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Abstract
This review provides a concise summary of the changing phenotypes of macrophages and fibrob-

lastic cells during the local inflammatory response, the onset of tissue repair, and the resolution

of inflammationwhich follow injury to an organ. Both cell populations respond directly to damage

and present coordinated sequences of activation states which determine the reparative outcome,

ranging from true regeneration of the organ to fibrosis and variable functional deficits. Recent

workwithmammalianmodels of organ regeneration, including regeneration of full-thickness skin,

hair follicles, ear punch tissues, and digit tips, is summarized and the roles of local immune cells

in these systems are discussed. New investigations of the early phase of amphibian limb and tail

regeneration, including the effects of pro-inflammatory and anti-inflammatory agents, are then

briefly discussed, focusing on the transition from the normally covert inflammatory response to

the initiation of the regeneration blastema by migrating fibroblasts and the expression of genes

for limb patterning.
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Processes investigated by regenerative biologists differ from those in

the broader field of developmental biology by invariably having tissue

injury as a trigger. Any type of physical injury to multicellular animals

immediately produces a cascade of enzymatic and cellular reactions

within the damaged tissues known as an inflammatory response, the

initial phase in processes of tissue repair and regeneration.

In injured tissues of vertebrates blood coagulation is the first overt

pro-inflammatory and wound-healing reaction, in which extravasated

platelets and plasma proteins are activated upon contact with col-

lagen and tissue factor components of the vascular subendothelium.

Such contact leads almost instantly to the proteolytic cleavage of

prothrombin to thrombin, a serine-protease which converts the fib-

rinogen of plasma to insoluble fibrin strands. The resulting fibrin

clot quickly produces hemostasis at the injured site and serves as a

depot for the activated platelets, which immediately degranulate and

release various protein factors including many growth factors and

chemokines that induce extravasation and chemotaxis of neutrophils,

monocytes/macrophages, and other cells. In mammals platelets are

small (2−4𝜇m),membrane-bound cytoplasmic fragments derived from

megakaryocytes in bone marrow and circulating abundantly in blood.
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In contrast, the blood of non-mammals, including the fish and amphib-

ian species widely used for studies of organ regeneration, contains

no platelets, but rather larger nucleated thrombocytes. These cells

usually derive from hematopoietic tissues other than bone marrow

but act much like platelets after an injury, undergoing degranulation

with blood coagulation and releasing bioactive factors which convert

extravasatedplasma into serum, setting the stage for inflammation and

tissue repair (Sugimoto, 2015).

In addition to chemokines derived from platelets, nonspecific

factors with damage-associated molecular patterns (DAMPs) and

pathogen-associatedmolecular patterns (PAMPs), released fromdying

cells and microbial invaders respectively, and reactive oxygen species

generated by cell injury all serve to activate both immune and mes-

enchymal cells locally. The patterned factors bind toll-like receptors

(TLRs) and directly stimulate recruitment, proliferation, and activation

of both hematogenic and resident macrophages and other immune

cells, as well as fibroblasts, mesenchymal stem/stromal cells (MSCs)

and various epithelial cells which together orchestrate tissue repair,

defined as restoration of tissue integrity and homeostasis (Shaw &

Martin, 2016; Wynn & Vannella, 2016). DAMPs include fragments of
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various chromatin-associated and cytoplasmic proteins, DNA, RNA,

and purine metabolites; PAMPs, which are released from microorgan-

isms caught up during inflammation, include fragments of nucleic acids

and various cell wall components.

Active factors released locally by exocytosis from platelets and

immigrating leukocytes andbydissociation fromsulfated glycosamino-

glycans of the fragmented extracellular matrix (ECM) promote repair

of the injured tissues and defend the wounded tissues against

invading microorganisms. Cells mediating an innate immune response,

particularly circulating monocytes and tissue-resident macrophages,

have long been recognized as having key roles in repair (Vannella

& Wynn, 2017; Wynn & Vannella, 2016) and have recently been

shown to have similar functions in certain processes of organ develop-

ment and regeneration (Godwin & Rosenthal, 2014; Godwin, Pinto, &

Rosenthal, 2017; Mescher, Neff, & King, 2017). New work with both

new and long-established models of regeneration in mammals and

amphibians is reviewed here and highlights the importance of control-

ling activities in macrophages and possibly other immune cells to pro-

vide a local inflammatory response adequate to initiate repair. Timely

resolution of inflammation is crucial to prevent fibrotic activity and

allow the possibility of inductive events leading to organ regenera-

tion. Further discussion of immune cells in injury-induced inflamma-

tion, along with the importance of stress for determining outcomes

in repair and regeneration, has appeared elsewhere (Mescher et al.,

2017).

1 ROLES OF MACROPHAGES

AND FIBROBLASTS IN WOUND REPAIR

AND REGENERATION

Mitogenic and other growth-promoting factors released after tissue

injury from activated platelets and sequestration sites in the ECM

collectively produce an initial proliferative response during the early

phase of inflammation which sets the stage for how the tissues will

be repaired (Werner & Grose, 2003). In amputated amphibian limbs

and other severely damaged organs, this wound-associated prolifera-

tion begins primarily in fibroblastic cells of the connective tissue asso-

ciated with skin, muscle, nerves, and parenchymal tissues (Gardiner,

Endo, & Bryant, 2002;Wynn & Ramalingam, 2012). Subsequent activi-

ties of thesefibroblastic cells varywidely along a continuumthat deter-

mines the outcome of the reparative response, from fibrosis to com-

plete anatomic and functional regeneration of the limb or other organ.

Of the many cell types active during repair of damaged tissues,

macrophages have been found in many mammalian models to func-

tion as “master regulators of inflammation and fibrosis” (Wynn & Bar-

ron, 2010). Macrophages have well-characterized dual roles during

inflammation and repair as the primary phagocytes for removal of

debris and apoptotic cells as part of an innate response to tissue injury

andas antigen-presenting cellswhich specifically activate lymphocytes

for an adaptive immune response to “non-self” antigens found locally

during inflammation. Work reviewed by Wynn, Chawla, and Pollard

(2013) has revealed (1) that, in their basal state, macrophages resid-

ing in different organs are not only anatomically distinct but have quite

different transcriptional profiles important in maintaining metabolic

homeostasis, (2) that suchmacrophages derive early in embryogenesis

frommonocytes originating in the yolk sac and have important roles in

the development of the organs towhich theymigrate, and (3) that after

injury both residentmacrophages and newly arrivingmonocytes begin

to exhibit highly flexible and shifting programs of gene expressionwith

critical regulatory activity through all phases of repair and fibrosis.

Knowledge of the central roles ofmacrophages in inflammation and

regeneration is developing rapidly and numerous recent reviews are

available (Chazaud, 2014; Das et al., 2015; Wynn & Vannella, 2016).

Figure 1 summarizes much of the most important information on the

changing macrophage phenotypes during inflammation. Immediately

after tissue injury DAMPs, PAMPs, and cytokines from neutrophils

trigger residentmacrophages and recruitedmonocytes tobecomecrit-

ical local sources of chemokines, matrix metalloproteinases (MMPs),

cytokines such as interleukin-1𝛽 (IL-1𝛽) and tumor necrosis factor-

𝛼 (TNF-𝛼), and other secreted factors that produce and coordinate

the many activities of the inflammatory response. It is now clear that

fibroblasts and other mesenchymal cells also respond to DAMPs and

PAMPs, as well as to pro-inflammatory factors from macrophages,

triggering growth, migration, and new synthetic activities in these

cells which reinforce the local immune response and other aspects of

inflammation (Bernardo & Fibbe, 2013; Nowarski, Jackson, & Flavell,

2017). Prolongation of this macrophage−fibroblast activation state

is characteristic of fibrosis and maladaptive repair processes (Wynn,

2008).

As inflammation proceeds normally the dominantmacrophage pop-

ulation shifts from an “inflammatory” to a “tissue repair” phenotype

characterized by secretion of various paracrine factors, such as vascu-

lar endothelial growth factor-𝛼 (VEGF-𝛼), amphiregulin, transforming

growth factor-𝛽 (TGF-𝛽), insulin-like growth factor-1 (IGF-1). Collec-

tively these factors promote angiogenesis as well as further prolifer-

ation and fibroblastic cells, MSCs, and other local stem and progenitor

cells. Fibroblasts shift from inflammation-related, potentially fibrotic

activity to the synthesis of new protein and proteoglycan ECM com-

ponents for re-establishing normal tissue structure (Karin & Clevers,

2016). After a variable period (Fig. 1), macrophages with a largely anti-

inflammatory or “resolving” phenotype, secreting TGF-𝛼, IL-10, and

suppressors of cytokine signaling (SOCS), become the dominant pop-

ulation (Das et al., 2015; Wynn & Vannella, 2016). Macrophage activ-

ity now promotes the overall resolution of inflammation and is closely

coordinatedwith thenew functions of fibroblasts andothermesenchy-

mal cells engaged in tissue repair and differentiation.

Often described very broadly as M1 and M2 polarization, the dif-

ferent macrophage activation stages consist of an array of states

induced by the myriad signals from the microenvironment and inflam-

matory stimuli, a large proportion of which converge on the PI3K/Akt

pathway and its downstream targets (Vergadi, Ieronymaki, Lyroni,

Vaporidi, & Tsatsanis, 2017). Dysregulation of the shiftingmacrophage

phenotypes during repair, leading for example to excessive produc-

tion of pro-inflammatory agents or deficient generation of prores-

olution macrophages, can produce defective repair or regenera-

tion, chronic wounds, or excessive fibrosis and scarring (Wynn &

Ramalingam, 2012). Studies of experimental injuries in diverse organs
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F IGURE 1 Macrophage activation phenotypes in tissue repair, regeneration, and fibrosis (reproduced with permission from Wynn and
Vannella, 2016, Immunity 44: 450–62). Throughout inflammation and tissue repair in mammals, the activation states of resident macrophages and
immigrating monocytes change to promote the tasks at hand, including angiogenesis, reformation of epithelial continuity, growth and differentia-
tion of stem cells, and stimulation ofwidely ranging fibroblast activities. DAMP, damage-associatedmolecular pattern; PAMP, pathogen-associated
molecular pattern; Treg cell, regulatory T cell; IRF5, interferon regulatory factor 5; NOS2, nitric oxide synthase 2; LXR, liver X receptor; AREG,
amphiregulin; Arg1, arginase-1; IRF4, interferon regulatory factor 4; PPARg, peroxisome proliferator-activated receptor g; FGF, fibroblast growth
factor; GAL-3, galectin-3; TGF, transforming growth factor; IC, immune complex; GR, glucocorticoid receptor; ATF3, activating transcription factor
3; SOCS, silencer of cytokine signaling

have shown that deletingmacrophages at specific times during inflam-

mation interfereswith subsequent phases and leads todefective repair

(Fiore et al., 2016; Klinkert et al., 2017; Perego et al., 2016). Of partic-

ular importance to regenerative biologists is the newer appreciation of

the changing phenotypes of fibroblasts and other mesenchymal cells

which orchestrate the onset of regeneration (Karin & Clevers, 2016;

Nowarski et al., 2017).

Recent evidence shows that during the inflammatory phase of

an organ’s response to injury or infection fibroblasts and other

mesenchymal cells not only sense and respond to DAMPs and PAMPs

via TLRs in a manner like that of innate immune cells, they are also

capable of polarizing into distinct phenotypes with secretomes that

enhance the immune response early in inflammation and then foster

tissue homeostasis and reconstruction during inflammatory resolution

(Bernardo & Fibbe, 2013). Among the mesenchymal cell subsets fre-

quently classified as fibroblasts in adult organs are myofibroblasts and

the pericytes surrounding blood capillaries, both of which prominently

express 𝛼-smooth muscle actin, as well as the multipotent MSCs,

which can be expanded from the connective tissue components of skin,

muscle, and fat. The range of these cells’ activation and differentiation

states, together with differences in their developmental origins and

specific locations within connective tissues, produce considerable het-

erogeneity with respect to an organ’s resident mesenchymal cell pop-

ulation. Increasingly well studied are the heterogeneous fibroblastic

cells in the connective tissue of layered organs with important barrier

functions, such as the integument (Driskell & Watt, 2015) and the

intestinal tract (Powell, Pinchuk, Saada,Chen,&Mifflin, 2011).Directly

adjacent to the epithelium exposed constantly to potentially injurious

material and microbial invasion, mesenchymal cells respond to epithe-

lial signals and help shape the response of innate and adaptive immune

cells locatedwithin that connective tissue layer (Nowarski et al., 2017).

While regulation of fibroblast proliferation, type I collagen

deposition, and myofibroblast differentiation may be the most

important response of mesenchymal cells to epithelial and immune

signaling to avoid fibrosis and allow successful organ regeneration

(Barron &Wynn, 2011), various other reciprocal interactions between

macrophages and fibroblasts have been found. In the gut wall

activated fibroblasts express monocyte chemotactic protein 1 for
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recruitment of macrophages (Kim et al., 2011) and myofibroblasts

help control monocyte activation by releasing prostaglandin E2

(Roulis et al., 2014). Besides a direct role in fibrosis, pericytes in both

the dermis and lungs are also important in recruiting and retaining

macrophages and other inflammatory mediators (Nowarski et al.,

2017). Other chemokine/cytokine pathways and small signaling fac-

tors by which mesenchymal cells affect the activities of macrophages

and other immune cells have been reviewed in detail by Bernardo and

Fibbe (2013). As another mechanism of this reciprocal interaction,

modification of type I collagen in the ECMby a fibroblast-derived post-

prolyl peptidase has been shown to increase macrophage adhesion

and activity locally (Mazur, Holthoff, Vadall, Kelly, & Port, 2016).

Specific populations of lymphocytes, the effector cells of adaptive

immunity activatedbymonocyte-derived antigen-presenting cells dur-

ing inflammation, are also clearly involved in mammalian tissue fibro-

sis (scarring) and fibrotic disorders (Wynn, 2004). Many details of

the mechanisms by which lymphocytes promote injury-related fibro-

sis are active areas of investigation and beyond the scope of this

review, but both TH2-type and TH17-type immune responses are pro-

inflammatory and profibrotic, and cytokines in the IL-17 family have

emerged as important drivers of postinflammatory fibrosis in many

organs (Chizzolini & Boin, 2015; Kirkham, Kavanaugh, & Reich, 2014;

Wynn & Ramalingam, 2012) and during allograft rejection (Liu, Fan, &

Jiang, 2013). Cytotoxic T cells and other effectors of adaptive immu-

nity may also directly eliminate genetically reprogrammed cells that

express “embryonic” or other neoantigens recognized as “non-self” and

arise early in the transition from inflammation to regeneration (Quigley

& Kristensen, 2015). Fibroblasts of the intestinal wall also express

antigen-presenting components and can directly modulate local T cell

functions and activate local T cell expansion (Nowarski et al., 2017).

2 INFLAMMATION AND IMMUNITY

IN REGENERATION WITHIN MAMMALIAN

SKIN, EARS, AND DIGITS

2.1 Skin regeneration

Studies of “scarless wound healing” in fetal murine and ovine skin led

to the concept of “skin regeneration.” The integument is typically the

largest vertebrate organ and serves many diverse functions. Readily

accessible and histologically complex, with its several tissue compo-

nents arising via epithelial−mesenchymal interactions during develop-

ment by relatively well understood inductive interactions, skin pro-

vides a useful model for analyses of organ regeneration more broadly.

Fetal skin in several mammalian species was found to regenerate

after incisions or full-thickness excisions, avoiding excessive fibrosis

and undergoing morphological and functional reconstitution of all epi-

dermal components, layers, and derivatives, including hair follicles

and glands (Ferguson et al., 1996; Stelnicki, Chin, Gittes, & Longaker,

1999). Studies in the 1980s also found that certain species of adult

gecko lizards (genus Geckolepis) have the ability to autotomize the

full-thickness integument almost entirely and regenerate skin with

scales rapidly without scarring, apparently from stem cells deeper in

the hypodermis (Scherz, Daza, Kohler, Vences, & Glaw, 2017). Several

other recent reviews have discussed various aspects of new investi-

gations of fetal and adult vertebrate skin regeneration (Gawronska-

Kozak, Grabowska, Kopcewicz, & Kur, 2014; Leavitt et al., 2016; Takeo,

Lee, & Ito, 2015).

In an early reviewof fetal skin regeneration,wediscussed its depen-

dence on excision rather than burn injury, its similarity to wound heal-

ing in adult mice lackingmacrophages, and its dependence on local not

systemic immunity (Harty, Neff, King, &Mescher, 2003). The likelihood

that developmental changes in the cutaneous immune system and

inflammatory response explained the increased tendency for scarring

during fetal development suggested to us that the relatively inefficient

adaptive immunity of urodele amphibians (newts and salamanders)

may in part account for the more effective, life-long and widespread

regenerative capacity of these species compared to the phylogenically

more recent anuran amphibians (frogs and toads). Fetal and adult

mouse models of scarfree skin regeneration after full-thickness

wounding have not only underlined the centrality of the immune and

inflammatory response in the transition to scarring, but have also iden-

tified several specific cytokines and cytokine modulators regulating

synthesis of ECM components and important for scarring (Balaji et al.,

2017; Gawronska-Kozak, Bogacki, Rim, Monroe, & Manuel, 2006;

Gawronska-Kozak et al., 2014; Mirza, DiPietro, & Koh, 2009; Wilgus,

Bergdall, Dipietro, &Oberyszyn, 2005; Zheng et al., 2016).

Since the review by Harty et al. (2003), scar-free wound heal-

ing of excised skin has also been demonstrated in urodeles, along

with its decline during development in both anurans and urodeles

(Godwin & Rosenthal, 2014; Mescher et al., 2017; Seifert & Maden,

2014). The neotenic salamander, Ambystoma mexicanum, the axolotl,

widely used in studies of limb regeneration, is particularly useful in

studies of inflammation and skin regeneration. Both juvenile and adult

axolotls show scar-free regeneration after large, full-thickness skin

excisions (Levesque, Villiard, & Roy, 2010), but after inducedmetamor-

phosis similar wounds had significantly higher leukocyte infiltration,

followed by much slower and less perfect skin regeneration (Seifert,

Monaghan, Voss, &Maden, 2012b). Recently it was found that juvenile

axolotls can also regenerate all components removed via punch biopsy

through the soft tissues of the lower jaw, including all skin layers, mus-

cle, and oral mucosa, with minimal overt inflammation (Charbonneau,

Roy, & Tran, 2016).

An interesting mammalian model of adult skin regeneration is the

African spiny mouse (Acomys species), which appears capable of par-

tial skin autotomy in escaping predators. Seifert et al. (2012b) com-

pared adult dorsal skin of two Acomys species and truemice (Mus) with

regard to tensile strength, histology, and repair of small and large, full-

thickness excisional wounds. They found Acomys skin to have 20-fold

lower tensile strength and a significantly greater volume of variously

sized hair follicles associated with large sebaceous glands. Wounds in

Acomyswere re-epithelializedmore rapidly andwithmuch less scarring

compared to similar wounds inMus; contained predominately type III

collagen rather than type I collagen as inMus; formed very few myofi-

broblasts, which were abundant in wounds ofMus; and developed der-

mis and epidermis with induction and formation of new hair follicles

which were absent inMus (Seifert et al., 2012a).
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The remarkable regenerative capacity of adult skin in this mam-

mal was elucidated by analyzing expression profiles of inflammation-

related genes, densities of resident immune cells, and cytokine lev-

els in Acomys and Mus dorsal skin undergoing repair. Brant, Lopez,

Baker, Barbazuk, and Maden (2015) examined gene expression in the

skin of the two species during the week after full-thickness excisions.

Wounding in Mus elicited a strong, well-characterized inflammatory

response, while that provoked inAcomyswas substantiallymuted, with

little or no increase in expression for most cytokines and chemokines

assayed (Brant et al., 2015). Levels of Il-1𝛽 , IL-4, and granulocyte colony

stimulating factor 3 (Csf3) expression were all significantly higher in

Mus than in Acomys, while those of TGF-𝛽 and cyclooxygenase-2 (cox2)

were higher in Acomys. A similar analysis of genes involved in form-

ing and degrading ECM components showed that their expression

was among the most highly upregulated in Acomys wounds, suggest-

ing more active ECM turnover during Acomys wound healing than

inMus.

Immunohistological analyses by the same group provided striking

evidence that, unlike skin wounds inMus, macrophages were virtually

absent in Acomys wounds, although present in the normal tissue

surrounding the wound and in the spleen (Brant, Yoon, Polvadore,

Barbazuk, & Maden, 2016). Levels of circulating monocytes in

Acomys were similar to those in Mus, but with a higher percentage

of lymphocytes and a lower percentage of neutrophils (Brant et

al., 2016). As might be expected from the absence of macrophages,

Acomys wounds were found to contain much lower levels of most

common chemokines and cytokines, but not those of the IL-1 fam-

ily (Table 1). Finally, although skin wounds in both species were

comparably vascularized during the first month after injury, with

similar early expression of vegf𝛼, Mus wounds produced much

thicker layers of dense collagen, greater expression in most of the

collagen genes analyzed, and greater cell densities in the wounds

(Brant et al., 2016). The authors conclude that in Acomys the rela-

tive absence of macrophages in skin wounds allows wound repair

without fibrosis, a situation which permits a regenerative response

rather than scarring, a possibility discussed further below with

the capacity of Acomys and immunodeficient mice for ear-hole

regeneration.

Less dramatic than Acomys skin regeneration, two other related

models of the hair follicle “mini-organ” neogenesis triggered by injury

have been developed in mice and both clearly require participation

of local immune cells and fibroblasts. The first involves the de novo

development of scattered hair follicles in the new epidermis over-

lying dermal scar tissue, often weeks after full-thickness excisions

of dorsal skin, a process termed wound-induced hair neogenesis

(WIHN). Like hair follicle development in the fetus, WIHN depends

on the activation of canonical Wnt signaling, but recent evidence

has clarified differences in the inductive events (Wang et al., 2015).

WIHN begins with DAMP activation of keratinocyte TLR-3 and its

downstream effectors IL-6 and STAT3 (Nelson et al., 2015) and is

augmented by fibroblast growth factor 9 (FGF-9) from 𝛾𝛿 T lympho-

cytes in the epidermis, which activates FGF-9 and Wnt signaling in

the dermis (Gay et al., 2013). Studies of immune interactions in such

a relatively simple regenerating system offer new opportunities for

TABLE 1 Summary of maximal cytokine levels detected in Mus
andAcomyswounds3–14dayspost-excisionbymouse cytokine array
(from Brant et al., 2016, Wound Rep. Regen., 24: 75–88). Levels for
each cytokine are shown by differing numbers of plus signs, with five
maximum, oneminimum. Aminus sign indicates “absent”

Cytokine Mus Acomys

GM-CSF ++ −

G-CSF +++++ −

CCL1 + −

slCAM-1/CD54 ++++

IL-2 +++ −

IL-4 + −

IL-6 ++++ −

IL-7 + −

IL-13 + −

CXCL10 ++ −

CXCL11 + −

CXCL1 +++++ −

M-CSF +++ −

MCP-5/CCL12 ++ −

MIG/CXCL9 + −

MIP-1𝛽 +++++ −

TREM-1 ++++ −

TIMP ++++ −

C5/C5a +++++ +

IL-16 ++ +

MCP-1/CCL2 +++++ +

MIP-1𝛼 +++++ ++++

MIP-2 +++++ +

TNF-𝛼 ++ +

CXCL13 + +

IFN-𝛾 + +

IL-1𝛼 ++ ++

IL-1𝛽 ++++ ++++

IL-1ra ++++ ++++

RANTES ++

understanding similar activity during the initial phase of regeneration

in other organs.

In another recent model, “quorum sensing regeneration” in mul-

tiple hair follicles is triggered simply by the minor injury of pluck-

ing a threshold number of hairs properly arranged among neighbor-

ing follicles (Chen, Plikus, Tang, Widelitz, & Chuong, 2016). In this

system apoptotic keratinocytes in the plucked follicles release the

chemokine CCL2, causing the accumulation of macrophages releasing

TNF-𝛼 which stimulates hair regeneration by activating Wnt signaling

in fibroblasts (Chen et al., 2016). The interaction between monocyte-

derived cells and fibroblasts is central to this regenerative process,

which may serve to model the injury effect in specific tissues of more

complex regenerating systems.
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F IGURE 2 Four-millimeter ear punch closure in Acomys andMus (C57BL/6) in 8 weeks post-wounding. 220×; scale bar is 1 mm. (Reproduced
with permission fromMatias Santos et al., 2016, Regeneration 3: 52–61)

2.2 Regeneration during ear-hole closure

Regeneration of vertebrate appendages (discussed below) is often

referred to as epimorphic regeneration and features the formation and

growth of a blastema, a transient distal accumulation of proliferating,

lineage-restricted mesenchyme cells that reproduce the missing

organ components. Large (4-mm diameter) holes punched through

adult Acomys ear pinnae close rapidly (Fig. 2) with regeneration of all

missing tissue structures, including cartilage, dermis, hair follicles, and

sebaceous glands (Matias Santos et al., 2016; Seifert et al., 2012a).

Based on many criteria, including mesenchymal cell proliferation

in association with innervation and wound epidermis, Seifert and

colleagues concluded that regeneration of skin and other tissues in

ear-holes involves blastema growth (Gawriluk et al., 2016). They also

confirmed classic studies showing similar regenerative capacity in

rabbit ears and found that MRL/MpJ mice failed to regenerate 4-mm

holes, despite their well-known capacity for epimorphic regeneration

after 2-mm ear punches (Heber-Katz, 1999).

MRL mice and a related strain capable of 2-mm ear-hole regen-

eration, LG/J, have defects of adaptive immunity rendering them

prone to autoimmune disease (Gourevitch et al., 2014; Rai & Sandell,

2014).Despite reports of enhanced regeneration in other organs, adult

MRL/MpJ mice do not regenerate skin in full-thickness, dorsal exci-

sions (Rai & Sandell, 2014). However, adult “nude” mice, profoundly

T-cell-deficient due to lack of the functional Foxn genes required for

thymic development, are capable of both epimorphic regenerationdur-

ing ear-hole closure and scar-free regeneration of dorsal skin excisions

(Gawronska-Kozak et al., 2006, 2014). Recent work implicates the

absence of Foxn1 expression in nude mouse skin with the “neotenic”

state of its dermal fibroblasts and its capacity for scar-free skin regen-

eration (Kur-Piotrowska et al., 2017).

In the light of the enhanced regenerative capacity in various immun-

odeficientmice, it is interesting that specific defects of adaptive immu-

nity also occur in the spiny mouse Acomys. In what appears to be

the only analysis of Acomys immune activity to date, Pennello, Taylor,

Matlack, Karp, and Riggs (2006) compared various adaptive immune

responses in adult Acomys cahirinus, true mice (Mus musculus), immun-

odeficient (xid) mice, and gerbils (Meriones unguiculatus), to which

Acomys is more closely related than to mice (Agulnik & Silver, 1996;

Chevret, Denys, Jaeger, Michaux, & Catzeflis, 1993). The regenera-

tion capacity of gerbils appears untested, but immune deficiencies

rendering these rodents much more susceptible than mice or rats to

various viral, bacterial, and parasitic infections make them an impor-

tant model of many human diseases, e.g. Sun et al. (2016). It was found

that immune cells from Acomys, gerbils and xid mice, but not from

Mus controls, failed to respond to specific thymus-independent type

2 (TI-2) antigens and that Acomys, gerbils and xid mice lack a sub-

set of B lymphocytes present in normal mice (Pennello et al., 2006).

The responses of Acomys to TI-2 antigens showed various similari-

ties to those of MRL mice (Manheimer, Victor-Kobrin, Stein, & Bona,

1984). These altered properties of lymphocytes and the near absence

in Acomys wounds of macrophages (Brant et al., 2016) are consistent

with the possibility that these immune components control activity of

connective tissue cells during inflammation in a manner that allows

for regeneration in Acomys skin and large ear-holes. Clearly further

study of immune cells and fibroblasts during the acute inflammatory

response in Acomys, like recent work with nude mice (Kur-Piotrowska

et al., 2017), will help explain epidermal−mesenchymal interactions

underlying the enhanced regenerative capacity in this mammal.

2.3 Digit tip regeneration

Another example of organ regeneration inmammals is the regrowth of

amputated digit tips found in mice and primates (Simkin et al., 2015).

In this murine model a proximal portion of the nail organ must remain

after amputation for successful digit regeneration, which raises the

possibility of stimulatory roles for immune cells. The amputated sur-

face is re-epithelized in part from the nail matrix, the proximal portion

of which contains nail stem cells that generate Wnt signaling activity,

an important driver of digit regeneration (Takeo et al., 2013). As dis-

cussed in more detail elsewhere (Mescher et al., 2017), there is evi-

dence that like hair follicles the nail matrix is an immune-privileged

site. Compared to other skin on a digit, the human nail matrix and

underlying connective tissue have been found to have a very low den-

sity of helper and cytotoxic T cells, natural killer (NK) cells, and mast

cells; strongly downregulated expression of stimulatory components

by Langerhans cells in the epithelium; and prominent local expression

of a wide variety of anti-inflammatory and immunosuppressive pro-

teins in the proximal nail matrix (Ito et al., 2005). Cutaneous immu-

nity has apparently not been examined in mouse digits; however, in

most respects mouse nail organs are developmentally and anatom-

ically very similar to those of primates (Fleckman, Jaeger, Silva, &

Sundberg, 2013).
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Ito et al. (2005) speculate that the nail immune system of humans

evolved as a site of relative immune privilege suppressing local inflam-

matory and/or autoimmune damage because its components helped

protect individuals from loss of claws (or nails) after pro-inflammatory

mechanical or environmental insults and accelerated repair and use

of these appendages, limiting pain and swelling after claw trauma or

infection. With the well-established requirement for the nail organ

during digit tip regeneration, the potential role of local immunity in

this system seems well worthy of investigation (Saito, Ohyama, &

Amagai, 2015). Studies of immune cell activities in the murine nail

apparatus, their likely dependence on local Wnt signaling (Augustin

et al., 2013), and their roles in modulating the acute inflammation

produced by amputation are likely to provide new insights into the

importance of the nail organ for digit regeneration, a clinically impor-

tant model of epimorphic regeneration in mammals (Rinkevich, Maan,

Walmsley, & Sen, 2015).

3 STUDIES OF THE INFLAMMATORY

RESPONSE IN AMPHIBIAN APPENDAGE

REGENERATION

Animals used to investigate limb and tail regeneration are ectother-

mic, with covert inflammatory responses easy to overlook, especially

by developmental biologists whose expertise and interest seldom

includes immunology or concepts from pathology such as inflamma-

tion. “Inflammation” does not appear in the indexes of most classic

monographs on limb and organ regeneration (Carlson, 2007; Goss,

1969; Hay, 1966; Morgan, 1901; Needham, 1952; Polezhaev, 1972;

Rose, 1970; Schmidt, 1968; Tsonis, 1996; Vorontsova & Liosner, 1960;

Yannas, 2001). With the appearance of many inflammation-related

gene products in transcriptional and proteomic screens of regenerat-

ing tissues in fish, urodeles, and anurans, and with substantial knowl-

edge of the changing innate and adaptive immune systems during

development and metamorphosis in Xenopus, interest in how inflam-

mation relates to amphibian limb and tail regeneration has grown

steadily in the new century.

As the major link between innate and adaptive immune responses,

macrophages are also likely to be relevant for understanding the typi-

cally diminished regenerative capacity of animals with well-developed

adaptive immunity (Mescher & Neff, 2005). Mammals, birds, reptiles,

and postmetamorphic anurans, in all of which adaptive immunity is

relatively rapid, efficient and multifaceted, fail completely to regen-

erate amputated limbs or, in the case of the most basal anurans of

the genus Xenopus, regenerate only a tapering, skin-covered, carti-

laginous rod (Thouveny & Tassava, 1998). In contrast, experimentally

amputated limbs/fins of many fish species, of larval and adult urodele

amphibians, and limb buds of young, premetamorphic anurans, all of

which typically lack efficient adaptive immunity, usually regenerate

well, with well-patterned reconstruction of the missing appendage.

Mescher andNeff (2005) suggested that an adaptive immune response

may be activated in injured tissues of nonregenerating vertebrates

that leads to enhanced inflammation and fibrosis, and interferes with

the developmental processes of pattern formation and organogenesis

comprising regeneration. During early limb regeneration in axolotls,

fibroblasts and the ECM they create provide the developmental cues

needed for the localization, growth, and differentiation of cells in other

lineages (Phan et al., 2015), and enhanced collagen synthesis by fibrob-

lasts inhibits induction of a regeneration blastema (Satoh, Hirata, &

Makanae, 2012). Such observations lend considerable weight to the

view that even slight dysregulation of fibroblast growth and activities

during the period of postamputation inflammation is likely to disrupt

subsequent limb patterning.

To date the most important study on the importance of inflam-

matory cells for the regulation of fibroblasts in amphibian limb

regeneration is that of Godwin, Pinto, and Rosenthal (2013), who

broke new ground by clarifying key aspects of the urodele inflamma-

tory response to amputation. Quantifying the accumulation ofmyeloid

cells, the authors found increased densities of leukocytes in limb

stumps within 1 day postamputation, with neutrophil density maximal

by the second day and, as in mammalian wounds, macrophage density

peaking a few days later. While neutrophil levels returned to that of

normal limbs by day 10 postamputation, the density of macrophages

remained elevated in the developing regeneration blastemas 15 days

after amputation.

Usingmurine cytokineprotein arrays,Godwin et al. (2013) detected

over three dozen specific chemokines and cytokines, both pro-

inflammatory and anti-inflammatory, of both TH1 and TH2 types,

within the limb stumps, most elevated within 1 day of amputation

and remaining so through at least 7 days postamputation. Induction

of these chemokines and cytokines was not unique to regeneration,

occurring also in limbs after crush injury or bacterial lipopolysaccha-

ride injection. Maximal expression of major cytokines in amputated

limbs was found to be generally similar to that shown in Figure 1 with

the major activation phenotypes of human and murine macrophages:

induction of TNF-𝛼, IL-1𝛽 and IL-6 wasmaximal 1–2 days postamputa-

tion, that of TGF-𝛽 4–6 days postamputation, and that of IL-10 slightly

later.

Specific deletion of macrophages and their monocyte precursors

during the postamputation period resulted in increased levels of the

inflammatory cytokines IL-1𝛽 , TNF-𝛼, and interferon-𝛾 and reduced

levels of various anti-inflammatory and TH2 cytokines. Macrophage

depletion also reduced expression in limb stumps of certain develop-

mentally important genes, including tgf-𝛽 , fn (fibronectin), mmp-9 and

mmp-3, as well asmsx2, prxx1, sp9, runx2, and dlx3. Maximal deletion of

monocytes and macrophages completely inhibited limb regeneration

in all cases, amputation yielding instead fibrotic limb stumpswith thick

scar tissue of type I collagen (Godwin et al., 2013).

Similar leukocyte immigration and cytokine inductions were found

in experiments with limbs of adult newts (Mercer et al., 2012) and

larval frogs (Mescher, Neff, & King, 2013). Both of these studies also

reported the local expression postamputation of other immunomod-

ulatory factors, such as annexins, galectins, SOCS, and thymosin-

𝛽4 (T𝛽4). Similar results also occur with regenerating caudal fins of

zebrafish, in which selective macrophage ablation during tissue out-

growth compromised fin patterning but did not affect the rate or

extent of fin outgrowth (Petrie, Strand, Yang, Rabinowitz, & Moon,

2014). Among the functions of such macrophages in newt limb
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regeneration is active immunosurveillance and clearance of senes-

cent cells generated during blastema development (Yun, Davaapil, &

Brockes, 2015). Godwin and Rosenthal (2014) have speculated that

one essential role ofmacrophages in amphibian limb regenerationmay

be to prevent NK-mediated lysis of dedifferentiating progenitor cells

expressing neoantigens.

In anurans the capacity for complete hindlimb regeneration

declines during prometamorphosis, as manifested by regenerates with

increasingly poor patterning of distal skeletal elements and fewer dig-

its the longer amputation of larval limbs is delayed. In Xenopus laevis

hindlimbs this regenerative loss begins at proximal levels and extends

distally as the limb grows and becomes fully formed (Dent, 1962). The

stages (Nieuwkoop & Faber, 1994) during which hindlimb regenera-

tive capacity declines in Xenopus laevis correspond to the onset of the

period inwhich the immune system is extensively remodeled and adap-

tive immune components become much more like those of mammals

(Robert & Ohta, 2009). For these reasons limbs of larval anurans can

be particularly useful in testing the hypothesis that activities of adap-

tive immune cells interfere with normal patterning and thus complete

regeneration of complex organs.

The epidermis of postmetamorphic anuran skin contains a retic-

ulum of dendritic cells resembling Langerhans cells, the monocyte-

derived resident phagocytes and antigen-presenting cells of mam-

malian epidermis (Carrillo-Farga, Castell, Perez, & Rondan, 1990),

which in developing hindlimbs appear to differentiate gradually, like

other limb cells, in a proximal-to-distal direction (Mescher et al., 2007).

Future work with larval anuran limbs should take into account these

resident immune cells and study their activation together with the

functional states of the differentiating dermal fibroblasts during limb

development and after amputation, in the transition from inflamma-

tion to regeneration or fibrosis. Preliminary work has demonstrated

inflammatory cells in the distal wound epithelium of amputated lar-

val anuran hindlimbs at both regenerating and nonregenerating stages

(Alibardi, 2016;Mescher et al., 2007) and their effects on epithelial sig-

naling is worthy of investigation.

Previous studies with larval Xenopus limbs support the hypothe-

sis that metamorphic changes in the immune system, local or sys-

temic, change the inflammatory response of limb tissues to amputa-

tion in ways that preclude limb regeneration. At developmental stage

55 or 57, in which regenerative capacity is reduced, expression of

factors that promote resolution of inflammation, including annexin-1,

fibrinogen-like protein 2, and SOCS1 and 3, is greater andmore persis-

tent compared to their expression in regeneration-competent stage 53

(Mescher et al., 2013). We also found low levels of expression of these

factors in unamputated limbs at stage 55 and/or 57, but not at stage

53, supporting the immunohistochemical evidence that immune cells

become resident in differentiating limb tissues where they are avail-

able to affect the tissue response to amputation differently at different

larval stages.

In regenerating stage 53 hindlimbs, downregulation of inflamma-

tory and proresolution factors 1−4 days after amputation accompa-

nies upregulation of several genes required for limb tissue patterning

(msx1, shh, sall1, hoxa13) (Mescher et al., 2013). Persistent postampu-

tation expression of inflammatory and proresolution factors at later,

F IGURE 3 Effects of celecoxib on regeneration of developmen-
tal stage 54/55 Xenopus larvae hindlimbs. Treatment of larvae with
1 𝜇Mcelecoxib, a cyclooxygenase-2 (COX-2) inhibitor, for 7 days post-
amputation allowed better patterning of regenerated limbs (A) than
that of controls (B). (See King et al., 2012, Anat. Rec. 295: 1552−61,
for similar quantitative data with this and other immunomodulat-
ing agents.) Importantly, improved patterning with celecoxib or other
agentswas not foundwith larvae at later developmental stages, consis-
tent with the view that additional monocyte/macrophage growth and
development beyond stage 54/55 may lead to a profibrotic inflamma-
tory environment post-amputation not reversible by COX-2 inhibition

regeneration-incompetent stages suggested prolonged inflammation

and was accompanied by inhibited or attenuated expression of the

pattern-related genes. Together these data suggest that local inflam-

matory activities triggered by amputation must be resolved before at

least some of the cell−cell signaling and inductive events required for

blastema formation and patterning can occur.

Treatment of skin wounds in mice with anti-inflammatory agents

can reduce scarring and lead to more complete skin regeneration

(Wilgus, Vodovotz, Vittadini, Clubbs, & Oberyszyn, 2003). With lar-

val Xenopus we found that regeneration of distal limb structures was

improved in stage 54/55 hindlimbs (but not in later stages) by treat-

mentwith theCOX-2 inhibitor celecoxib (Fig. 3) (King,Neff, &Mescher,

2012). Similar results were obtained with diclofenac, another COX-2

inhibitor, and with celastrol, an inhibitor of nuclear factor-𝜅B (NF-𝜅B)

activation. Although the molecular basis of these effects is not clear,

they suggest that immune regulation and induced immunotolerance

will probably play key parts in future attempts to promote regenera-

tion in vertebrates that have lost this capacity.

An excellent example of this are the gain-of-function experiments

showing the ability of postmetamorphic Xenopus limbs to regenerate

digit-like structures after receiving allografts of larval limb progenitor

cells with constitutively active Wnt signaling and added morphogens

(FGF-10 and Shh) (Lin, Chen, & Slack, 2013). As discussed elsewhere

(Mescher et al., 2017), multidigit regeneration in this work occurred
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only if the hosts were thymectomized before metamorphosis, render-

ing the recipient limbs largely devoid of lymphocytes. Most impor-

tantly, additional treatment of the grafted cells with the immunomod-

ulatory peptide T𝛽4 reduced apoptosis, doubled the proliferation rate

of the grafted mesenchymal cells, and improved bone formation and

limb patterning (Lin et al., 2013). The authors note that T𝛽4 is an

anti-inflammatory agent but new evidence shows that the peptide’s

proresolution effects also promote regeneration in the hearts of both

zebrafish andmice (Evans et al., 2013).

If regeneration can be improved by dampening inflammation,

does persistent inflammation interfere with developmental events in

regeneration? Single applications to freshly amputated, regeneration-

competent larval Xenopus hindlimbs of solutions containing pro-

inflammatory agents such as lipopolysaccharide, Freund’s adjuvant, or

nickel ions were found to increase IL-1𝛽 expression temporarily, but

had no effect on such limbs’ regenerative capacity (unpublished). A

single very brief, localized application of beryllium (Be) ions in solu-

tion to newly amputated urodele limbs has long been known to inhibit

limb regeneration and generate fibrosis locally (Scheuing & Singer,

1957; Thornton, 1951). The deleterious biomedical effects of Be are

now recognized as primarily due to chronic inflammation produced

locally by the metal’s immunoadjuvant properties and great persis-

tence in exposed tissues (Cummings, Stefaniak, Virji, & Kreiss, 2009;

Sawyer, Abraham, Daniloff, & Newman, 2005a). Brief application of Be

to regeneration-competent Xenopus limb stumps caused expression of

IL-1𝛽 (normally completed within 1 day postamputation) to persist

and increase for at least a week and completely inhibited regener-

ation in a dose-dependent manner (Mescher et al., 2017). Expres-

sion of the immunosuppressive factor fgl2, which diminished by day

5 of regeneration in controls, also remained maximal on day 7 fol-

lowing Be treatment and similar expression patterns were found for

mmp9 and C3 (complement component 3), further suggesting a per-

sistent inflammatory state. All of these genes were expressed largely

in immigrating leukocytes (Mescher et al., 2013), except for C3, which

was also found expressed in blastema and wound epithelial cells (Del

Rio-Tsonis, Tsonis, Zarkadis, Tsagas, & Lambris, 1998; Mescher et al.,

2013).

Expression of genes involved in limb patterning was strongly inhib-

ited by Be, while expression of the genetic reprogramming marker

sall4 was largely unaffected (Mescher et al., 2013). This suggests that,

despite unresolved inflammation, cellular dedifferentiation and repro-

gramming still occur locally, but that the tissue interactions and sig-

naling required for limb patterning cannot be established, leading to

regenerative failure. The acute response required to initiate repair or

regeneration must at least begin to be resolved if the developmen-

tal mechanisms underlying regenerative growth are to be established.

Given the key importance of fibroblasts derived from dermis and

other limb connective tissues in patterning the regeneration blastema

(Bryant, Endo, & Gardiner, 2002), together with control of fibroblast

synthetic activity and proliferation by macrophage cytokines (Karin &

Clevers, 2016;Wynn & Ramalingam, 2012), fibroblastic cells are likely

to be key targets during the local response to amputation, with dys-

regulated inflammation tending toward fibrosis rather than blastema

patterning.

It is of considerable interest that larval limbs of Xenopus are much

more sensitive to the effects of Be than similarly sized limbs of axolotls.

Brief contact of amputation wounds with 10 mM BeSO4 caused vis-

ible local inflammation in premetamorphic Xenopus limbs and inhib-

ited regeneration, but similar treatment of larval axolotl (3−4 cm) limb

stumps had no visible effects and all regenerated normally. With the

urodele limbs only a 10-fold higher dose of Be consistently inhibited

regeneration. However, brief application of 100 mM BeSO4 to the

amputation surface of anuran larvae invariably produced rapid sys-

temic inflammation and death, while no axolotls died after Be expo-

sure at any concentration (Mescher et al., 2013). It is noteworthy that

in the early experiments with Be salts and regeneration in Ambystoma,

larvae were completely immersed in the solutions for short periods

(Thornton, 1951; Tsonis, English, & Mescher, 1991); similar immer-

sion of larval Xenopus was rapidly lethal, with widespread edema

and inflammation. As discussed previously (Mescher et al., 2013,

2017), urodeles’ greater tolerance of Be, like their longer toler-

ance of allografts compared to adult frogs or mammals, probably

reflects their relatively weaker cellular immunity (Barlow, DiMarzo,

& Cohen, 1981; Cohen, 1971; Tournefier et al., 1998), which includes

their low MHC II diversity and weak T helper cells (Sammut et al.,

1999).

Cook and Seifert (2016) further examined the inhibitory effects

of 100 mM BeN on Ambystoma limb regeneration, immersing larger

(7−8 cm) animals for 2 min immediately after amputation. Unlike our

resultswith themuch smaller larvae (Mescher et al., 2013; Tsonis et al.,

1991), limbs in the larger axolotls did regenerate after Be exposure

but with severely perturbed skeletal patterns. Leukocyte infiltration of

the regenerating limbs was not stimulated by Be which, however, was

found to inhibit migration and proliferation of both dermal fibroblasts

and blastema cells, with no increase in apoptosis andwithout affecting

either migration or growth of epidermal cells (Cook & Seifert, 2016).

The results were interpreted to suggest that in urodeles Be disrupts

regenerativepatterningof limbsbydirectly interferingwithmesenchy-

mal cell or fibroblast migration and growth, a conclusion consistent

with the effects of Be infused into regenerating limbs of adult newts

(Scheuing & Singer, 1957).

Tail regeneration in the Xenopus tadpole has provided another

interesting model for study of the immune system’s importance for

regeneration. As inmost anuran species, it occurs after tail amputation

at any prometamorphic stage, except for a refractory period during

developmental stages 45–47 (Beck, Christen, & Slack, 2003). The

response of the tail to resection before and during this period has

been extensively studied by Takeo Kubo and colleagues, whose work

suggests a role for immunotolerance mediated by regulatory T cells

(Tregs) for tail regeneration in this species. During the regeneration-

refractory period expression of T cellmarkers in the tadpoles increases

rapidly, with changes in the local, injury-induced expression of several

immune-related genes following tail amputation (Fukazawa, Naora,

Kunieda, & Kubo, 2009). Notably, expression of the specific Treg
marker foxp3 was strongly upregulated within hours of amputation at

regeneration-competent stage 52/53, but not during the preceding

refractory stages. (In larval Xenopus hindlimbs, expression of foxp3was

upregulated transiently within a few hours of amputation and
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persistently in Be-treated limb stumps at both regeneration-

competent

and -incompetent stages, and like the other markers of immunomodu-

lation was also prominent in unamputated limbs at stage 57 [Mescher

et al., 2013).

Fukazawa et al. (2009) suggested that tail regenerative ability is

restored as Tregs become available to suppress activities of effector

lymphocytes inhibitory to regeneration during the refractory period.

Consistent with this view, tail regenerative ability was significantly

greater during the regeneration-refractory stages in PU.1-morphant

tadpoles, which effectively lacked lymphocytes and other leukocytes.

Moreover, tail regeneration during the refractory period of normal

larvae was improved by treatment with various immunosuppres-

sants, including celastrol, cyclosporine A, IKK inhibitor VII, or FK506

(Fukazawa et al., 2009), consistent with the view that autoreactive

immune cells developing during the refractory period recognize tail

blastema cells as “non-self” and inhibit regeneration at this time, with

the development of Tregs and the establishment of a local immune

regulatory system permitting regeneration again at later stages. Local

immune regulation by Tregs has been found to promote regeneration

in several mammalian tissues (Castiglioni et al., 2015; Gandolfo et al.,

2009; Liu et al., 2013; Lu et al., 2013; Zhao et al., 2012). In most of

these studies the anti-inflammatory or immunosuppressive effects of

Tregs were either directly implicated or assumed to be part of their

proregenerative activity, but other groups have reported unique popu-

lations of Tregs that stimulate repair directly, through the production of

theepidermal growth factor familymemberamphiregulin (Arpaia et al.,

2015; Burzyn et al., 2013).

Work on the tadpole tail regeneration model showed further

that the immune suppressant FK506 rescues regenerative capac-

ity during the refractory period if given for just the first 12 h

postamputation, and that this period is characterized by expres-

sion of a gene similar to phyH which is downregulated by FK506

(Naora, Hishida, Fukazawa, Kunieda, & Kubo, 2013). phyH encodes

an enzyme (phytanoyl-CoA hydroxylase) that associates with an

FK506 binding protein, and may be a useful marker for autoim-

mune cells inhibiting Xenopus tail regeneration. Immune-related genes

expressed by proliferating Xenopus tail blastema cells include IL-11

and “cd200like-related” (Tsujioka, Kunieda, Katou, Shirahige, & Kubo,

2015). CD200, an immunoglobulin-type cell surface protein, is a

well-characterized tolerance-signaling molecule which in murine and

human trophoblast and decidua promotes local generation of Treg
subsets, helping by a variety of mechanisms to prevent spontaneous

abortions (Clark, Arredondo, & Dhesy-Thind, 2015). On various mam-

malian cells, CD200 interacts with its receptor on Tregs and other

myeloid cells to downregulate immune cell functions in many inflam-

matory diseases (Vaine & Soberman, 2014). Recent experiments with

the tail regeneration model also implicate local expression in sev-

eral tissues of long pentraxins, a well-known group of IL-1-inducible

proteins which regulate activities of antigen-presenting cells and

exert other diverse functions during inflammation (Hatta-Kobayashi

et al., 2016).

It should be noted that regeneration studies involving Xenopus

hindlimbs and tails at prometamorphic larval stages may be affected

by the fact that immunological development appears to proceed

independently of growth and external morphological changes at these

stages (Ruben, 1970; Ruben, Stevens, & Kidder, 1972). The observa-

tion that sibling tadpoles attain different developmental stages before

and during metamorphosis despite being the same chronological age

is well known. However, Ruben showed that activity of cells mediating

the immune response to tissue allografts in such larvae was always

equivalent to that of the most morphologically advanced members of

the population (Ruben et al., 1972). Similar results with differentiation

of lymphocytes in age-matched larvae have also been reported during

the period when hindlimb regeneration declines (stages 54–58), even

following experimental delay ofmetamorphosis (Rollins-Smith, Flajnik,

Blair, Davis, & Green, 1997). For example, adaptive immunity in a

stage 50 larva resembles that of its most morphologically developed

sibs, which may be at stage 55. Variable results in larval Xenopus

hindlimb regeneration studies among animals in sibling populations

and between different laboratories often complicate interpretation

of such experiments (Nye & Cameron, 2005; Slack, Beck, Gargioli, &

Christen, 2004). The continued growth, development, and maturation

of lymphocytes while external development is delayed by suboptimal

nutrition, overcrowding, and other types of stress in laboratory

conditions may help explain the slow and hypomorphic regenerative

response seen in some larvae compared to age-matched controls. As

Ruben et al. (1972) point out, larvae showing rapid developmental

progress should be selected for studies of regeneration or other

aspects of normal Xenopus development.

The laboratory of Elly Tanaka has recently undertaken searches

in axolotl appendages for “injury signals” or regeneration-initiating

molecules capable of triggering sustained cell activities that lead to

blastema growth and patterning (Tanaka, 2016), a quest that might

be expected to uncover factors released during inflammation. Using

an expression cloning strategy followed by in vivo gain- and loss-of-

function assays, this group identified a MARCKS-like protein (MLP) as

a potent, extracellularly released mitogen for myotubes and muscle-

derived cells (Sugiura,Wang, Barsacchi, Simon, & Tanaka, 2016).AxMlp

expression ismaximal 12–24h after amputation in both limbs and tails,

with juxtamembranous localization in cells of the newly formedwound

epidermis (suggesting phosphorylation and release by those cells), and

is required for normal tail regeneration (Sugiura et al., 2016). Study-

ing movements of dermal fibroblasts and other connective tissue pro-

genitor cells during blastema formation in an amputated axolotl digit,

others in the Tanaka laboratory found that platelet-derived growth

factor BB (PDGF-BB), but not other chemotactic growth factors such

as FGF-10, stroma-derived factor-1, and bone morphogenetic protein

2/4, induced migration of these cells required to establish the early

blastema (Currie et al., 2016).

Released during blood coagulation and expressed subsequently by

macrophages with the repair-promoting phenotype (Fig. 1), PDGF is

important in all healing wounds. The report of Currie et al. (2016) sug-

gests that sustained production of PDGF to enhance fibroblast migra-

tion is a required activity of the localmacrophages critical for blastema

formation and distal outgrowth instead of scarring. This possibility is

supported by the observations that fibroblast migration in amputated

limbs of axolotls is severely reduced both by treatment with either a
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PDGFR inhibitor (Currie et al., 2016) orBe (Cook&Seifert, 2016), since

exposure of macrophages to Be induces a persistent inflammatory

phenotype, upregulating production of TNF-𝛼 and reactive oxygen

species, and is proapoptotic for these cells (Sawyer et al., 2005b).

Both of these new regeneration studies with axolotl limbs support the

view that PDGF production by macrophages is one of their functions

required for the fibroblastic movements which orchestrate growth

and development of other lineage-specific blastema cells, a function at

least partially inhibited by persistent inflammation in the presence of

Be, interfering with successful regeneration.

4 CONCLUSION

As in models of organ regeneration with direct clinical relevance,

replacement of amputated appendages in fish and amphibians is now

clearly recognized to depend on both the immune and mesenchymal

cells present in the injured tissues during the transition from inflam-

mation to regeneration. As with many mammalian models of organ

regeneration, the shifting phenotypes and regulatory activities of local

macrophages and fibroblasts are likely to play several roles in resolving

the initial inflammatory processes and setting conditions necessary for

epimorphic regeneration. The increasinglywell recognized importance

of fibroblasts and their ECM products for establishing the regenera-

tion blastema highlights the requirement that proliferation and gene

activity in these cells be tightly regulated, at least in part by factors

derived from macrophages, to prevent fibrosis and provide a suit-

able framework for the growth and development of other cell lineages

during regeneration. As major antigen-presenting cells, macrophages

also control activation of lymphocytes, the diverse cells that medi-

ate adaptive immunity. Many activities of lymphocytes are undevel-

oped or defective in animals with exceptional regenerative capacity

and there is evidence that thismayalsohold true forAcomys, the gerbil-

like rodent with a remarkable property of skin regeneration. Fur-

ther investigations of inflammation and interactions between immune

and mesenchymal cells in animals with good organ regeneration

ability will provide more complete understanding of the phylogenic

basis of the regeneration process and yield important insights lead-

ing to improved functional restoration after clinically relevant organ

damage.
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NOTE ADDED IN PROOF

A new paper from the Seifert lab (Simkin et al., 2017, Macrophages

are necessary for epimorphic regeneration in African spiny mice. eLife

6:e24623) presents important data on the involvement of polarized

macrophages in the regenerating ear-hole system which add signifi-

cantly to the ideas presented here.
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