
Supplementary Figures 

 
Supplementary Figure 1: Spherical multipole decomposition of the scattering spectra of a silicon 
nanodisk. In this case, at the anapole excitation the dominant contribution is the electric dipole only, while all 
other modes are significantly suppressed. The height of the silicon nanodisk is 50 nm and diameter 200 nm.   
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Supplementary Figure 2: Numerical results for light scattering by silicon nanodisks at oblique incidence.  
(a) Schematic of the simulation setup; (b, e) the total scattering cross-sections for TE and TM polarizations; 
(c,f) Cartesian electric and (d,g) toroidal dipoles contributions calculated by DDDA method for a silicon 
nanodisk with diameter 270 nm. These results demonstrate independence from incident angle and polarization. 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary Figure 3: Near-field distribution around the silicon nanodisk with a height of 50 nm and 
diameter of 285 nm. The top row shows experimental NSOM measurements while the middle and bottom 
rows show normalized calculated transversal electric and magnetic near-field respectively on top of the disk. 
White dashed lines in the experimental images indicate the disk position. 
 
 
 
Supplementary Methods 
 
Analysis of a spherical electric dipole response. For further insight into the origin of the scattering 

cancelations, we can consider a simplified situation of light scattering by a hypothetical spherical particle where 

we take scattering contributions only from the spherical electric dipole mode excited inside the sphere [see 

Fig.2]. The internal electric field of the spherical electric dipole can be analytically expressed as follows [1] 
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and sphkR=ρ  being size parameter, sphn  is refractive index of the particle, jl (x) is spherical Bessel function, 

P1
1(cosθ ) is associated Legendre polynomial [1]. 
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Multipole expansion in vector spherical harmonic. Electromagnetic properties of silicon nanodisks were 

numerically studied by using CST Microwave Studio. In the Canonical basis we perform a multipole expansion 

of the scattered field of the nanodisk into vector spherical harmonics, which form a complete and orthogonal 

basis allowing the unique expansion of any vectorial field. To calculate electric ),( mlEa and magnetic ),( mlMa  

spherical multipole coefficients, we project the scattered electric field scaE  on a spherical surface, enclosing the 

silicon nanodisk centered at the symmetric point, onto vector spherical harmonics based on the following 

relations [2]: 
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where R  is the radius of the enclosing sphere, k  is the wavevector, hl

(1) is the Hankel function with the 

asymptotic of the outgoing spherical wave, E0 is the amplitude of the incident wave, Ylm and Xlm  are scalar and 

vector spherical harmonics. Due to azimuthal symmetry of the silicon nanodisk the amplitude of the scattering 

coefficients with opposite m indices are identical, aE ,M (l, m) = aE ,M (l, −m) [1]. 

For the anapole excitation discussed in this paper, the dominant contribution to the scattering is given by the 

spherical electric dipole 2
)1,1(EaCsca ∝ . 

 
Cartesian multipoles and discrete dipole approximation. Additional multipole analysis of scattering were 

performed using the decomposed discrete dipole approximation (DDDA) [3,4]. In this approach the scattering 

object is replaced by a cubic lattice of electric dipoles with the polarizability !". The total number of dipoles is 

N. The corresponding dipole moment #" induced in each lattice point j (with the radius-vector $") is found by 

solving the coupled-dipole equations. The Cartesian multipole moments of the scattering object (electric dipole 

moment p, electric quadrupole moment %($'), magnetic dipole moment )($'), toroidal dipole moment * $' , 

and  magnetic quadrupole moment +($')  located at a point $' )   are simply calculated from the space 

distribution of #" 
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where the corresponding Cartesian multipole moments associated with the single electric dipole #", are under 

the summation symbols. Analytical expressions for these multipole moments are presented as 
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where ω is the angular frequency of scattered light. 

The scattered electric field in the far field zone is presented by [5] 
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where2X', Y, and XZ, [Z are  the wavenumber and light velocity in vacuum, and the wavenumber and light phase 

velocity  in the medium surrounding the scatterer, respectively. \' is the vacuum dielectric constant, P  is the 

unit vector directed along the radius vector2$ . Using the scattered electric field we calculated the total and 

angular distributions of scattered powers and to estimate contributions of every multipole moment [4]. Note 

that here +($') is symmetrical and traceless [5]. Contribution of the electric octupole moment in our case is 

significantly small, so we excluded it from the consideration. 
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