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Dynamic adjustments to neuronal energy supply in response to synaptic activity are
critical for neuronal function. Glial cells known as astrocytes have processes that ensheath
most central synapses and express G-protein-coupled neurotransmitter receptors and
transporters that respond to neuronal activity. Astrocytes also release substrates for
neuronal oxidative phosphorylation and have processes that terminate on the surface
of brain arterioles and can influence vascular smooth muscle tone and local blood flow.
Membrane receptor or transporter-mediated effects of glutamate represent a convergence
point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives
glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative
metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which
is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain
energy currency in the form of glycogen, which can be mobilized to produce lactate
for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission.
These mechanisms couple synaptically driven astrocytic responses to glutamate with
release of energy substrates back to neurons to match demand with supply. In addition,
astrocytes directly influence the tone of penetrating brain arterioles in response to
glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow.
We will describe the role of astrocytes in neurometabolic and neurovascular coupling
in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal
bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub
for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for
therapeutic development in a broad range of neurodegenerative disorders characterized
by chronic generalized brain ischemia and brain microvascular dysfunction.
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INTRODUCTION
The brain receives 10% of cardiac output but consumes 20%
of total blood glucose and oxygen during cerebral activity to
restore ion gradients after action potential conduction and
neurotransmission (Magistretti et al., 1999; Magistretti, 2006).
Large metabolic demand requires that brain blood flow remain
constant despite variations in blood pressure (autoregulation)
and that areas of high neuronal activity have correspondingly
high metabolic rate and local blood supply (Magistretti, 2006).
Astrocytes are multi-functional regulators of neurometabolic
coupling that control uptake and release of neurotransmitters
(Anderson and Swanson, 2000), influence local blood supply
(Zonta et al., 2003; Mulligan and Macvicar, 2004; Takano et al.,
2006; Gordon et al., 2008), and directly supply neurons with
substrates for oxidative phosphorylation (Pellerin et al., 1998a).

Several characteristics of astrocytes confer suitability for sens-
ing and satisfying neuronal metabolic needs. Protoplasmic astro-
cytes are highly organized into nearly unique three-dimensional
domains (Oberheim et al., 2006) with limited overlap (Ogata and

Kosaka, 2002). This feature places astrocytes non-randomly in
virtually all central nervous system (CNS) 3D space, which is
an ideal anatomical scenario for cells engaging in regional brain
activity monitoring and/or corresponding nutritive distribu-
tion. Astrocyte process extensions from the soma define domain
extremities and extensively ensheath central synapses (Ventura
and Harris, 1999) producing a synaptic structure referred to as the
“tripartite synapse” (Araque et al., 1999; Oberheim et al., 2006),
in which astrocyte processes are located in close enough proximity
to communicating nerve terminals that they receive neurotrans-
mitter input. Astrocyte processes also envelop parenchymal brain
arterioles and capillaries in unique spatial domains, extending ter-
minal structures known as endfeet that are directly in contact with
the vascular basal lamina (Simard et al., 2003; Oberheim et al.,
2006). Endfeet express surface proteins, such as glucose trans-
porters, for uptake of energy substrates from the endothelium
(Kacem et al., 1998), and are capable of releasing transmitters
that influence local blood flow (Simard et al., 2003; Zonta et al.,
2003; Mulligan and Macvicar, 2004; Metea and Newman, 2006;
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Gordon et al., 2008). Astrocytes are therefore also uniquely posi-
tioned for bidirectional communication across the blood-brain
barrier, as well as being participants in synaptic transmission. In
addition, single hippocampal or cortical astrocytes are in contact
with up to 600 dendrites (Halassa et al., 2007) and over 100,000
synapses (Bushong et al., 2002), and extend multiple processes to
blood vessels (McCaslin et al., 2011). This provides a single-cell
linkage between the locus of neuronal activity and sites that can
leverage additional energy supply in an arrangement known as the
neurovascular unit. This anatomy provides an astrocyte-mediated
communication link for energy substrate transfer between blood
supply and synaptic terminals (Tsacopoulos and Magistretti,
1996; Simard et al., 2003; Rouach et al., 2008).

Protoplasmic astrocytes also form a functional syncytium,
where distal processes are connected by connexin gap junctions
permitting diffusion of ions and metabolites between neigh-
boring astrocytes (Giaume and McCarthy, 1996; Scemes et al.,
1998). This creates a conduit for intercellular communication
and flow of metabolites, but also allows intracellular communica-
tion through autocellular junctions between processes of the same
cell (Wolff et al., 1998; Rouach et al., 2002). Connexin proteins
also form hemichannels, which do not connect to adjacent cells,
but allow release of small molecules from the cytoplasm into the
extracellular space (Contreras et al., 2002; Rouach et al., 2002; Ye
et al., 2003). This network of gap junctions is central to astrocyte
function and control of brain metabolism, facilitating communi-
cation and movement of molecules within and around astrocyte
domains.

Peri-synaptic or vascular astrocyte distributions would not be
functionally relevant without mechanisms for receiving input.
Astrocytes achieve this by expressing numerous types of neuro-
transmitter receptors that initiate electrically silent activation of
astrocytes by enhancing intracellular Ca2+ levels. These broad
receptor categories are coupled to G-proteins and activate a wide
array of intracellular second messenger pathways, including inos-
itol trisphosphate production and release of Ca2+ into the cyto-
plasm from endoplasmic reticulum stores (Sheppard et al., 1997;
Idestrup and Salter, 1998). This permits astrocytes to respond to
synaptic transmission through elevated cytosolic Ca2+. Astrocyte
GPCR receptors involved in Ca2+ signaling cover a diverse range
of neurotransmitters such as GABAB receptors (Kang et al., 1998;
Bettler et al., 2004; Meier et al., 2008), acetylcholine muscarinic
receptors (Takata et al., 2011; Navarrete et al., 2012), α-adrenergic
receptors (Duffy and Macvicar, 1995; Bekar et al., 2008), H1
histamine receptors (Shelton and McCarthy, 2000), endocannabi-
noid receptors (Navarrete and Araque, 2008, 2010), purinergic
P2Y receptors binding adenine nucleotides (Guthrie et al., 1999),
and metabotropic glutamate receptors (mGluRs) (Porter and
McCarthy, 1996; Perea and Araque, 2007). Many papers impli-
cate mGluR5 as a major activator of astrocyte Ca2+ (Bezzi et al.,
1998; Zonta et al., 2003; Takano et al., 2006; Gordon et al., 2008;
Liu et al., 2011), however, there is recent work suggesting mGluR5
expression decreases with age and does not stimulate Ca2+ signals
in adult cortical and hippocampal astrocytes (Sun et al., 2013).
More work on this is required before a consensus can be reached.

Ca2+ elevations may represent the fulcrum of a multi-faceted
repertoire of potential astrocyte responses to sensory input.

There is broad consensus that increased astrocytic intracellular
Ca2+ triggers release of gliotransmitters such as glutamate, ATP,
and D-serine (Bezzi et al., 2004; Mothet et al., 2005; Jourdain
et al., 2007). Gliotransmitters, in turn, can affect synaptic activ-
ity (Parpura et al., 1994; Araque et al., 1999; Panatier et al.,
2006; Henneberger et al., 2010; Sasaki et al., 2011; Fossat et al.,
2012), produce constriction or dilation of local blood supply ves-
sels (Zonta et al., 2003; Mulligan and Macvicar, 2004; Takano
et al., 2006; Gordon et al., 2008) or have an autocrine effect to
amplify Ca2+ signals (Suadicani et al., 2006). Additionally, ele-
vation of Ca2+ in a single astrocyte is capable of initiating a
similar response in surrounding astrocytes in a regenerative wave-
like fashion. This process is primarily dependent on connexin 43
(Scemes et al., 1998; Blomstrand et al., 1999; Haas et al., 2006;
Gosejacob et al., 2011) and release of extracellular gliotransmit-
ters, including ATP (Hassinger et al., 1996; Guthrie et al., 1999)
and may mediate fast, long-distance intercellular communication
between astrocytes (Scemes and Giaume, 2006). It is important
to note that recent data challenge the view that astrocyte Ca2+
modulates neuronal activity (Petravicz et al., 2008; Agulhon et al.,
2010; Nedergaard and Verkhratsky, 2012) or even that adult astro-
cytes express Ca2+-mobilizing metabotropic glutamate receptors
shown previously to be critical for synaptic effects of astrocytes
(Sun et al., 2013). These findings are fueling debate about the
functional roles of astrocytic Ca2+ responses in adult animals
in vivo. Finer spatial resolution of astrocytic Ca2+ levels may
reveal that local responses are limited to process microdomains
and not necessarily the cell soma (Shigetomi et al., 2010, 2012;
Di Castro et al., 2011), which could partially explain apparent
discrepancies. Regional differences in astrocytic physiology and
developmental changes in astrocytic expression of neurotransmit-
ter receptors may also be factors. Systematic attention to animal
age, brain regions imaged and spatial resolution of astrocyte Ca2+
imaging in vivo will greatly help resolve these issues.

Architectural organization, neurotransmitter receptor expres-
sion, and gliotransmitter release are features enabling astrocytes
to be prime regulators of synaptic environment and transmission
(Araque et al., 1999; Anderson and Swanson, 2000; Henneberger
and Rusakov, 2010), neurovascular coupling (Zonta et al., 2003;
Mulligan and Macvicar, 2004; Takano et al., 2006; Gordon et al.,
2008), blood-brain barrier function (Ballabh et al., 2004) and car-
bon source shuttling to neurons in high demand periods (Pellerin
et al., 1998a; Rouach et al., 2008). We will discuss the influence of
astrocytes on the synaptic environment and cerebral bioenerget-
ics, including how astrocytes handle glutamate, supply neurons
with oxidative energy substrates and store glycogen. Mechanisms
by which astrocytes couple glutamatergic neurotransmission with
neuronal energy metabolism and blood flow regulation will also
be discussed. Finally, we will survey astrocyte dysfunction in brain
diseases and injuries, including ischemic stroke, epilepsy, and
Alzheimer’s Disease.

ASTROCYTES CONTROL CEREBRAL GLUTAMATE LEVELS
Glutamate is quantitatively the dominant excitatory CNS neu-
rotransmitter (Fonnum, 1984). Unregulated synaptic glutamate
levels, however, can cause neuronal excitatory cell death in
multiple diseases (Dong et al., 2009). Therefore, regulation of
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synaptic glutamate is crucial. Under normal conditions, gluta-
mate balance in the neuropil is tightly controlled by astrocytes.
Astrocytic processes enveloping glutamatergic synapses express
active amino acid transport proteins that are the main route of
extracellular glutamate removal (Rothstein et al., 1994; Danbolt,
2001). The primary glutamate transporters are Na+/glutamate
co-transporters of the SLC gene family, termed excitatory amino
acid transporter 1 and 2 (EAAT1 and 2) in human tissue
(Shashidharan et al., 1994) or glutamate transporter-1 (GLT-1)
and L-glutamate/L-aspartate transporter (GLAST) in rodents
(Pines et al., 1992; Storck et al., 1992). These proteins rely on
the Na+ electrochemical gradient, maintained by Na+/K+ ATPase
activity, to co-transport 1 glutamate molecule and 3 Na+ ions.
Glutamate uptake is energetically expensive, as ATP is consumed
by Na+/K+ ATPases, but with sufficient energy supply, perisy-
naptic astrocyte processes prevent excitotoxic accumulation of
glutamate in the neuropil. A Na+-independent, glutamate/cystine
antiporter is also expressed by astrocytes but this is considered a
secondary mechanism of glutamate uptake as these transporters
primarily conduct cystine (Cho and Bannai, 1990).

Neurons may also take up glutamate through EAAT3 (EAAC1
in rodents) (He et al., 2000; Chen and Swanson, 2003), EAAT4
(Furuta et al., 1997; Nagao et al., 1997; Jackson et al., 2001),
or EAAT5 (Arriza et al., 1997); however, the expression and
localization of these transporters vary throughout the brain. For
example, EAAT5 is mainly located in the retina (Arriza et al.,
1997) and EAAC1 and EAAT4 are found on extrasynaptic neu-
ronal membranes, particularly in the cerebellum, and are believed
to modulate glutamate release and post-synaptic excitation (Tong
and Jahr, 1994; Overstreet et al., 1999). EAAT3 also readily takes
up cysteine (Chen and Swanson, 2003), which is used for glu-
tathione production, suggesting EAAT3 has a central role in
neuronal antioxidant defense (Aoyama et al., 2006).

Once synaptic glutamate enters astrocytes, one-third is used
as a substrate for oxidative metabolism (Schousboe et al., 1993;
Hertz and Zielke, 2004; Hertz et al., 2007). Glutamate can be
converted to α-ketoglutarate by glutamate dehydrogenase or
aspartate aminotransferase to replenish components of the tri-
carboxylic acid (TCA) cycle (Faff-Michalak and Albrecht, 1993;
McKenna et al., 2006a). An additional portion of salvaged gluta-
mate is recycled for neurotransmission through a process known
as the glutamate-glutamine shuttle (Figure 1). Glutamate is con-
verted to glutamine by astrocytic glutamine synthase (Martinez-
Hernandez et al., 1977). Glutamine is then transported from
the astrocytic cytoplasm by system N transporters and removed
from the extracellular space by neuronal system A neutral amino
acid transporters (Chaudhry et al., 2002). Neuronal glutamine
is converted back to glutamate by phosphate-activated glutami-
nase (Kvamme et al., 2000) and repackaged into vesicles (Fremeau
et al., 2004) for synaptic release (McKenna, 2007). This shuttle
process is vital for proper synaptic glutamate release because neu-
rons do not express enzymes for de novo synthesis of glutamate, so
neuronal glutamate is entirely derived from astrocyte glutamine
or α-ketoglutarate (Yu et al., 1983; Shank et al., 1985). Astrocytes
produce de novo glutamate or glutamine from glucose via pyru-
vate conversion to oxaloacetate by pyruvate carboxylase (Yu et al.,
1983; Hertz, 2011).

FIGURE 1 | The glutamate-glutamine cycle. Glutamate (Glu) from
pre-synaptic neurons stimulates post-synaptic neurons, and the signal is
terminated by uptake of Glu from the synaptic cleft into astrocytes. Glu is
primarily transported into astrocytes through Na+-dependent excitatory
amino acid transporters, EAATs. This disrupts the astrocyte Na+ gradient
and energy is consumed by the Na+/K+ ATPase to restore ionic
concentrations. Glu is converted to: (a) glutamine (Gln) via glutamine
synthase (GS) or (b) alpha-ketoglutarate (α-KG) by glutamate
dehydrogenase (GDH) or aspartate aminotransferase (AAT) for subsequent
oxidative metabolism in the TCA cycle. Gln is shuttled to neurons for
glutamate production by phosphate-activated glutaminase (PAG) and the
resulting Glu is repackaged in vesicles for further synaptic release.

The glutamate-glutamine cycle not only drives neurotransmit-
ter recycling, but also influences brain metabolism. Astrocytes
metabolize glutamate to TCA cycle intermediates (Schousboe
et al., 1993; Hertz and Zielke, 2004; Hertz et al., 2007), which
diminishes the glutamate pool, and may drive astrocytic glucose
consumption, ATP production and de novo glutamate synthesis
(Hertz, 2011). Neurons also utilize glutamine and/or glutamate
as energy substrates during glucose deprivation in vitro (Peng
et al., 2007) or ischemia in vivo (Pascual et al., 1998). They simi-
larly use glutamine or glutamate to replenish intermediates of the
TCA cycle during metabolism of other substrates in vitro (Shokati
et al., 2005). These observations suggest that the glutamate-
glutamine shuttle impacts neuronal metabolism. Glutamate
uptake by cultured astrocytes also correlates with increased gly-
colysis and lactate production (Pellerin and Magistretti, 1994).
This is a separate mechanism of glutamate-driven astrocyte-
neuron metabolic coupling that will be discussed below.

ASTROCYTE LACTATE FUELS NEURONAL METABOLISM
Synaptic glutamate is a direct signal of neuronal activity and,
therefore, of metabolic demand. Astrocytes surveying synap-
tic activity respond with elevated glucose utilization, glycolysis
(Pellerin and Magistretti, 1994; Cholet et al., 2001), and lactate
production (Pellerin and Magistretti, 1994; Schurr et al., 1999;
Voutsinos-Porche et al., 2003; Caesar et al., 2008). Enhanced
astrocytic metabolism is thought to result from intracellular
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Na+ accumulation associated with Na+/glutamate co-transport
(Voutsinos-Porche et al., 2003; Langer and Rose, 2009). This ele-
vates ATP consumption by Na+/K+ ATPase activity resulting in
increased glucose uptake, enhanced glycolytic rate, and lactate
generation (Pellerin and Magistretti, 1994; Chatton et al., 2000;
Loaiza et al., 2003; Porras et al., 2008). Intercellular Na+ waves
are also generated throughout the astrocyte syncytium, elevat-
ing glucose uptake, and metabolism in neighboring astrocytes
as well (Bernardinelli et al., 2004; Scemes and Giaume, 2006).
Furthermore, K+ released during neurotransmission is taken
up by astrocytes, which stimulates glycolysis and lactate export
(Bittner et al., 2011; Ruminot et al., 2011).

Glutamatergic neurotransmission increases both neuronal
and astrocytic energy consumption, but the primary neuronal
energetic substrate during normal and pathological conditions
has been debated. One hypothesis is that neurons and astro-
cytes utilize systemically delivered glucose and oxygen from the
extracellular space for metabolism by oxidative phosphoryla-
tion (Chih and Roberts, 2003). The second hypothesis proposes
astrocytes convert glucose to lactate in an activity-dependent,
glutamate-mediated manner for delivery to neurons (Pellerin and
Magistretti, 1994; Pellerin et al., 1998a; Magistretti and Pellerin,
1999). This is known as the astrocyte-neuron lactate shuttle
hypothesis (ANLSH) and suggests lactate is more than a poten-
tially damaging final metabolite of anaerobic glycolysis (Figure 2;
Kasischke, 2008).

In light of the ANLSH, a large body of literature pertain-
ing to production and neuronal use of lactate has accumulated
over the last 20 years. Several points have been made. First,

FIGURE 2 | The Astrocyte to Neuron Lactate Shuttle Hypothesis. Free
glucose is taken up by astrocytes through GLUT1 transporters and
converted to glucose-6-phosphate (Glc-6-P). Glc-6-P is stored as glycogen
synthesized by glycogen synthase (GlyS). During greater energy demand,
glycogenolysis, mediated by glycogen phosphorylase (GlyP), creates
Glc-6-P for glycolysis. Synaptic transmission induces astrocyte glycolysis
and lactate production through glutamate uptake. This increases glucose
consumption and/or glycogen breakdown in astrocytes. Astrocyte lactate is
transported into the extracellular space by MCT1 and taken up through
MCT2 by neurons. Neurons can convert lactate (Lac) to pyruvate (Pyr) for
oxidative phosphorylation.

there is a correlation between synaptic activity and extracellu-
lar lactate concentrations. At rest, the extracellular space around
neurons and astrocytes has a homogenous concentration of lac-
tate and glucose (Simpson et al., 2007; Barros and Deitmer,
2010). Extracellular lactate decreases slightly during short peri-
ods of brain activation in vivo (Hu and Wilson, 1997; Mangia
et al., 2003), possibly because neurons are utilizing lactate for
oxidative metabolism (Kasischke et al., 2004). However, extra-
cellular lactate rapidly rises as neuronal stimulation continues
for longer periods (Prichard et al., 1991; Mangia et al., 2007).
Oxygen levels remain unchanged, suggesting brain activation
stimulates aerobic glycolysis (Hu and Wilson, 1997). Second,
in vitro studies demonstrate that glutamate induces glucose trans-
porter (GLUT1) activity and uptake rates in astrocytes (Loaiza
et al., 2003), while inhibiting neuronal glucose transporter activ-
ity (Porras et al., 2004). This suggests glutamatergic transmission
may increase astrocyte glucose availability and reduce neuronal
glucose metabolism. Third, lactate can support neuronal survival.
In rodent brain slices, inhibition of lactate transport and gly-
colysis during exposure to glutamate caused a permanent loss
of neuronal function (Schurr et al., 1999), while addition of
lactate maintained synaptic activity in the absence of glucose
(Schurr et al., 1988; Fowler, 1993; Izumi et al., 1997), prevent-
ing neurotoxicity (Schurr et al., 1997; Maus et al., 1999; Cater
et al., 2001). Fourth, neurons express protein machinery neces-
sary for lactate metabolism. Lactate metabolism is mediated by
lactate dehydrogenase (LDH), which reversibly converts pyruvate
to lactate with oxidation of NADH to NAD+ (Tsacopoulos and
Magistretti, 1996). Several different LDH isoforms are located in
the brain; LDH1 is the main isoform in neurons, while LDH1 and
LDH5 are found in astrocytes (Bittar et al., 1996; Tsacopoulos
and Magistretti, 1996). Lactate consumption is favored by neu-
ronal LDH1, which promotes conversion of lactate to pyruvate
(Bittar et al., 1996). In contrast, there is evidence that astrocytes
favor production of lactate (Walz and Mukerji, 1988; Peng et al.,
1994), likely due to the properties of LDH5, which has a higher
affinity for pyruvate than lactate (Bittar et al., 1996). Lactate is
transported between the intracellular and extracellular spaces by
monocarboxylate transporters (MCT). MCT are symporters that
co-transport lactate anions with H+, suggesting lactate transport
is driven by pH (Schneider et al., 1993; Barros and Deitmer,
2010). The distribution of MCTs in the brain is heterogeneous:
MCT1, MCT2, and MCT4 are expressed by astrocytes, while neu-
rons express predominately MCT2 (Broer et al., 1997; Gerhart
et al., 1998; Pellerin et al., 1998b; Bergersen et al., 2001; Pierre
et al., 2002). MCT2 co-localizes with post-synaptic density pro-
teins in dendritic spines and has the highest affinity for lactate
of all MCTs (Bergersen et al., 2001). Together, MCT2 and LDH1
provide neurons with lactate protein machinery ideally suited
to remove and metabolize lactate from active synapses. Lastly,
a recent study found that an important activator of glycolysis,
6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase isoform 3
(Pfkfb3), is continually degraded in neurons (Herrero-Mendez
et al., 2009). This suggests glucose metabolism is shifted toward
the pentose phosphate pathway and antioxidant production, and
that neurons have a low glycolytic rate, necessitating utilization of
lactate for aerobic respiration.
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There is also a correlation between changes in neuronal and
astrocytic redox states and lactate transport and metabolism
that may support the ANLSH (Hirrlinger and Dringen, 2010).
During glycolysis, cytosolic NADH is produced and must be
oxidized back to NAD+ in order for glycolysis to continue.
NAD+ is replenished by lactate production or redox shuttle sys-
tems (glycerol-3-phosphate and malate-aspartate shuttle, MAS)
which transfer reducing equivalents to the mitochondrial elec-
tron transport complexes. While the level of involvement of
the glycerol-3-phoshpate shuttle in neuronal NAD+ homeosta-
sis is not clear (Cammer and Zimmerman, 1982; Waagepetersen
et al., 2001; Nguyen et al., 2003), the MAS is important for
regenerating NAD+ for glutamate neurotransmitter renewal and
energy metabolism (Palaiologos et al., 1988; McKenna et al.,
2006b). Inhibition of the MAS-elevated cytosolic NADH, dis-
rupting the redox balance and limiting lactate consumption
(McKenna et al., 2006b) without affecting glucose metabolism
in synaptic terminals (McKenna et al., 1993). Moreover, disrup-
tion of the MAS in malate-aspartate carrier (aralar) deletion mice
resulted in impaired neuronal development (Gomez-Galan et al.,
2012), reduced dopamine levels (Llorente-Folch et al., 2013), and
hypomyelination (Ramos et al., 2011), indicating this pathway
affects neuronal function in a profound way. There is no clear
evidence that this is related to lactate metabolism, however.

The role of the malate-aspartate shuttle in astrocytes is cur-
rently debated. Several groups show that astrocytes express low
levels of aralar (Ramos et al., 2003; Berkich et al., 2007), which
limits MAS activity and requires elevated lactate production to
replenish cytosolic NAD+ (Schurr, 2006; Lemire et al., 2008).
In support, astrocyte lactate-to-pyruvate ratios were unchanged
in aralar knockout mice, compared to wild type controls (Pardo
et al., 2011). In contrast, a recent paper suggests adult cultured
astrocytes express aralar and the MAS could be functional (Li
et al., 2012). This makes the importance of MAS in astrocytes
difficult to determine at this point. Nevertheless, there is a clear
correlation between cytosolic redox states and lactate production
in astrocytes. In cultured astrocytes, inhibition of oxidative phos-
phorylation (which elevates cytosolic NADH) increases lactate
production and regenerates NAD+ (Dringen et al., 1993). High
levels of NADH also influence transcription factors, including
Clock and NPAS2, which activate LDH1 expression in astro-
cytes (Rutter et al., 2001), further potentiating lactate produc-
tion. Again, extracellular lactate increases during longer periods
of neuronal stimulation (∼10 s), and a corresponding elevation
of astrocytic cytosolic NADH concentrations is also observed
(Kasischke et al., 2004). This means astrocytes may replenish
extracellular lactate pools for shuttling to neurons during pro-
longed activation (Pellerin et al., 1998a; Magistretti and Pellerin,
1999; Magistretti et al., 1999; Bouzier-Sore et al., 2002).

Mathematical modeling has been used to approximate the
flux of energy metabolites between neurons and astrocytes based
on known mass balances and enzyme/transporter kinetics, with
the goal of linking in vitro, in vivo, and functional imaging
results. Several models have recently been presented, but with
varying results. One model describes energy substrates (lactate,
glucose, pyruvate), oxygen, and NADH concentrations within
the neuronal and astrocyte energy compartments, while also

considering the subcellular compartments (cytosol and mito-
chondria) (Aubert et al., 2007), glutamate transport, and astro-
cyte glycogen (Cloutier et al., 2009). Results from this model
support the ANLSH (Aubert et al., 2007; Cloutier et al., 2009) and
the flow of lactate from astrocytes to neurons. The second model
focuses on glucose and lactate transport between the blood-brain
barrier, neurons, and astrocytes and suggests that neurons pri-
marily metabolize glucose and export lactate (Simpson et al.,
2007; Mangia et al., 2009). This supports a neuron to astrocyte
lactate shuttle hypothesis (NALSH) (Simpson et al., 2007; Mangia
et al., 2009). A third model attempts to combine metabolism rates
and concentrations from the first model with transporter kinet-
ics and metabolite diffusion equations from the second model
and the results also support a neuron to astrocyte lactate shut-
tle (Dinuzzo et al., 2010). While the outcomes and design of these
mathematical models continue to be debated, each model suc-
ceeds in raising questions to be addressed by future experiments.
Most notably, there is evidence that neurons can utilize lactate as
an energy source during periods of activation, but the question
remains: do astrocytes produce lactate for neuronal consump-
tion? Clearly, neurons and astrocytes produce and utilize lactate
differently based on the expression profiles and properties of LDH
and MCT isoforms, but due to experimental limitations of lactate
detection, it is not possible to distinguish lactate producers from
the cell type that utilizes lactate, or if these roles change depending
on region or activity (Barros and Deitmer, 2010). Measurement
of radiotracer kinetics in vivo suggest neurons consume lactate
during activation (Wyss et al., 2011), and further in vivo studies
may elucidate the complex flux of brain metabolites. In partic-
ular, experiments involving awake animals may more accurately
reflect brain metabolic states, as anesthetics are known to decrease
metabolic rates (Alkire et al., 1995, 1997, 1999). It would also be
beneficial to directly visualize in vivo glucose and lactate levels
(possibly via fluorescent sensors for glucose or lactate) to deter-
mine metabolite concentrations in different cell populations in
various brain regions during activation (Barros et al., 2013; San
Martin et al., 2013).

Astrocyte lactate is not only a potential energy substrate,
but also acts as a signaling molecule in other brain bioener-
getic processes, including blood flow regulation (discussed in
detail later) (Gordon et al., 2008), blood glucose sensing (Lam
et al., 2005, 2007), and sodium sensing in the subfornical organ
(SFO; Shimizu et al., 2007). Brain lactate is involved in a brain-
liver signaling axis. Hypothalamic arcuate nuclei projections to
the brainstem signal to vagal hepatic efferents (Schwartz et al.,
2000; Grill et al., 2002) to regulate blood glucose levels (Lam
et al., 2005) and insulin signaling (Pocai et al., 2005). Elevated
blood glucose leads to increased glial glucose uptake (Chari et al.,
2011) and lactate production in the rodent hypothalamus (Lam
et al., 2005). Lactate is transported into hypothalamic neurons
for conversion to pyruvate. This process is required to activate
neuronal ATP-sensitive K+ channels (KATP) (Lam et al., 2005),
and K+ flux that induces hyperpolarization and reduces firing
(Pocai et al., 2005). Resulting hepatic vagal stimulation (Pocai
et al., 2005) reduces gluconeogenesis and glycogenolysis rates
(Lam et al., 2005; Pocai et al., 2005), leading to secretion of very-
low density lipoprotein (Lam et al., 2007) and reduced expression
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of hepatic enzymes for endogenous glucose production, includ-
ing glucose-6-phosphatase (Lam et al., 2005; Pocai et al., 2005;
Kishore et al., 2011). This provides a lactate-mediated brain-liver
negative feedback axis (Lam et al., 2007), which has implications
in obesity and hepatic insulin resistance. In particular, hypotha-
lamic glial GLUT1 expression and glucose uptake are decreased
during hyperglycemia in rodents in vivo, and this could form
the basis of blood glucose dysregulation in diabetes (Chari et al.,
2011). Also, intracerebroventricular injection of lactate decreased
blood glucose levels in animal models of uncontrolled diabetes
and diet-induced insulin resistance, independent of insulin sig-
naling (Chari et al., 2008), which suggests that hypothalamic
lactate could be a future therapeutic target.

In the SFO of the brain periventricular region, lactate influ-
ences salt intake behavior and blood Na+ sensing (Shimizu et al.,
2007). Glial cells of the SFO express atypical sodium (Nax)
channels (Hiyama et al., 2004), which have a concentration-
sensitive, extracellular sodium threshold of 150 mM (Hiyama
et al., 2002). SFO glial Nax channels interact with Na+/K+
ATPase and progressive Na+ influx upon elevated extracellular
Na+ triggers anaerobic glucose metabolism and lactate produc-
tion (Shimizu et al., 2007). Lactate and Nax channels medi-
ate salt-intake behavior, since Nax-knockout mice continue to
ingest salt when dehydrated (Hiyama et al., 2004) and they
have reduced SFO lactate concentrations compared to wild type
animals (Shimizu et al., 2007). Salt-intake behavior is reduced
when glial lactate stimulates inhibitory neurons in the SFO by a
MCT-dependent mechanism (Shimizu et al., 2007). This mech-
anism may also involve inhibition of KATP channels by lactate-
induced ATP production (Shimizu et al., 2007); however, further
experiments are required to determine the involvement of these
channels in the pathway. These studies of the role of lactate in
glucose and sodium sensing and food intake behaviors indicate
an exciting new role for lactate as a signaling molecule to neu-
rons and suggest the importance of lactate in the brain may be
underestimated.

ASTROCYTE GLYCOGEN PRODUCTION FUELS NEURONAL
METABOLISM
Glycogen is the main cellular storage depot of glucose in mam-
mals (Brown and Ransom, 2007). When glucose is in excess
of immediate energy requirements, it can be stored as glyco-
gen; glycogen is mobilized to glucose when glucose levels cannot
meet energy demands (Brown and Ransom, 2007). Astrocytes are
the main glycogen repository in the adult brain (Phelps, 1972;
Koizumi, 1974). Astrocytes express both glycogen synthase (GlyS,
for glycogen formation) and glycogen phosphorylase (GlyP, for
glycogen degradation) (Pellegri et al., 1996) and glycogen stores
are primarily located in regions of high synaptic density, such as
gray matter (Phelps, 1972; Sagar et al., 1987). Astrocyte glycogen
is critical for maintaining neuronal survival and synaptic activ-
ity during hypoglycemia in vitro (Swanson and Choi, 1993) and
in vivo in cortex, hippocampus (Suh et al., 2007) and optic nerve
(Wender et al., 2000). Similarly, during periods of increased brain
activity and local glucose depletion, astrocyte glycogen stores
can be rapidly degraded to provide a temporary energy supply
(Shulman et al., 2001; Brown et al., 2003, 2005).

Glycogen cycling occurs when astrocytes acquire glucose
through the glucose transporter, GLUT1, and rapidly phospho-
rylate it to glucose 6-phosphate in the first steps of glycoly-
sis, preventing it from leaving the cell (Vannucci et al., 1997).
Glucose-6-phosphate can be converted to glycogen through a
process catalyzed by GlyS (Figure 2). GlyS exists in both an inac-
tive phosphorylated form and an active dephosphorylated form.
Astrocyte glycogen formation is therefore regulated by enzymes
that dephosphorylate and activate GlyS, most notably protein
phosphatase 1 which acts via the regulatory subunit Protein
Targeting to Glycogen (PTG) (Allaman et al., 2000). Expression
of PTG is stimulated by numerous molecules such as vasoactive
intestinal peptide, norepinephrine, and adenosine, which increase
glycogen production (Sorg and Magistretti, 1992; Allaman et al.,
2000). Similarly, GlyP can be regulated by phosphorylase kinase,
which converts GlyP from its inactive form to its active, phospho-
rylated form (Brown and Ransom, 2007). GlyP is only expressed
in astrocytes, solidifying the specialization of these cells in glyco-
gen utilization. Glycogenolysis results in glucose-6-phosphate,
which can be metabolized within astrocytes to lactate (Dringen
and Hamprecht, 1993; Tekkok et al., 2005) or free glucose (Ghosh
et al., 2005). This suggests astrocyte glycogen-derived substrates
can be supplied to other brain cells for oxidative metabolism.

The astrocytic glycogen reservoir is dynamic under normal
brain activity and euglycemic conditions (Brown et al., 2005), and
is influenced by glutamatergic neurotransmission and uptake.
Glutamate triggers glycogenolysis to meet the energy demand of
the glutamate-glutamine cycle and Na+ gradient restoration, in
addition to the mechanisms proposed in the ANLSH (Shulman
et al., 2001). Glycogenolysis fuels glutamate uptake by enhancing
active transport-mediated recovery from the extracellular space,
since inhibition of glycogenolysis-elevated extracellular gluta-
mate concentrations (Sickmann et al., 2009; Schousboe et al.,
2010). Glycogenolysis also facilitates de novo synthesis of gluta-
mate and glutamine (Sickmann et al., 2005; Gibbs et al., 2006,
2007). Therefore, astrocyte glycogen is important for supporting
the energetic needs of glutamatergic neurotransmission.

Recent studies have found glycogen-derived lactate is cen-
tral to higher cognitive function and memory formation (Gibbs
et al., 2006; Newman et al., 2011; Suzuki et al., 2011). In day
old chicks, a bead discrimination learning task for memory con-
solidation was impaired after inhibition of glycogenolysis (Gibbs
et al., 2006, 2007) or injection of poorly metabolized D-lactate
(which competes with L-lactate for transport) (Gibbs and Hertz,
2008). An in vivo study of rats during an inhibitory avoidance
test found learning-induced glycogenolysis and lactate release that
was important for long-term memory formation (Suzuki et al.,
2011). This was determined by administering inhibitors of glyco-
gen phosphorylation or knocking down expression of MCT1/4
or MCT2, which induced amnesia. Inhibition of glycogen phos-
phorylation also reduced long-term potentiation (LTP), which
was rescued by lactate injection (Suzuki et al., 2011). In another
rat study during a spontaneous alternation task to assess spa-
tial working short-term memory, lactate concentrations increased
during the task and inhibition of glycogenolysis and lactate trans-
port decreased task success (Newman et al., 2011). These results
suggest astrocyte glycogenolysis and lactate transport to neurons
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is required for working memory processing and long-term mem-
ory consolidation.

While debate over the primary neuronal energy source will
likely continue, it is clear that there is situational activity-
dependent regulation of neuronal metabolism by astrocytes
involving glycogen cycling, lactate production, and the glutamate-
glutamine shuttle. This metabolic coupling of astrocytes and
neurons appears to be important for higher cognitive function.

ASTROCYTES MEDIATE VASOMOTOR RESPONSES BASED
ON TISSUE ENERGY DEMAND
Neuronal activity is tightly coupled to increased local blood
flow by neurovascular coupling in a response termed functional
hyperemia. Neurovascular coupling is a complex, multi-modal
response involving numerous identified signaling pathways and
resulting in vasodilation of penetrating arterioles upstream of
regions with enhanced of activity, and vasoconstriction in regions
with abundant substrate supply and lower activity (Devor et al.,
2007). The net effect of this response is to enhance glucose and
oxygen delivery from blood to meet neuronal and glial energy
demands.

Astrocytic spatial architecture permits relay of signals from
synapses to penetrating arterioles and capillaries. As part of
the multi-faceted response of astrocytes to increased neuronal
activity, synaptic neurotransmission triggers elevated intracel-
lular astrocyte Ca2+ through diverse receptor types including
GABAB receptors (Kang et al., 1998; Bettler et al., 2004; Meier
et al., 2008), acetylcholine muscarinic receptors (Takata et al.,
2011; Navarrete et al., 2012), α-adrenergic receptors (Duffy
and Macvicar, 1995; Bekar et al., 2008), H1 histamine recep-
tors (Shelton and McCarthy, 2000), endocannabinoid receptors
(Navarrete and Araque, 2008, 2010), mGluR5 (Zonta et al., 2003),
and P2Y receptors (Simard et al., 2003). Astrocyte cytosolic Ca2+
elevations (Simard et al., 2003; Zonta et al., 2003; Filosa et al.,
2004; Schummers et al., 2008), and inositol-3-phosphate signal-
ing (Straub et al., 2006) are central to neurovascular coupling,
stimulating release of vasoactive compounds that dilate or con-
strict neighboring arterioles (Zonta et al., 2003; Mulligan and
Macvicar, 2004; Metea and Newman, 2006; Takano et al., 2006;
Gordon et al., 2008). The polarity (i.e., constriction vs. dilation)
of these vascular responses involves multiple pathways, discussed
in later sections.

ARACHIDONIC ACID METABOLITES
Elevated astrocyte cytosolic Ca2+ stimulates activity of phos-
pholipase A2 (PLA2), which hydrolyzes phospholipids to pro-
duce arachidonic acid (AA) (Mulligan and Macvicar, 2004; Sun
et al., 2005). AA metabolism by several enzymes produces dif-
ferent molecules with variable vascular effects (Figure 3). In
brain slices and in vivo, a non-selective cyclooxygenase (COX)
or COX-1 inhibitor blocked arteriolar vasodilation after astro-
cyte Ca2+ stimulations, suggesting AA is metabolized by astrocyte
COX-1 to prostaglandin E2 (PGE2) (Zonta et al., 2003; Takano
et al., 2006; Gordon et al., 2008). In cortical astrocytes and
retinal glia, AA is also metabolized by cytochrome P450 epoxyge-
nase to vasodilator, epoxyeicosatrienoic acids (EETs) (Peng et al.,
2002; Metea and Newman, 2006; Liu et al., 2011). Both PGE2

FIGURE 3 | Astrocyte intracellular Ca2+ elevations trigger release of

vasoactive molecules. (1) PLA2 is activated by Ca2+ and converts
phospholipids (PL) to AA. AA is metabolized in astrocyte endfeet to PGE2

(by COX) or EET [by cytochrome P450 epoxygenase (epoxy)] which dilate
arterioles, or AA can diffuse to smooth muscle where ω-hydroxylase (ω-HY)
converts it to 20-HETE and causes constriction. (2) K+ is released from
astrocyte endfeet through BKCa, and the amount of K+ released is directly
proportional to astrocyte Ca2+ level. K+ is taken up into smooth muscle
through Kir and causes dilation at low concentrations and constriction at
high concentrations. (3) HO is activated by Ca2+ and produces CO, which
diffuses to smooth muscle and triggers dilation.

and EETs open smooth muscle large conductance Ca2+-sensitive
K+ (BKCa) channels, triggering hyperpolarization and decreased
voltage-gated calcium channel (VGCC) activity (Gebremedhin
et al., 1992; Miura and Gutterman, 1998; Higashimori et al.,
2010). EETs also indirectly stimulate BKCa channels by increasing
Ca2+ sparks (Earley et al., 2005). AA metabolism can also cause
vasoconstriction. AA can diffuse to smooth muscle cells and be
rapidly metabolized by ω-hydroxylase (another cytochrome P450
enzyme) to produce 20-hydroxyeicosatetraenoic acid (20-HETE)
(Mulligan and Macvicar, 2004; Metea and Newman, 2006). 20-
HETE causes smooth muscle contraction by inhibiting vascular
BKCa K+ channels, leading to depolarization and increased Ca2+
entry through VGCC.

At first, these opposing effects of astrocyte AA metabolism on
vascular lumen diameter represented a confusing dichotomy in
the field. However, the last 5 years have brought some mechanis-
tic clarity showing that the directional control of AA metabolism
is finely controlled by metabolic need and nitric oxide (NO).
In brain slices and retinal preparations equilibrated with 95–
100% oxygen, elevated astrocyte Ca2+ led to vasoconstriction
mediated by 20-HETE production (Mulligan and Macvicar, 2004;
Gordon et al., 2008; Mishra et al., 2011). However, in brain
slices and retinal preparations treated with 20% oxygen, astro-
cyte Ca2+ elevations caused vasodilation induced by PGE2 pro-
duced from COX-1 activity (Gordon et al., 2008; Mishra et al.,
2011). Vasodilation induced by direct astrocyte Ca2+ stimula-
tion in vivo was also mediated by COX-1 (Takano et al., 2006).
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Interestingly, part of the mechanism for dictating response direc-
tionality appears to be related to lactate production by astro-
cytes, revealing another critical role for lactate alongside the
ANLSH. At 20% oxygen, astrocytes oxidize glucose and pro-
duce lactate (Gordon et al., 2008). Astrocyte endfeet express a
prostaglandin-lactate transporter that exchanges intracellular lac-
tate for extracellular PGE2 (Chan et al., 2002). Thus, at 20%
oxygen, increased extracellular lactate from astrocyte glycolysis
inhibits the prostaglandin-lactate transporter, resulting in ele-
vated extracellular PGE2 and vasodilation (Gordon et al., 2008).
Current consensus suggests astrocytes maintain vascular tone
equilibrium (between vasodilation and vasoconstriction) under
physiological conditions. When synaptic activity is minimal and
oxygen consumption is low, vasoconstriction by 20-HETE is
favored because PGE2 is taken up rapidly through prostaglandin-
lactate transporters. During periods of elevated activity, oxygen is
depleted and lactate is released from astrocytes, leading to inhi-
bition of the prostaglandin-lactate transporter, more extracellular
PGE2, and vasodilation. This mechanism couples cerebral blood
flow regulation and the ANLSH, since astrocyte lactate produc-
tion may act as a neuronal energy source and signaling molecule
to increase blood flow.

While astrocytes may “sense” the oxygen content in their local
environment by producing variable lactate levels in vitro (Gordon
et al., 2008), the relevance of this mechanism in vivo is not
clear. In vivo, oxygen levels may not influence neurovascular cou-
pling like they do in vitro preparations (Lindauer et al., 2010;
Mishra et al., 2011). In ex vivo retinal preparations, for exam-
ple, while incubation with 100% oxygen increases tissue partial
pressure of oxygen (pO2) 16-fold, administering 100% oxygen
to anesthetized rats only modestly elevates retinal pO2 (Mishra
et al., 2011). Consequently, retinal neurovascular coupling favors
vasodilation under normoxic and hyperoxic conditions in vivo, in
contrast to vasoconstriction in vitro under high pO2. In addition,
physiologic cerebral oxygen levels are between 12 and 38 mmHg
(Jamieson and Vandenbrenk, 1963; Metzger et al., 1971; O’Hara
et al., 2005), suggesting 20-HETE synthesis, which is dependent
on binding of molecular oxygen as a cofactor and has a KmO2

(Michaelis constant for oxygen) of 60–70 mmHg (Harder et al.,
1996), is low in normoxia. Conversely, production of dilatory
prostaglandins and EETs, both with KmO2 ≤ 10 mmHg (Harder
et al., 1996; Juranek et al., 1999), would be favored at physi-
ologic oxygen. This suggests that the effect of oxygen on the
kinetics of AA metabolism may be sufficient to dictate vascu-
lar response polarity as observed in vitro; however, the influence
of oxygen on responses in vivo may favor dilation and requires
further investigation.

The role of NO in functional hyperemia further complicates
neurovascular signaling, as NO also modulates AA metabolism
(Metea and Newman, 2006). Traditionally, NO has been con-
sidered a direct vasodilator, stimulating vascular smooth muscle
guanylyl cyclase leading to activation of K+ channels and hyper-
polarization (Ignarro et al., 1999). However, NO can also inhibit
cytochrome P450 enzymes, such as ω-hydroxylase, thereby reduc-
ing 20-HETE production (Alonso-Galicia et al., 1998, 1999),
or cytochrome P450 epoxygenase, mitigating EET production
(Udosen et al., 2003). Additionally, NO weakly activates COX-1,

while suppressing COX-2 (Fujimoto et al., 2004), which may
affect prostaglandin levels. Overall, cerebral vasodilation by NO
likely involves both smooth muscle effects and inhibition of
20-HETE production, thereby favoring lumen expansion by
prostaglandins and EETs (Sun et al., 2005; Attwell et al., 2010).
The opposite effect of NO on AA metabolism, that is inhibi-
tion of dilatory metabolism in deference to 20-HETE, may also
occur at elevated tissue oxygen in vitro. In retinal preparations
maintained in 95% O2, NO-enhanced constriction produced by
glial activation in a manner thought to result from inhibition
of EET formation (Metea and Newman, 2006). There is evi-
dence that all NOS isoforms (i.e., nNOS, eNOS, or iNOS) could
be involved in 20-HETE modulation. Reduction of vasodilation
in vivo by an nNOS inhibitor was reversed by 20-HETE inhi-
bition, suggesting neuronal NO inhibits 20-HETE production
in live animals (Liu et al., 2008). Recent evidence from brain
slices also indicates that eNOS permits dilation through suppres-
sion of 20-HETE synthesis (Stobart et al., 2013). iNOS is more
likely to be involved in neurovascular coupling during patholog-
ical conditions. Inhibition of iNOS, which is elevated in retinal
glia of diabetic animal models, rescued functional hyperemia,
possibly by attenuating EET production (Mishra and Newman,
2010).

POTASSIUM
Extracellular K+ is generated by working neurons and is an effec-
tive vasodilator, giving it suitable properties as a neurovascular
coupling mediator. Astrocytes have long been known to reg-
ulate neuronal membrane potential by removing synaptic K+
(Amedee et al., 1997; Kofuji and Newman, 2004), and astrocytes
express inwardly rectifying Kir4.1 K+ channels (Sontheimer and
Waxman, 1993; Sontheimer, 1994) and large conductance Ca2+-
sensitive K+ channels (BKCa) on vascular endfeet (Price et al.,
2002) as a potential egress route for vasodilatory K+. In retinal
preparations, it was suggested vasodilation can be triggered via
K+ efflux through glial endfoot Kir4.1 channels in response to
neurotransmission (Newman et al., 1984; Paulson and Newman,
1987), but studies of Kir4.1 knockout mice failed to support
this idea (Metea et al., 2007). A second mechanism was pro-
posed involving Ca2+-dependent astrocyte BKCa channels (Filosa
et al., 2006). The idea is that astrocytic Ca2+ increases lead to
BKCa channel activation, K+ release, and smooth muscle relax-
ation. Moderate astrocytic Ca2+ increases indeed triggered BKCa

channel-induced dilation of neighboring arterioles, but larger
astrocyte Ca2+ signals produced greater BKCa channel open-
ing, higher astrocyte K+ release and vasoconstriction (Figure 3)
(Girouard et al., 2010). This polarity was dictated by a thresh-
old extracellular K+ ([K+]o) concentration of 20 mM. Lower
than this threshold, conductance of smooth muscle inward rec-
tifying Kir2.1 K+ channels (Bradley et al., 1999) was enhanced,
causing hyperpolarization, reduced VGCC activity, and vascular
smooth muscle relaxation (Girouard et al., 2010). In contrast,
[K+]o larger than 20 mM caused smooth muscle depolarization,
increasing VGCC conductance, and vasoconstriction (Knot et al.,
1996; Knot and Nelson, 1998). This represents another poten-
tial mechanism of activity-dependent vasodilation mediated by
astrocytes. Moreover, it is another mechanism by which astrocytes
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could theoretically select for dilation or constriction based on
magnitude of K+ release (Dunn and Nelson, 2010).

AA metabolite and K+ signaling occur in parallel to regulate
cerebral blood flow (Filosa et al., 2006) and may interact since AA
metabolites also affect smooth muscle ion conductance. In renal
arteries, PGE2 can induce smooth muscle BKCa channel- medi-
ated dilation through EP2 or EP4 prostanoid receptors (Zhang
et al., 2005), but this mechanism has not been tested in cere-
bral arteries. Also, astrocyte BKCa channel activity is increased by
EETs (Higashimori et al., 2010), suggesting AA metabolites can
modulate K+ release into the perivascular space, but the vascular
implications of this interaction have not been studied.

CARBON MONOXIDE
Carbon monoxide (CO) is produced by heme oxygenase (HO)
and can have vasoactive effects. On a cellular level, CO can relax
vascular smooth muscle by increasing coupling between smooth
muscle BKCa channels and local Ca2+ transients, similar to EET
activity (Figure 3; Jaggar et al., 2002; Wu et al., 2002; Xi et al.,
2010). CO-mediated vasorelaxation has been observed in periph-
eral tissues such as liver (Suematsu et al., 1994, 1995) and carotid
arteries (Brian et al., 1994), but cerebrovascular results are var-
ied (Brian et al., 1994; Leffler et al., 1999; Ishikawa et al., 2005;
Leffler et al., 2006a; Li et al., 2008; Xi et al., 2010, 2011; Morikawa
et al., 2012). Brain arteries from rabbits and dogs demonstrated
no response to CO (Brian et al., 1994), while arteries from rats
and piglets dilated in response to CO (Leffler et al., 1999; Jaggar
et al., 2002; Holt et al., 2007; Li et al., 2008; Xi et al., 2010, 2011)
or constricted based on CO-induced inhibition of NO dilation
pathways (Ishikawa et al., 2005). In piglet studies, glutamate-
induced vasodilation was mediated by CO, as HO inhibitors
blocked lumen diameter increases in isolated arteries (Fiumana
et al., 2003) and pial arteries in vivo (Leffler et al., 1999; Robinson
et al., 2002). Glutamate stimulates endothelium-dependent dila-
tion through CO production from endothelial and smooth mus-
cle cells (Fiumana et al., 2003; Leffler et al., 2003), but also
induces CO production in astrocyte endfeet (Leffler et al., 2006b;
Parfenova et al., 2012) by Ca2+ and calmodulin-dependent acti-
vation of HO (Xi et al., 2011). This astrocyte-specific response
can reportedly mediate vasodilation in vivo (Li et al., 2008) indi-
cating CO is another diffusible, vasoactive molecule, released
upon astrocytic activation by neurotransmission. Astrocyte CO
production and dilation of piglet pial arteries in vivo can be
enhanced by adenosine diphosphate (Kanu and Leffler, 2009),
NO (Barkoudah et al., 2004; Leffler et al., 2005a,b), AA and PGE2

(Kanu et al., 2006; Kanu and Leffler, 2011), suggesting an interac-
tion between other dilatory mechanisms and HO activity. A study
of adult rat pial arteries in vivo indicated CO-induced cerebral
vasoconstriction by inhibiting NO production (Ishikawa et al.,
2005), and similar results were observed in piglets, but after pro-
longed exposure to CO (Knecht et al., 2010; Leffler et al., 2011).
Therefore, there may be a polarity to CO-mediated cerebrovascu-
lar effects, akin to similar effects seen with AA metabolism and
K+ effects.

In summary, astrocytes are not only important for regulat-
ing synaptic environments and the supply of energy metabo-
lites to neurons, but they are also central to the regulation of

neurovascular coupling by releasing several molecules, including
AA metabolites, K+, and CO, in response to synaptic trans-
mission. We are only just beginning to understand how these
pathways work in concert to fine-tune regulation of cerebral
blood flow.

ASTROCYTE CONTROL OF CEREBRAL BIOENERGETICS CAN
CONTRIBUTE TO DISEASE
Multiple brain diseases and injuries are associated with aber-
rant energy metabolism, dysfunctional glutamate cycling by
astrocytes, and altered neurovascular coupling. Here, we dis-
cuss the major bioenergetic changes and astrocyte dysfunction in
Alzheimer’s disease (AD), cerebral ischemia, and epilepsy.

ALZHEIMER’S DISEASE
AD is the most common form of dementia, characterized by
declining cognitive performance and memory (McKhann et al.,
1984). AD pathology is characterized by two types of lesions—
amyloid-β (Aβ) plaques, consisting of insoluble, extracellular
deposits of Aβ peptide fibrils, and neurofibrillary tangles, com-
posed of intracellular neuronal deposits of hyperphosphorylated
and crosslinked tau protein (Merz et al., 1983; Braak and Braak,
1988). Aβ peptides are linked to synaptic dysfunction, activation
of microglia and astrocytes, and oxidative stress, but the precise
contribution of plaque formation to disease pathogenesis remains
controversial (Fuller et al., 2009).

During AD, astrocytes undergo morphological changes,
related to proximity of Aβ deposits. In dementia patients and
transgenic mice, extensive reactive gliosis appears near Aβ plaques
(Rodriguez et al., 2009; Simpson et al., 2010), while astro-
cytes farther away display dystrophic changes such as decreased
complexity, surface area, and volume of cell processes (Senitz
et al., 1995; Rodriguez et al., 2009). In many cases, abnormal
glial morphology occurs early in disease on-set before amy-
loid deposition is apparent (Scheff et al., 2007; Rodriguez et al.,
2009). Astrocyte dystrophy and reactive astrogliosis may greatly
impair astrocytic modulation of synaptic environments and neu-
ronal metabolism, exacerbating AD progression (Fuller et al.,
2009; Steele and Robinson, 2012). For example, brain glucose
metabolism is diminished in pre-clinical patients (Mosconi et al.,
2008) and cerebral glucose uptake in transgenic AD mice (Merlini
et al., 2011) and AD patients (Alexander et al., 2002) is sig-
nificantly reduced, often before Aβ plaques or neurofibrillary
tangles are detected (Small et al., 2000). Glycogen-derived lactate
is important for memory formation in healthy brain (Gibbs et al.,
2006; Newman et al., 2011; Suzuki et al., 2011), and dysfunction
of this pathway could contribute to AD pathogenesis. Transgenic
AD mice demonstrate decreased brain lactate release during neu-
ronal stimulation (Merlini et al., 2011). In day-old chicks treated
with Aβ1–42 peptide, memory consolidation was rescued upon
injection of energy substrates, such as acetate, a substrate oxidized
specifically by astrocytes (Gibbs et al., 2009). This suggests Aβ

may damage astrocyte glycolysis and lactate production, reducing
brain metabolism, and impairing memory.

The astrocyte glutamate-glutamine shuttle is also altered dur-
ing AD. Expression of astrocyte glutamate transporter, EAAT2,
is reduced in both transgenic mice and dementia patients,
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suggesting astrocytes take up less synaptic glutamate (Li et al.,
1997; Masliah et al., 2000; Simpson et al., 2010). Also, both
glutamine synthetase activity (Smith et al., 1991) and the con-
centration of glutamine in cerebrospinal fluid is reduced in AD
patients (Csernansky et al., 1996; Jimenez-Jimenez et al., 1998).
The confluence of these events results in a dysregulation of gluta-
mate homeostasis and reduced transfer of glutamine to neurons
from astrocytes. Neurons in AD brains aberrantly express astro-
cyte proteins, including the amino acid transporter, EAAT1 (Scott
et al., 2002), and glutamine synthetase (Robinson, 2000), pos-
sibly in an attempt to normalize glutamate handling and limit
excitotoxicity. Neuronal expression of EAAT1 is correlated with
neurofibrillary tangle formation (Scott et al., 2002), while glu-
tamine synthetase expression corresponds with plaque formation
(Robinson, 2000). Since these enzymes and transporters are crit-
ical for glutamate uptake and the glutamate-glutamine shuttle,
such dramatic changes in cellular distribution suggest profound
astrocyte dysfunction and impaired glutamate handling dur-
ing AD. In combination with reduced energy metabolism, this
may greatly affect neuronal viability and synaptic transmission
(Rodriguez et al., 2009).

Impaired vascular reactivity, reduced neurovascular coupling,
and diminished resting blood flow are all associated with AD
(Mentis et al., 1996; Warkentin and Passant, 1997; Niwa et al.,
2000, 2001; Iadecola, 2004), and could be attributed to astro-
cytes and hemodynamic dysfunction. Cultured astrocytes treated
with Aβ peptides (1–42 and 25–35) (Abramov et al., 2003; Chow
et al., 2010) and in vivo astrocytes from transgenic AD mice
exhibit increased frequency of spontaneous, focal intracellular
Ca2+ responses not coupled with neuronal activity (Takano et al.,
2007; Kuchibhotla et al., 2009). Intercellular Ca2+ waves between
astrocytes were also increased in frequency and amplitude in
both cultured cells and in vivo (Haughey and Mattson, 2003;
Kuchibhotla et al., 2009). Furthermore, Aβ40-peptide accumu-
lates in blood vessel walls (Selkoe and Schenk, 2003; Agyare et al.,
2012) causing endothelial cell deformity, smooth muscle dete-
rioration (Farkas and Luiten, 2001; Merlini et al., 2011), and
pericyte toxicity (Wilhelmus et al., 2007). This is linked to reduced
free NO and vasoconstriction (Thomas et al., 1996; Niwa et al.,
2001), and suggests that Aβ accumulation may alter the functional
neurovascular unit. The concentration of reactive oxygen species
(ROS) also increases in AD transgenic mice (Park et al., 2004),
which are known to reduce production of vaso-active molecules,
as observed in vitro (Fleming, 2004; Sun et al., 2008). Thus, dys-
functional neurovascular coupling during AD could be caused by
altered astrocyte Ca2+ signaling, increased ROS, and gross vascu-
lar abnormalities, which change normal intrinsic vascular tone.
Astrocyte dysfunction appears to be central to AD initiation and
progression, and these cells have now become future therapeutic
targets (Fuller et al., 2009).

CEREBRAL ISCHEMIA
During cerebral ischemia, blood flow is restricted by cortical
or subcortical occlusion, chronically impaired vascular reactivity
or cardiac arrest. Bioenergetic failure results (Hertz, 2008) in a
cytotoxic cascade characterized by lactate and proton acidifica-
tion (Silver et al., 1997) and ROS generation, (Abramov et al.,

2007), inhibition of Na+/K+ ATPases, membrane depolariza-
tion (Silver et al., 1997) and elevation of extracellular glutamate
due to depolarization-induced vesicular release and non-vesicular
egress mechanisms. This initiates further membrane depolariza-
tion, mitochondrial damage, excitotoxicity, and neuronal death
(Schild et al., 2003; Brookes et al., 2004; Nicholls, 2004; Nicholls
et al., 2007). Neurons are very sensitive to this chain reaction,
while astrocytes are more resistant because they can increase their
glycolytic rate (Walz and Mukerji, 1990) or utilize alternate energy
substrates for ATP production (Edmond et al., 1987; Hertz, 2003;
Hertz and Hertz, 2003). Astrocytes also exploit glutathione stores
to limit ROS damage (Juurlink, 1997). In early ischemic stages,
astrocytes may help ailing neurons, but prolonged ischemic stress
damages astrocytes, which may contribute to neuronal demise
(Rossi et al., 2007). As described below, astrocytes affect neu-
ronal survival and metabolism during ischemia through gluta-
mate handling, lactate shuttling, and glycogen breakdown, and
the transport of metabolites through gap junctions.

During ischemia, neuronal ionic gradients are disrupted by
Na+/K+ ATPase inhibition, elevating extracellular glutamate con-
centrations (Bosley et al., 1983; Goldberg et al., 1988; Hillered
et al., 1989). In early stages, astrocytes take up and accumu-
late intracellular glutamate (Hertz et al., 1998; Voloboueva et al.,
2007) in an attempt to balance the extracellular environment, but
they continue to shuttle glutamine to neurons, facilitating addi-
tional glutamate release (Haberg et al., 2001). Prolonged ischemia
disrupts the glutamate-glutamine cycle (Gorovits et al., 1997) due
to depleted ATP levels, accumulation of intracellular Na+ and
reversal of GLT1 and GLAST to cause facilitated extrusion of glu-
tamate (Anderson and Swanson, 2000; Phillis et al., 2000; Bonde
et al., 2003). Furthermore, astrocytes swell and release yet more
glutamate through volume-regulated anion channels (Kimelberg
et al., 1990). These observations have generated interest in astro-
cyte glutamate handling as a potential ischemic therapeutic target,
since upregulated expression or activity of glutamate transporters
or inhibition of volume-regulated anion channels may decrease
glutamate excitotoxicity (Rossi et al., 2007).

Progression of neuronal death during ischemia is dependent
on availability of energy substrates. Experimental inhibition of
lactate transporters (MCTs) during ischemia exacerbates neu-
ronal death and astrocytes display increased conversion of glyco-
gen to lactate (via glucose-6-phosphate) during this time (Brown
et al., 2005; Tekkok et al., 2005; Suh et al., 2007), suggesting
lactate and glycogen are important for maintaining ATP levels
and neuronal survival. Lactate can also diffuse through astrocyte
gap junctions (Rouach et al., 2008), which remain open during
ischemia (Cotrina et al., 1998), facilitating the beneficial flux of
lactate within the astrocytic network. As oxygen is depleted, astro-
cytes appear to be able to sustain neuronal function via anaerobic
glycolysis (Rossi et al., 2007). However, there is a fine balance
between benefit and injury and eventually lactate builds to con-
centrations which induce acidosis and cellular damage (Li and
Siesjo, 1997). Further experimental testing is required to deter-
mine the role of astrocyte glycogen during ischemia. Brain regions
with higher than normal glycogen concentrations are more resis-
tant to ischemic damage (Swanson et al., 1989), and increasing
glycogen stores in cultured astrocytes reduces neuronal death
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during glucose deprivation (Swanson and Choi, 1993). Protective
effects in vivo may also be enhanced by increasing glycogen stores,
either through inhibition of GlyP (Suh et al., 2007) or by elevating
glycogen synthase activity (Rossi et al., 2007). In cell culture mod-
els of ischemia, propagation of signals and metabolites through
the glial network is increased through hemichannels (Contreras
et al., 2002). This may exacerbate tissue damage as increased
hemichannel activity allows Na+ and Ca2+ to diffuse into astro-
cytes, while glutamate flows out, furthering excitotoxicity (Ye
et al., 2003). Also, in astrocyte cultures, glutathione (an important
astrocytic antioxidant) is lost over time through hemichannels,
limiting ROS protection (Rana and Dringen, 2007). While both
hemichannels and gap junctions respond to ischemic signals, they
are difficult in vivo therapeutic targets as both are inhibited by the
same antagonists, obscuring potential benefits (Rossi et al., 2007).

Reperfusion after ischemia is characterized by reduced blood
flow (Leffler et al., 1989) due to disruption of the neu-
rovascular unit via neuronal and vascular ischemic damage
(Del Zoppo, 2010). Reduced neurovascular coupling exacerbates
ischemic injury, which may increase infarct size. Blood flow is
partly reduced because fibrin, activated platelets and/or leuko-
cytes occlude capillaries and venules (Del Zoppo and Mabuchi,
2003). Evidence also suggests that AA metabolite (EETs and 20-
HETE) signaling is altered during ischemia, which contributes to
decreased blood flow and neurovascular coupling. Recent thera-
peutic studies have elevated EET levels using inhibitors of soluble
epoxide hydrolase (sEH), an enzyme that degrades EETs (Imig
and Hammock, 2009). sEH inhibitors are beneficial regardless
of administration time, since infarct size is decreased in rodents
when the drug is given chronically, shortly after the ischemic
insult or during reperfusion (Dorrance et al., 2005; Zhang et al.,
2007, 2008; Simpkins et al., 2009). EETs mediate this protection,
as inhibition of CYP epoxygenase (the EET synthesis enzyme)
prevents sEH benefits (Zhang et al., 2007, 2008). This protective
mechanism increases astrocyte survival (Liu and Alkayed, 2005),
elevates antiapoptotic factors (Simpkins et al., 2009) and increases
neurovascular coupling (Zhang et al., 2007, 2008). Conversely,
20-HETE is elevated during ischemia (Tanaka et al., 2007), and
inhibition of 20-HETE production is also neuroprotective in
rodent models (Miyata et al., 2005; Poloyac et al., 2006; Tanaka
et al., 2007; Dunn et al., 2008; Renic et al., 2009). Reduction
of 20-HETE inhibits ROS production (Dunn et al., 2008), lim-
its vasoconstriction and increases blood flow during reperfusion
(Miyata et al., 2005; Dunn et al., 2008). Taken together, evidence
suggests AA metabolite signaling is dysfunctional during and after
cerebral ischemia, whereby EETs are decreased and 20-HETE is
elevated. By inhibiting EET degradation and 20-HETE produc-
tion, functional hyperemia can be restored, and these pathways
make promising therapeutic targets.

Focal cerebral ischemia causes altered glutamate handling and
lack of energy substrates, which triggers neuronal excitotoxicity,
ATP depletion, and ROS production (Hertz, 2008). In early stages
of ischemia, astrocytes are less susceptible to damage and may
help protect neurons through glutamate uptake, glycogen hydrol-
ysis to lactate for energy, and conduction of protective molecules
through gap junctions. However, prolonged ischemia damages
the neurovascular unit reducing blood flow and functional

hyperemia during reperfusion. Current therapeutic targets are
meant to promote astrocyte protection of neurons and help
restore proper circulation after stroke.

EPILEPSY
Epilepsy is characterized by sudden, temporary synchroniza-
tion of electrical charges in groups of neurons, which may
manifest as seizures. The origins of this disorder are not com-
pletely understood (McCormick and Contreras, 2001; Scharfman,
2007), but neuronal hyperexcitability is believed to be caused
by disequilibrium between glutamatergic and GABAergic neu-
rotransmission, either by decreased inhibitory (GABA) circuits
or excessive glutamatergic release (Dudek et al., 1999; Uhlhaas
and Singer, 2006). Dysfunctional astrocyte glutamate-glutamine
cycling is also involved (Tian et al., 2005), as astrocyte expres-
sion of EAAT2 is diminished in epilepsy patients (Proper et al.,
2002; Fotheringham et al., 2007), and knock-down of gluta-
mate transporters [EAAC1 (Sepkuty et al., 2002), GLT-1 (Tanaka
et al., 1997), and GLAST (Watase et al., 1998)] in animal mod-
els exacerbates neuronal excitability. Also, glutamine synthetase
expression is reduced by 40% in astrocytes of epilepsy patients,
suggesting that glutamate degradation is greatly diminished (Eid
et al., 2004). Therefore, dysfunctional glutamate metabolism in
astrocytes could contribute to neuronal synchronization and
hyperexcitability.

Ion homeostasis by astrocytes is altered during epilepsy.
Particularly, both Kir currents and aquaporin 4 expression are
reduced, (D’Ambrosio, 2004; Eid et al., 2005) and this results
in elevated extracellular K+, decreased water homeostasis, and
reduced seizure thresholds (Binder and Steinhauser, 2006).
Astrocytes also display elevated intracellular Ca2+ signals before
and during seizure activity in rodents (Tian et al., 2005; Gomez-
Gonzalo et al., 2010, 2011), which are mediated by mGluR and
purinergic receptors, and may further exacerbate neuronal acti-
vation by triggering gliotransmission (Gomez-Gonzalo et al.,
2010). Interestingly, common antiepileptic drugs, such as val-
proate and phenytoin, reduce astrocytic Ca2+ increases (Tian
et al., 2005).

Cerebral bioenergetics are aberrantly regulated in epilepsy,
but the precise changes remain unknown. Epilepsy patients dis-
play high levels of glucose uptake and hypermetabolism during
seizures (Engel et al., 1983), and low levels of glucose uptake and
hypometabolism between seizures (Engel et al., 1982). In ani-
mal models of epilepsy, astrocyte glycogen accumulates before the
onset of seizures for possible conversion to neuronal energy sub-
strates (Bernard-Helary et al., 2000). Glycolytic inhibitors, such as
2-deoxy-D-glucose, have antiepileptic properties (Garriga-Canut
et al., 2006), suggesting glycolysis is necessary for neuronal hyper-
excitability and synchronization. Also, glucose flux from blood
vessels to neurons through astrocytic gap junctions can par-
tially sustain epileptiform activity in brain slices (Rouach et al.,
2008). However, connexin knockout mice experience sponta-
neous interictal bursts and neuronal hyperexcitability, which has
been attributed to decreased buffering of extracellular K+ and
glutamate (Wallraff et al., 2006; Cloix and Hevor, 2009; Pannasch
et al., 2011; Bedner and Steinhauser, 2013). Gap junction traffick-
ing is reportedly altered in epilepsy, possibly permitting elevated
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extracellular K+ and glutamate, but how this effects the flow
of energy substrates remains unclear (Bedner and Steinhauser,
2013).

Epileptiform activity triggers increased blood flow and deoxy-
genates hemoglobin (Suh et al., 2006) to meet energy and oxygen
demand of active neurons (Kuhl et al., 1980). However, hyperemia
may not fully support neurons, since some studies suggest chronic
epilepsy may cause ischemic-like tissue damage (Suh et al., 2006).
A lag time was identified between astrocyte endfeet Ca2+ eleva-
tions and vasodilation of pre-constricted arterioles during syn-
chronous bursts in rat brain slices treated with 95% oxygen,
indicating astrocyte-independent neurovascular coupling mecha-
nisms may be more prevalent in epilepsy (Gomez-Gonzalo et al.,
2011). However, the cellular pathways influencing the hemo-
dynamic response during epilepsy have not been investigated
(Kovacs et al., 2012).

Astrocytes may play an important role in epilepsy, but it is
unclear if they promote neuronal excitability, or merely sus-
tain seizures and epileptogenesis. Several astrocyte functions are
altered during epilepsy including glutamate-glutamine shuttle,
ion homeostasis, and movement of metabolites, but the role
of astrocytes in functional hyperemia during seizure activity
is unknown. In the future, astrocyte glutamate uptake, blood
flow control, or metabolism could be targeted to limit neuron
excitability.

CONCLUSION
Astrocytes were once considered the “glue” of the brain with lit-
tle importance to brain function; however, they have emerged
as modulators of brain bioenergetics, blood flow, and neuronal
survival. Based on spatial orientation, gap junction connections,
and complexity, astrocytes are well-situated to influence synap-
tic environments and function as “gatekeepers” of neuronal
metabolism and blood flow. This involves complex, multi-modal
mechanism where astrocytes “listen” to synaptic activity and
respond through (a) glutamate uptake and recycling via the
glutamate-glutamine cycle, (b) increased glycolysis and shut-
tling of metabolites to neurons for oxidative phosphoryla-
tion, and (c) elevated Ca2+ signaling and release of vasoactive
molecules for blood flow control. These responses ensure astro-
cytes tightly couple neuronal metabolic need with enhanced
supply. Furthermore, astrocyte dysfunction may contribute to
aberrant neuronal metabolism and neurovascular coupling in dis-
ease and injury and these pathways are promising therapeutic
targets.
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