest that adiponectin
is an important regulator of insulin sensitivity and glucose
homeostasis, with several reports confirming an inverse rela-
tionship between insulin resistance and type II diabetes with
plasma adiponectin levels [26–29]. It decreases hepatic glu-
cose production and improves glucose uptake and fatty acid
oxidation in skeletal muscles [30, 31]. Adiponectin stimulates
insulin secretion in vivo [32] while hypoadiponectinemia is
associated with beta cell dysfunction [33, 34]. Other studies
show that adiponectin has anti-inflammatory effects, such
as inhibition of endothelial nuclear factor kappa B (NF-𝜅B),
suppression of phagocytic activity, and TNF-𝛼 production
in macrophages [26, 35, 36]. It also reduces the progression
of atherosclerosis by decreasing the expression of adhesion
molecules, reducing proliferation of vascular smoothmuscle,
and blocking transformation of macrophages to foam cells
[37, 38]. Crossing adiponectin transgenic mice with leptin

deficient ob/ob or apoE-deficient mice resulted in ameliora-
tion of insulin resistance, improved beta cell degranulation,
increased expression of molecules involved in fatty acid
oxidation, and attenuation of atherosclerosis [39]. Likewise,
adiponectin null mice display severe hepatic insulin resis-
tance [40]. On the other hand, adiponectin administration
enhances insulin effects, improves glucose metabolism [30],
and increases fatty acid oxidation and weight reduction [41].

Adiponectin exerts its function through activation of two
kinds of receptors, adiponectin receptor 1 (AdipoR1) and
adiponectin receptor 2 (AdipoR2). AdipoR1 receptors are
found in different tissues and are connected to activation
of 5 AMP-activated protein kinase (AMPK) pathways while
AdipoR2 receptors are mostly expressed in the liver and
mainly linked to the activation of peroxisome proliferator-
activated receptor alpha (PPAR-𝛼), reducing inflammation
and oxidative stress [42]. Adenoviral selective expression
of AdipoR1 receptors in db/db mice leads to activation of
AMPK and decreased expression of gluconeogenic enzymes
such as glucose-6-phosphatase and phosphoenolpyruvate
carboxykinase 1. Increased expression of enzymes regulating
glucose uptake (such as glucokinase and PPAR-𝛼) results
from enhanced hepatic expression of AdipoR2 receptors [42].
Expression of both receptors augments fatty acid oxidation
and improves diabetes. Conversely, disruption of these recep-
tors reduces the activity of related pathways and leads to
significant glucose intolerance and aggravation of diabetes
that is accompanied by increased hepatic triglyceride, inflam-
mation, and oxidative stress [42].

The adiponectin gene is located on chromosome 3q27,
which is related to type II diabetes and the metabolic
syndrome [43, 44]. Several common genetic variations of the
human adiponectin gene have been identified. However, a
limited number of single nucleotide polymorphisms (SNPs)
have been associated with obesity, type II diabetes and coro-
nary artery disease [43, 45–47]. The accumulated evidence
thus supports the idea that obesity related diseases result from
an interaction between genetic and environmental causes.

2.2. Effect of Exercise on Adiponectin Levels. Since exercise
reduces insulin resistance and facilitates glucose metabolism,
several studies have attempted to establish a relationship
between exercise, adiponectin levels (or the expression
of adiponectin receptors), and improvements in insulin
function. However, in interpreting the findings of these
experiments, it is necessary to consider the intensity and
duration of the exercise protocols used and the diversity of
human subjects. The form of measured adiponectin (total
or multimers) is another variable. Overall, it would appear
that acute episodes of mild or moderate exercise in healthy,
lean subjects do not affect adiponectin levels [48–50]. A
decrease in adiponectin levels occurs after acute strenuous
rowing by young athletes; however, longer bouts of exercise
are accompanied by increased expression of adiponectin
mRNA levels in skeletal muscle [51]. In case of obese
individuals, Jamurtas et al. evaluated the effects of a sub-
maximal aerobic exercise bout on adiponectin, resistin, and
insulin sensitivity in nine healthy overweight males. They
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found no significant correlation between assessed variables
except among insulin level and insulin sensitivity (decreased
postexercise insulin levels and increases in insulin sensitiv-
ity) [52]. Numao et al. investigated the influence of acute
exercise of various intensities on changes in the concen-
trations of total adiponectin and adiponectin oligomers
(HMW versus combination of LMW and MMW) in nine
middle-aged abdominally obese men [53]. High intensity
exercise decreased total adiponectin concentrations mainly
by reducing LMW and MMW adiponectin levels without
changing HMW adiponectin [53]. Conversely, a recent study
of plasma adiponectin levels in inactive, abdominally obese
men showed that both acute and short term (one week)
aerobic exercise training significantly increased plasma val-
ues [54]. Chronic exercise protocols in both healthy and
insulin resistant subjects also produced conflicting results in
the literature, as shown in Table 1, which summarizes the
results of some exercise protocols on adiponectin levels.

2.3. Leptin. The hormone leptin, whose nomenclature is
derived from the Greek word “leptos” (means thin), is a
16 kDa protein that has a primary role in suppressing appetite
and increasing energy expenditure through metabolism.
Leptin is primarily made in adipose tissue and its circulating
levels correlate with body fat stores [55]. It is also expressed
in the placenta, ovaries, mammary epithelium, bone marrow,
and lymphoid tissues [56, 57]. In humans, the leptin gene is
located on chromosome 7 [58]. So far, six types of receptors
have been recognized for leptin (Ob-Ra-Ob-Rf) that are all
encoded by a single gene (LEPR). Ob-Re does not encode
a transmembrane domain and is secreted and circulates in
human plasma and represents the primary leptin-binding
activity [59]. Ob-Ra and Ob-Rc have significant roles in
transporting leptin across the blood brain barrier [60]. Ob-
Rb is the only receptor isoform that signals by intracellular
mechanisms and this receptor is scattered throughout the
central nervous system (CNS), particularly in hypothalamus,
where it regulates energy homeostasis and neuroendocrine
function [61, 62]. Obesity and metabolic derangement in
db/db mice are the consequences of dysfunctional Ob-Rb
receptors. Janus-activated kinase (JAK), signal transducers
and activators of transcription (STAT), insulin receptor
substrate, and the mitogen-activated protein kinase (MAPK)
pathways are important leptin intracellular signaling mech-
anisms [63]. The binding of leptin to its receptor leads to
the formation of the Ob-R/JAK2 complex and activation of
STAT3, which is phosphorylated and migrates to the nucleus
presumably to affect changes in gene expression [64]. Binding
of leptin receptors to JAK2 also results in JAK2 autophospho-
rylation [65], which in turn phosphorylates insulin receptor
substrate proteins and involvement of phosphatidyl inositol
3-kinase to activate downstream signals [66].

Leptin is one of the best-known hormone markers for
obesity and is very sensitive to levels of energy intake,
particularly in energy deficient states. Two or three days of
fasting lowers humanplasma leptin levels even before any loss
in body fatmass occurs [67, 68]. Decreased leptin levels set off

a series of biological reactions, including a reduction of sym-
pathetic nervous system activity, thyroid hormones, hypotha-
lamic gonadotropin-releasing hormones, insulin-like growth
factor I (IGF-I), and augmentation of growth hormone (GH)
and adrenocorticotropic hormone (ACTH), to reduce energy
expenditure and prevent weight loss [69–73]. Conversely,
adequate leptin levels promote energy expenditure through
different effects on the endocrine (e.g., growth, reproduction,
and immune system) and autonomic nervous system. Leptin
deficiency in animals (ob/ob mice) and humans results in
increased food intake, decreased energy expenditure, and
infertility [74]. In spite of the appetite-lowering effects of
leptin, the majority of obese individuals (except for rare
cases of congenital leptin deficiency) show hyperleptinemia.
These people are thought to be leptin resistant. The precise
mechanisms of leptin unresponsiveness in obese individuals
are yet to be determined; however, several mechanisms
have been proposed to explain this phenomenon. Using an
animal study, El-Haschimi et al. suggested that leptin may be
unable to reach sites of action in the hypothalamus and/or
that an intracellular reduction of leptin-mediated STAT
signaling occurs [75]. Increased expression of suppressor of
cytokine signaling-3 (SOCS-3), an inhibitor of postreceptor
leptin signaling that lessens most of the ObRb signaling at
chronically high levels of circulating leptin, is proposed as
another mechanism [76]. Increased expression of SOCS-3
occurs in the vastus lateralis muscle of obese individuals
[77] and diet-induced obese animals [78]. Similarly, SOCS3
deficient mice are protected against the development of
hyperinsulinemia and insulin resistance during high fat diet
induced obesity. These animals have increased expression
of skeletal muscle insulin receptor substrate-1 (IRS-1) and
Akt phosphorylation that results in increased skeletal muscle
glucose uptake [79]. Persistent chronic inflammation and
increased level of TNF-𝛼may also play a role in hyperleptine-
mia of obese individuals as a positive correlation has been
shown between TNF-𝛼 and leptin levels in both human and
rodents [80, 81]. The regulatory role of insulin and the effect
of chronic hyperinsulinemia in increased leptin levels are
another mechanism which remains to be clarified. In rodent,
the stimulatory effect of insulin on leptin expression and
secretion has been shown [82, 83]; however, such studies in
human being were inconclusive [84].

2.4. Effect of Exercise on Leptin Levels. Because of the mul-
tifaceted role of leptin in human metabolism, many inves-
tigators evaluated the effect of different exercise protocols
on leptin levels. Acute and short-term bouts of exercise do
not affect leptin levels in healthy individuals [85]. However,
longer durations of exercise (≥60min) that are associated
with increased energy expenditure (≥800 kcal) can decrease
leptin concentrations [86]. In an experiment with 45 men
who participated in one of three competitive exercise pro-
tocols with approximately 1400, 5000, and 7000Kcal energy
expenditure, only the participants in the last two categories
had reduced serum leptin levels; prompting the authors
to conclude that only prolonged endurance exercise with
large energy expenditure reduces circulating serum leptin
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Table 1: Summary of selected clinical trials in which adiponectin levels have been measured as a clinical outcome before and after exercise.

Number Subjects Exercise intensity Measured parameters Results
Measurement of adiponectin after exercise in healthy subjects

48
Eight male and 8
female healthy
subjects

60min stationary cycle
ergometry session at 65%
VO2 max

Plasma adiponectin, TNF-𝛼,
insulin, glucose, and leptin

Neither male nor female subjects
showed changes in adiponectin
and leptin concentrations

156 Six healthy male

(i) First experiment: 30min of
heavy continuous running at
79% of VO2 max
(ii) Second experiment:
strenuous intermittent exercise
consisting of treadmill running at
60, 75, 90, and 100% of VO2 max

Serum concentration of
adiponectin, insulin, and plasma
concentrations of glucose and
lactate

No significant change in
adiponectin concentrations in
either of these protocols

49 Ten active male
subjects

Two similar trials, each trial
consisted of 120min cycling
exercise at 50% VO2 max

(i) Plasma adiponectin, FFA, and
glycerol concentrations
(ii) Determining adiponectin
protein and adiponectin receptor
mRNA expression in skeletal
muscle

No change in plasma adiponectin
concentration and tissue mRNA
expression of adiponectin
receptors

157 24 healthy male

Endurance or resistance training
3 days/week for 12 weeks
(i) Endurance training
(continuous running at 75–85%
of MHR)
(ii) Resistance training
(4 sets of circuit weight training
for 11 stations at 50–60% of
one-repetition maximum)

Serum glucose, insulin, and
adiponectin

Endurance and resistance
training were not accompanied
by increased adiponectin levels

Measurement of adiponectin after exercise in obese subjects

158 16 obese men and
women (age, 63)

12-week supervised exercise (5
days/wk, 60min/day,
treadmill/cycle ergometry at 85%
of max HR)

Insulin resistance, fat mass,
adiponectin, TNF-𝛼, and leptin
levels

Exercise reversed insulin
resistance but there was no
change in leptin and adiponectin
levels

159 19 overweight and
obese girls

12 weeks of supervised training
(3 d/wk, 40min each session)

Insulin sensitivity, adiponectin,
CRP, IL-6, IGF-1, blood lipids,
and so forth

Insulin sensitivity improved
without change in adiponectin
and leptin

160
25 obese sedentary
premenopausal
women

12 weeks of aerobic exercise
program (5 d/wk, 50% of VO2
max)

Plasma and mRNA levels of
leptin, adiponectin, IL-6, and
TNF-𝛼

Plasma leptin level decreased
while plasma levels of other
cytokines remained unchanged

161 26 overweight males

10 weeks of aerobic exercise
(4-5 d/wk, 40min each session,
brisk walking mixed with light
jogging, 55–70% VO2 max)

Insulin sensitivity, indirect
calorimetry, and plasma
adiponectin level

Adiponectin levels rose by 260%
after 2-3 bouts of exercise (1
week) without any change in BW

162
Eight obese female
students and 8 obese
controls

7mo exercise training
(30–60min/d, 4-5 d/wk 60–70%
of HR-reserve)

Adiponectin, leptin, hs-CRP,
TNF-𝛼, and lipid profile

Exercise decreased BW, body fat
mass, hs-CRP, leptin, and TNF-𝛼
and increased HDL, VO2 max,
and adiponectin

BW: body weight; FFA: free fatty acids; HR: heart rate; hs-CRP: high sensitivity C reactive protein; MHR: maximal heart rate; VO2 max: maximal oxygen
consumption; wk: week.

levels [87]. Short-term exercise training (≤12 weeks) is not
associated with significant changes in leptin levels, yet there
are variable reports when training courses last more than 3
months. Generally speaking, those training protocols which
lower adiposity will result in diminished leptin levels.

An important point of interest in measuring leptin levels
is paying attention to diurnal variations in its blood levels.
Kraemer et al. determined leptin levels in 15 healthy post-
menopausal women at baseline, exercise, and recovery point

intervals. Blood sampling with the same time intervals but
without exercise was performed one month later as a control
group. Even though no difference was detected between two
groups, there was a gradual decrease from baseline levels to
postexercise and recovery period. They emphasized the need
to account for diurnal variations in measuring leptin levels
over the course of exercise trials [88].

Diabetic patients seem to be more responsive to the
leptin lowering effects of exercise, as acute and short bouts of
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exercise can reduce leptin levels in such patients. Kanaley et
al. reported a decrease in leptin levels after an acute episode of
exercise in diabetic (not healthy) subjects, asmeasured after 6
weeks of training [89]. This increased sensitivity to exercise-
induced lowering effect of plasma leptin levels remains in the
offspring of diabetic patients [90]. Table 2 summarizes some
of the clinical trials which have studied the effects of exercise
on leptin levels in different groups of people.

2.5. Tumor Necrosis Factor-Alpha (TNF-𝛼). TNF-𝛼 is a
cytokine that is mainly produced by monocytes and
macrophages. It is also secreted by other immunogenic cells
such as CD4 lymphocytes and natural killer cells and plays
major roles in cell death (apoptosis), inflammation, and
induction of acute phase reactants. In obese individuals,
macrophage-infiltrated visceral fat is the main site of TNF-𝛼
production [91]. Expression levels of the TNF gene are higher
in abdominal adipose tissue compared to subcutaneous fat,
and, importantly, greater TNF gene expression occurs in
the adipose tissues of obese animals [92] and humans [93].
Accumulating data suggests a direct relationship between
TNF-𝛼 plasma levels and insulin resistance. For instance, in
both ob/ob and diet-induced obese mice, genetic deletion
of TNF-𝛼 or its receptors significantly reduced insulin
resistance and improved insulin signaling in muscle and
adipose tissue [94]. Also, based on a community-based
cohort study, it is proposed that the prevalence of insulin
resistance increases with greater levels of resistin and TNF-𝛼
and is inversely related to adiponectin levels [95]. Diabetic
patients have high activity of TNF-𝛼 in the plasma and
skeletal muscles [96–98].

At a cellular level, TNF-dependent activation of stress-
related kinases inhibits insulin signaling, causing cellular
insulin resistance. Some of these stress-related kinases also
promote further production of TNF, perpetuating a positive
feedback mechanism for sustained TNF activity and chronic
insulin resistance [99]. Targeted disruptions of genes encod-
ing TNF [94] or TNF receptors [100] markedly improve
insulin sensitivity in obese mice. On the other hand, visceral
fat obesity is associated with decreased concentrations of
insulin-sensitizing and anti-inflammatory adipokines [101].
During lipolytic activity, more fatty acids are released from
visceral adipose tissue compared to subcutaneous adipose
tissue [102, 103], as visceral fat has a higher metabolic rate
and has increased susceptibility to lipolytic enzymes [104].
Antilipolytic activity of insulin also has a lesser influence
on visceral fat [105] (Table 3). Increased TNF level induces
hepatic uptake of these fatty acids in a process that is
accompanied by reduced fatty acid oxidation and triglyceride
export. These events cause accumulation of fat within hep-
atocytes (hepatic steatosis). Direct drainage of visceral fat-
induced FFAs through porta vein is another factor in the
pathogenesis of fatty liver. Indeed, nonalcoholic fatty liver
disease commonly accompanies the metabolic syndrome. It
is generally believed that the chain of reactions leading to
hepatocyte fatty degeneration begins with increased levels of
TNF and insulin resistance, which precede fat accumulation
[106]. During hepatic insulin resistance, hepatic glucose

production is no longer downregulated by insulin, resulting
in increased hepatic glucose production and stimulation
of increased insulin secretion. Chronic hyperinsulinemia
desensitizes peripheral tissues to insulin and causes systemic
insulin resistance. Insulin resistance increases adipocyte
lipolysis, resulting in the release of large amounts of fatty
acids into the blood and exacerbation of hepatic steatosis
and insulin resistance [107] (Figure 1). TNF-𝛼 also promotes
the incorporation of fatty acids into diacylglycerol, which
may contribute to the development of TNF-𝛼 induced insulin
resistance in skeletal muscle [108].

TNF is also a potent inducer of mitochondrial ROS and
increases ROS production in fatty hepatocytes [109]. In order
to mitigate or reverse this chronic oxidative stress, adaptive
mechanisms such as uncoupling proteins are activated or
upregulated.The controlled transfer of protons can uncouple
mitochondrial respiration across the inner mitochondrial
membrane, thereby dissipating the proton gradient and
reducing the harmful effects of ROS. The inner mitochon-
drial membrane uncoupling proteins play important roles
in thermogenesis of brown adipose tissue and in regulating
the disposal of mitochondrial ROS in other tissues [110].
Decreases in the mitochondrial membrane potential reduce
ATP synthesis and make cells susceptible to necrotic cell
death [111]. These events lead to local inflammatory reactions
by attracting inflammatory cells, leading to the histopathol-
ogy of nonalcoholic steatohepatitis [112].

2.6. Effect of Exercise on TNF-𝛼 Level. A large body of
evidence shows an inverse relationship between plasma levels
of inflammatory adipokines and the amount of physical
activity. Even though acute episodes of exercise might be
associated with increased levels of inflammatory cytokines,
exercise training reduces circulating levels of inflammatory
markers, even in lean individuals [113]. Controlling the
release and activity of at least two cytokines, namely, TNF-𝛼
and IL-6, could contribute to the natural protective effects of
physical activity in the metabolic syndrome. Exercise confers
protection against TNF-𝛼 induced insulin resistance [114]
while it reduces CRP, IL-6, and TNF-𝛼 levels and increases
anti-inflammatory substances such as IL-4 and IL-10 [115,
116]. The association between the metabolic syndrome and
inflammation is well documented [117, 118]. The reduction
in TNF-𝛼 by exercise may be exerted through both IL-6
(muscle-derived) dependent and independent pathways [119,
120]. Furthermore, exercise induced increases in epinephrine
levels can also blunt the TNF-𝛼 response by a poorly defined
mechanism [121]. Weight reduction through exercise (and
diet) decreases the volume andnumber of adipocytes and also
reduces the number of endothelial and macrophage cells that
are lodged inside adipose tissue that produce proinflamma-
tory mediators. Increased production of anti-inflammatory
mediators by adipocytes and decreased hepatic production
of fibrinogen and other proinflammatorymediators are other
consequences of exercise-induced weight reduction. Weight
loss also influences the immune system by reducing the num-
ber of mononuclear cells in the circulation; these are impor-
tant sources of proinflammatory cytokines [122]. The effect
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Table 2: Summary of selected clinical trials in which leptin levels were measured as a clinical outcome before and after exercise.

Number Subjects Exercise intensity Measured parameters Results
Acute and short (≤60min) exercise protocols without significant effect on leptin levels

163 Seven young men
(age, 27)

30min Ex at 25% and 75% of the
difference between the lactate
threshold (LT) and rest (0.25 LT,
0.75 LT), at LT, and at 25% and
75% of the difference between LT
and VO2 peak (1.25 LT, 1.75 LT)

Leptin AUC for all six
conditions

30min Ex at different intensities
does not affect leptin levels
during or up to 3.5 hours after
exercise

164 Six healthy untrained
men

Three sessions of control, Max
Ex, and prolonged Ex at 50% of
VO2 max

Serum leptin, insulin,
glucose, FFA, and glycerol
REE and BF were also
assessed

(i) No significant differences
were observed in leptin
concentrations between the
control and exercise session
(ii) Control serum leptin was
positively correlated to BF and
glucose and negatively correlated
to REE

83
15 healthy
postmenopausal
women (8 on HRT
and 7 on NHRT)

30min treadmill at 80% VO2
max

Leptin level before and after
exercise session and one
month later as (without
exercise) control values

No significant differences were
observed between groups

165 Eight young, lean,
sedentary men

41min of cycle ergometry at 85%
of VO2 max and 1-2 weeks later
the same protocol but without
exercise to be considered as
control

Serum leptin, insulin,
protein, and cortisol levels
plus plasma glucose, EP,
and NE concentrations

No significant changes in leptin
levels

166 Ten young lean men
(age, 23)

Acute effects of 3 resistance
exercise protocols including MS,
MH, and SE on serum leptin

Serum leptin, cortisol,
glucose, and GH

Typical resistance exercise
protocols did not result in serum
leptin changes

Longer duration (≥60min) exercise protocols which resulted in decreased leptin levels

167

12 fasted men (age,
30) to work on
stationary cycle
ergometer and 14
nonfasted marathon
runner (age, 41)

Intense exercise in both groups
(four half-hour period at 75%
VO2 max for cyclists and 101 mile
running for runners)

Blood leptin levels before,
at the end, 6, 18, and 24
hours after exercise

Negative energy balance of
exercise can reduce serum leptin
concentrations

168

29 male marathon
runner compared
with 22 age-, sex-, and
BMI-matched
sedentary controls

Marathon run (42.195 km) with a
calculated energy expenditure of
over 2800Cal

Leptin levels one day before
and after run

There was a significant reduction
in blood leptin levels in runners

169 9 trained men (age,
22–33)

(i) A MAX short duration run
(ii) 60min endurance ran at 70%
of VO2 max consumption (END)

Plasma leptin, insulin, and
glucose levels before,
immediately after, 24, and
48 hours after exercise

(i) Plasma leptin levels did not
differ between time points for the
MAX run
(ii) Leptin was significantly lower
48 h after exercise in END group

170 Ten young men (age,
21)

Acute heavy resistance protocol
(50 total set comprised of the
squat, bench press, and lat
pull-down)

Plasma leptin levels

Leptin concentration showed a
delayed (approximately 9 h)
reduction after acute resistance
exercise

82
45 males participated
in one of the three
competitive exercise
protocols

(i) A half marathon run
(21.097Km, 1400Kcal)
(ii) A ski-alpinism (45Km,
5000Kcal)
(iii) An ultramarathon race
(100Km, 7000Kcal)

(i) Serum leptin
(ii) Plasma free fatty acids

Serum leptin levels decreased
significantly in ultramarathon
and ski-alpinism but not in half
marathon run
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Table 2: Continued.

Number Subjects Exercise intensity Measured parameters Results
Exercise protocols in obese, prediabetic, and/or metabolic syndrome patients

171
Fifty inactive men
(age, 65–78, BMI,
28.7–30)

Low intensity (𝑛 = 14)
Moderate intensity (𝑛 = 12)
High intensity (𝑛 = 14)
Control (𝑛 = 10)
For 24 weeks

Exercise energy cost
Skinfold sum
Body weight
VO2 max
Resting metabolic rate
Plasma leptin and
adiponectin

Leptin was diminished by all
treatments

172

50 sedentary type II
diabetic subjects
divided to a diet
therapy (𝑛 = 23)
group or an exercise
plus diet therapy
group

Exercise protocol consisted of
walking and cycle ergometer
exercise for 1 h × 5/week with the
intensity of 50% of VO2 max

Plasma leptin levels
Fasting plasma insulin,
glucose, cortisol, and
HbA1c
Urinary 17-OHCS

Leptin significantly decreased in
exercise group

84
30 men and women
(17 controls and 13
type II obese
diabetics, age 40–55)

Three repetition of maximal
weight lifting bout 72 h after their
last training bout of 6 weeks of
resistance training

Serum leptin levels plus
glucose and insulin

Acute exercise decreased leptin
level in diabetic group

85

34 women offspring
of type II diabetic
patients and 36
matched female
controls

Seven weeks of exercise
intervention

Insulin sensitivity index,
VO2 max, and plasma
leptin level

Plasma leptin levels decreased
only in the offspring of diabetic
patients

173
50 diabetic men
divided to exercise
training or standard
therapy for 2 years

Endurance and muscle strength
training 4 times/week.

HbA1c, insulin, leptin,
blood lipids, blood
pressure,VO2 max, and
muscle strength

VO2 max, muscle strength,
HbA1c, and leptin improved in
exercise group

AUC: area under curve; BF: body fat; EP: epinephrine; Ex: exercise; FFA: free fatty acids; GH: growth hormone; HRT: hormone replacement therapy; MAX:
maximum intensity; MH: muscular hypertrophy; MS: maximum strength; NE: norepinephrine; NHRT: nonhormone replacement therapy; 17-OHCS: 17-
hydroxycorticosteroid; REE: resting energy expenditure; SE: strength endurance; VO2 max: maximal oxygen consumption.

Table 3: Some differences between visceral and subcutaneous
adipose tissue [105].

Visceral
fat

Subcutaneous
fat

Sensitivity to catecholamine induced
lipolysis Higher Lower

Sensitivity to insulin’s antilipolytic
effects Lower Higher

Density of glucocorticoid receptors Higher Lower
Androgen receptors Higher Lower
Leptin secretion and leptin mRNA
expression Higher Lower

Secretion of IL-6 (as an adipokine) Higher Lower

of exercise training on reducing the expression of TNF-𝛼
in white adipose tissue has been shown in several animal
studies, as well [123–125]. Table 4 summarizes the results
of some clinical trials that measured TNF-𝛼 after exercise
training in humans.

2.7. Interleukin-6 (IL-6). IL-6 belongs to a family of cytokines
that collectively have an important role in immune reactions,

hematopoiesis, and metabolism. IL-6 has both pro- and anti-
inflammatory effects and is classified as an adipokine as
well as a myokine and causes a wide range of sometimes
contradictory effects. The physiologic nature of target cells
and specific in vivo conditions are confounding factors in
determining its final biological effect [126]. Indeed, IL-6 is a
good example of a chemical that is able to cause cross talk
amongst different tissues.

There are conflicting reports about the effect(s) of IL-6
on lipid and glucose metabolism and insulin sensitivity.
The release of the adipokine IL-6 is related to BMI [127–
129]. Fernandez-Real et al. demonstrated a positive associ-
ation between IL-6 concentrations and the fasting insulin
resistance index in 228 healthy volunteers [130]. Subcuta-
neous injections of recombinant human IL-6 also increase
blood glucose and glucagon levels without changes in
C-peptide levels, supporting the idea that IL-6 alters insulin
sensitivity [131]. Moreover, IL-6 impairs insulin signaling in
adipocytes and reduces insulin-dependent glucose uptake
by reducing GLUT4 expression and IRS-1 [132]. The dis-
turbing effect of IL-6 on insulin signaling also occurs in
mouse hepatocytes and human hepatocarcinoma cells [133].
These data collectively suggest that IL-6 impairs insulin
sensitivity. On the other hand, Carey et al. reported that
infusion of IL-6 to seven healthy males accelerated glucose
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Figure 1: Some of the pathophysiologic mechanisms involved in the pathogenesis of fatty liver.

removal with no effects on endogenous glucose production
during a hyperinsulinemic-euglycemic clamp study. They
also reported that IL-6 improved basal and insulin-stimulated
glucose uptake by myocytes, an effect that was mediated by
translocation of GLUT4 transporters to the plasma mem-
brane [134]. Similarly, an acute infusion of IL-6 improved
insulin sensitivity and glucose removal in animal studies
[135]. One explanation for this discrepancy in the effects of
IL-6 effect on glucosemetabolism could be the time course of
IL-6 elevation. Chronic elevation of IL-6 levels in obese and
type II diabetics may be associated with insulin resistance,
while acute transient increase can enhance insulin sensitivity.
However, this speculation is not supported in an animal study
in which chronic infusion (14 days) of IL-6 increased insulin
sensitivity [135].

IL-6 mRNA is upregulated in contracting skeletal muscle
[136], and the transcriptional rate of the IL-6 gene is also
markedly enhanced by exercise [137]. Physical training aug-
ments the expression of IL-6 receptors in human skeletal
muscle and sensitizes them to IL-6 at rest [138]. Of interest is
that connective tissue located in and aroundworkingmuscles
may have an additional role in the production and secretion
of IL-6 to the plasma [139]. Availability of energy resources

can also affect intramuscular IL-6 mRNA levels in response
to exercise as this response is higher under glycogen depleted
conditions [140] and following prolonged and strenuous
activities [141]. Lipid turnover, lipolysis, and fat oxidation, via
activation of AMP-activated protein kinase are enhanced by
IL-6 [142]. This is supported by studies showing that IL-6
deficient mice (IL-6−/−) develop mature onset obesity and
have disturbed carbohydrate and lipid metabolism that is
partly reversed by IL-6 replacement [143]. Infusion of IL-6
to human subjects increases systemic fatty acid oxidation
[144]. The lipolytic effect of IL-6 on fat metabolism was
confirmed in two clinical studies of healthy and diabetic
subjects [142, 145]. A recent study reported that exercise-
induced increases in IL-6 production could improve insulin
secretion through stimulating glucagon-like peptide-1 (GLP-
1) secretion, a hormone that induces insulin secretion. This
newly explained mechanism adds to the importance of IL-6
as a mediator of cross talk between different tissues [146].

Collectively, it can be inferred that IL-6 has regulatory
effects on metabolism of both adipose and muscular tissue
and is a mediator of cross talk between these two com-
partments. Excessive production of IL-6, as an adipokine,
in obesity and diabetes, has an adverse effect on glucose
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Table 4: Summary of selected clinical trials in which TNF-𝛼 level has been measured as a clinical outcome before and after exercise.

Number Subjects Exercise intensity Measured parameters Results

174
67 healthy, premenopausal
women and 40 age matched
normal weight women

Walk for at least 1 h three
times a week plus a diet
contained 1300Kcal/d and
behavioral counseling

Echocardiography plus
circulating levels of TNF-𝛼,
IL-6, IL-8, and CRP

After one year, there was a
significant reduction in
inflammatory markers and
improvement in cardiac
function

175
23 overweight and obese
adults are randomized into vit
D + exercise and exercise
group

All participants did
12-week (3 d/wk)
progressive resistance
exercise at 70–80% of one
repetition maximum

Stimulated TNF-𝛼,
circulating CRP, TNF-𝛼,
IL-6, and ALT

Both groups had a
significant reduction in
nonstimulated TNF-𝛼
production after 12 weeks

176

82 subjects with type II
diabetes and metabolic
syndrome are randomized to
following groups:
20 T2D (sedentary control, A)
20 T2D (low intensity aerobic
exercise, B)
20 T2D (high intensity aerobic
exercise, C)
22 T2D (aerobic and
resistance exercise, D)

Twice a week supervised
sessions of 60min of
aerobic exercise at 70–80%
VO2 max for group C
patients and 40min aerobic
exercise at 70–80% VO2
max + 20min resistance
exercise at 80% of 1
repetition maximum for
Group D subjects. group B
received counseling to
perform low intensity
physical activities. These
protocols continued for 12
months

HbA1c, FBS, TG, TC, HDL,
hs-CRP, IL-1𝛽, IL-4, IL-6,
IL-10, TNF-𝛼, IFN-𝛾,
leptin, resistin, and
adiponectin VO2 max

(i) Significant decrease of
hs-CRP in groups C and D
(ii) Leptin, resistin, and
IL-6 decreased in groups C
& D, while adiponectin
increased
(iii) IL-1𝛽, TNF-𝛼, and
IFN-𝛾 decreased in group
D, whereas
anti-inflammatory IL-4 &
10 levels declined

177

31 inactive subjects with
metabolic syndrome are
divided to
(i) High-intensity aerobic
interval training (AIT),
(ii) strength training (ST),
(iii) control group

Exercise training was
carried out three times per
week for 12 weeks

Serum insulin, hs-CRP,
IL-18, IL-6, and TNF-𝛼

Serum IL-18 was reduced
after AIT
TNF-𝛼 level was lower in
AIT group compared to ST
and controls
No changes in serum IL-6,
insulin, or hs-CRP within
or between the groups

178

20 obese individuals (BMI, 32)
with at least one other
component of the metabolic
syndrome are randomized to
exercise group and diet group
after 8 weeks of control period

Exercise consisted of 8
weeks of moderate cycling
exercise (30min, 3
times/wk)

Fasting glucose and insulin
levels
Muscle biopsy for analysis
of skeletal muscle TNF-𝛼
and GLUT4

Both interventions reduced
plasma insulin levels
Only diet reduced muscle
TNF-𝛼 but exercise did not
change TNF-𝛼 protein
expression

179

47 obese diabetic patients
randomly assigned to aerobic
(AT, 𝑛 = 27) or aerobic plus
resistance (ART, 𝑛 = 20)
exercise protocols

AT program was 15min
row ergometer plus 15min
bicycle ergometer at 70% of
HR max for 5 d/wk
ART program was AT
program plus 15min
resistance training at
40–50% of HR max

Blood glucose, insulin, and
lipid profile
Leptin, adiponectin,
resistin, TNF-𝛼, MCP-1,
and MMP-2

Adiponectin level increased
54% after AT while
decreased by 13% after ART
MMP-2, TNF-𝛼, and
MCP-1 levels decreased in
AT while increased in ART
group

180
23 obese postmenopausal
women underwent resistance
exercise training or social
interaction intervention

3 sets, 10 exercises, 3 × per
week, 8–12 repetition
maximum

IL-6, leptin, CRP, TNF-𝛼,
adiponectin, mRNA
expression of TLR4, and
MC1R.

TNF-𝛼, CRP, and leptin
reduced in exercise group
without any change in body
composition

ALT: alanine aminotransferase; BMI: body mass index; CRP: C reactive protein; FBS: fasting blood sugar; GLUT4: glucose transporter 4; HDL: high density
lipoprotein; IFN-𝛾: interferon-gamma; MCP-1: monocyte chemoattractant protein-1; MC1R: melanocortin 1 receptor; MMP-2: matrix metalloproteinase-2;
TG: triglyceride; TC: total cholesterol; TLR4: toll-like receptor 4.
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Table 5: Summary of selected clinical trials in which IL-6 level has been measured as a clinical outcome before and after exercise.

Number Subjects Exercise intensity Measured parameters Results

181 24 insulin resistant
obese individuals

Six months of moderate intensity
exercise plus hypocaloric diet

IL-6, leptin, adiponectin, resistin,
TNF-𝛼, hsCRP, and insulin
sensitivity

Plasma leptin and IL-6
decreased. TNF-𝛼 tended to
decrease. Adiponectin increased
in diabetics

182
56 obese women and
40 age-matched
normal weight

One year of increased physical
activity (at least 1 h walk
3 times/wk) plus energy
restricted diet

Proinflammatory cytokines
including TNF-𝛼, IL-6,
P-selectin, VCAM-1, ICAM-1
plus glucose, and lipid profile

Proinflammatory cytokines were
higher in obese individuals
Weight reduction was associated
with decreased levels of IL-6 and
TNF-𝛼

183
15 athletes
participants in an
ultradistance foot race

246Km Spartathlon IL-6, CRP, SAA, free plasma
DNA, and lipid profile

IL-6 (8000 fold), CRP, SAA, and
free plasma DNA levels increased
at the end of this acute exercise

184 49 white obese school
aged children

A combined protocol of energy
restriction and increased physical
activity for 3 weeks

Indexes of obesity, IL-6, leptin,
estradiol, systolic and diastolic
BP, and HR

All determined parameters
decreased significantly during
3-week program

185
17 healthy young
women (YW) and 8
postmenopausal
women (PMW)

Five sets of six maximal eccentric
actions of the elbow flexors

CK, IL-6, IL-10, TNF-𝛼, and
PGE2

For YW, IL-6 and IL-10 values
increased 72 h after eccentric
exercise

186 11 endurance athletes
Two experimental trials
consisted of 90min run at 75% of
VO2 max

IL-6, free Hb, haptoglobin,
hepcidin, and iron parameters

Serum iron and IL-6 significantly
increased after exercise

187

60 overweight/obese
diabetic patient
randomized to
exercise or control
groups

16-week aerobic exercise training
consisting of four 45–60min
sessions/week (50–60% of VO2
max)

Insulin resistance, plasma levels
of resistin, IL-6, FBS, and lipid
profile

Exercise training decreased both
plasma IL-6 and IL-18

BP: blood pressure; FBS: fasting blood sugar; Hb: hemoglobin; HR: heart rate; hs-CRP: high sensitivity C reactive protein; ICAM-1: intercellular adhesion
molecule-1; PGE2: prostaglandin E2; SAA: serum amyloid A; VCAM-1: vascular cell adhesion molecule.

metabolism and insulin sensitivity. On the other hand, as a
muscle-secreted IL-6 myokine, it enhances glucose disposal
and lipolysis and mediates the beneficial effects of physical
activity. Another theory for explaining the increased amounts
of IL-6 in obesity and insulin resistance states is that elevated
levels of IL-6 are a secondary defense response to higher
amounts of TNF-𝛼. In other words, TNF-𝛼, as an important
pathophysiological culprit in obesity, stimulates IL-6 release.
Alternatively, increased amounts of IL-6 may represent a
compensatory mechanism in insulin resistance conditions
formaintaining glucose homeostasis. Furthermore, increased
levels of IL-6 may be a response to impaired IL-6 signaling
[147], which is poorly defined in many clinical studies of
obesity, insulin resistance, and diabetes.

2.8. Effect of Exercise on IL-6 Level. Interleukin-6 (IL-6) is
the first cytokine to be released into the circulation during
exercise, and its levels increase in an exponential fashion
in response to physical exertion [148]. Exercise-induced
increases in plasma IL-6 correlate with the muscle mass
involved in exercise activity and alsowith themode, duration,
and, especially, the intensity of exercise [149]. The infusion
of recombinant human IL-6 (rhIL-6) into human subjects
simulates the exercise induced IL-6 response in the preven-
tion of endotoxin-induced increase in plasma TNF-𝛼 [150].
IL-6 inhibition of LPS-induced TNF-𝛼 production has also

been shown in cultured humanmonocytes and IL-6 deficient
knockout mice [151, 152]. Furthermore, IL-6 stimulates the
release of other anti-inflammatory cytokines including IL-10
and IL-1Ra [153]. These and other experiments suggest that
the anti-inflammatory effects of exercise are partly mediated
through increased levels of IL-6.

Focusing on the results of clinical trials that have
measured IL-6 reveals the following generalities. First, the
magnitude of IL-6 increment is higher after moderate to
severe exercise in untrained individuals. Exercise training
decreases themagnitude of IL-6 response following strenuous
activity. Second, exercise decreases blood levels of IL-6 in the
metabolic syndrome and obese patients, while normal weight
individuals experience increased levels of IL-6 when it is
released as amyokine. Genetic polymorphism is another con-
founding factor which might explain differences in exercise-
induced IL-6 variations [154]. Table 5 summarizes the results
of some experiments in which IL-6 was part of laboratory
outcomes in clinical studies.

3. Conclusion

In reviewing the information on the effects of exercise on
adipokine levels (Figure 2), several drawbacks hinder lining
a general conclusion. First, there is lack of unified standards
in measuring the exercise intensity. These standards could
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Figure 2: Selected physiologic effects of four adipokines and the effect of exercise on their blood levels.

be different among patients with various BMI levels as
obese individuals may benefit more than normal-weight
people from a certain level of physical activity. Exercise
should exceed a defined level that is known to bring about
physiologic changes. These thresholds have not been defined
precisely in different groups of people.The in vivo interaction
between different adipokines is another point which has
mostly been ignored in isolated cytokinesmeasurements. For
instance, higher levels of adiponectin hinder the secretion
of TNF-𝛼 and IL-6 [155], while TNF-𝛼 negatively affects
adiponectin production and enhances IL-6 production [78].
There are also many other adipokines which yet have not
been investigated in this context. Unraveling the complex
physiology and relations between various adipokines can lead
to a better understanding of sport physiology.
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