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Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a human pathogen
responsible for outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS)
worldwide. Conventional antimicrobials trigger an SOS response in EHEC that promotes
the release of the potent Shiga toxin that is responsible for much of the morbidity and
mortality associated with EHEC infection. Cattle are a natural reservoir of EHEC, and
approximately 75% of EHEC outbreaks are linked to the consumption of contaminated
bovine-derived products. This review will discuss how EHEC causes disease in humans
but is asymptomatic in adult ruminants. It will also analyze factors utilized by EHEC as it
travels through the bovine gastrointestinal (GI) tract that allow for its survival through the
acidic environment of the distal stomachs, and for its ultimate colonization in the recto-anal
junction (RAJ). Understanding the factors crucial for EHEC survival and colonization in
cattle will aid in the development of alternative strategies to prevent EHEC shedding into
the environment and consequent human infection.
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INTRODUCTION
Verocytoxin-producing Escherichia coli (VTEC), also known as
Shiga-toxin producing E. coli (STEC), is a food-borne zoonotic
agent associated with outbreaks worldwide that poses a serious
public health concern. Over 380 different VTEC serotypes have
been isolated from humans and animals, but only a small num-
ber of serotypes are linked to human disease. Serotype O157:H7
is the major source of E. coli food poisoning outbreaks in the
United States (US) (Karmali et al., 2010). Characteristics of E. coli
serotype O157:H7 (EHEC) infection includes abdominal cramps
and bloody diarrhea, as well as the life-threatening complica-
tion hemolytic uremic syndrome (HUS) (Karmali et al., 1983;
Karmali, 1989; Griffin and Tauxe, 1991). Karmali and colleagues
first identified VTEC as the infectious agent responsible for HUS
after correlating E. coli infection in patients with diarrhea and
HUS with the presence of a toxin that produced significant irre-
versible cytotoxic effects in Vero cells (Konowalchuk et al., 1977;
Karmali et al., 1985). O’Brien and LaVeck later purified the toxin
from an enteropathogenic strain of E. coli and determined that the
toxin was structurally and antigenically similar to the Shiga toxin
produced by Shigella dysenteriae type 1 (O’Brien and LaVeck,
1983).

Shiga toxin is composed of two major subunits, designated
A and B (O’Brien et al., 1992; Paton and Paton, 1998). The B
subunit forms a pentamer that binds to globotriaosylceramide-3
(Gb3) (Lingwood et al., 1987), and this specificity determines
where Shiga toxin mediates its pathophysiology. The A subunit
exhibits an RNA N-glycosidase activity against the 28S rRNA
(Endo et al., 1988) that inhibits host protein synthesis and induces
apotosis (Sandvig, 2001; Karmali et al., 2010). In humans, EHEC
colonizes the large intestine (Phillips et al., 2000). Shiga toxin
released by EHEC binds to endothelial cells expressing Gb3,

allowing absorption into the bloodstream and dissemination of
the toxin to other organs (Sandvig, 2001). The tissues and cell
types expressing Gb3 varies among hosts, and the distribution
of Gb3 targets the pathology of toxin-mediated disease to cells
expressing Gb3 (Pruimboom-Brees et al., 2000). For example,
renal glomerular endothelium expresses high levels of Gb3 in
humans, and Shiga toxin production results in acute renal failure,
thrombocytopenia, and microangiopathic hemolytic anemia, all
typical characteristic of HUS (Karmali et al., 1983).

Currently no treatment is available for EHEC infections
(Goldwater and Bettelheim, 2012). The use of conventional
antibiotics exacerbates Shiga toxin-mediated cytotoxicity. In an
epidemiology study conducted by the Centers for Disease Control
and Prevention, patients treated with antibiotics for EHEC enteri-
tis had a higher risk of developing HUS (Slutsker et al., 1998).
Additional studies support the contraindication of antibiotics
in EHEC infection; children on antibiotic therapy for hemor-
rhagic colitis associated with EHEC had an increased chance
of developing HUS (Wong et al., 2000; Zimmerhackl, 2000;
Safdar et al., 2002; Tarr et al., 2005). Antibiotics promote Shiga
toxin production by enhancing the replication and expression
of stx genes that are encoded within a chromosomally inte-
grated lambdoid prophage genome. Stx induction also promotes
phage-mediated lysis of the EHEC cell envelope, allowing for
the release and dissemination of Shiga toxin into the environ-
ment (Karch et al., 1999; Matsushiro et al., 1999; Wagner et al.,
2002).

Cattle are a major reservoir of EHEC, but unlike in humans,
EHEC colonization in adult ruminants is asymptomatic (Cray
and Moon, 1995; Brown et al., 1997; Dean-Nystrom et al., 1997;
Woodward et al., 1999; Wray et al., 2000). While humans express
Gb3 on their vascular endothelium that promotes much of the
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pathophysiology associated with Shiga toxin, cattle lack vascu-
lar expression of Gb3 (Pruimboom-Brees et al., 2000). Although
Gb3 receptors are detected in the kidney and brain of cattle,
Shiga toxin was unable to bind to the blood vessels in the cat-
tle gastrointestinal (GI) tract (Pruimboom-Brees et al., 2000). As
a result, Shiga toxin cannot be endocytosed and transported to
other organs to induce vascular damage in cattle. In contrast to
humans where EHEC colonizes in the colon and causes electrolyte
imbalances, EHEC colonizes the recto-anal junction (RAJ) of cat-
tle where it is impervious to the effects of Shiga toxin (Naylor
et al., 2003). The insensitivity to Shiga toxin and differential pref-
erence in colonization sites make cattle a more tolerant host for
EHEC and may contribute to persistence and transmission of this
human pathogen.

Cattle transmit EHEC to humans by shedding the pathogen
in their feces. Fecal shedding may be brief or more extended
(Rice et al., 2003). A proportion of positive animals called “super
shedders” excrete more EHEC than others. Although the “super
shedders” comprise a small ratio of cattle, it has been estimated
that they may be responsible for over 95% of all EHEC bacteria
shed (Omisakin et al., 2003; Chase-Topping et al., 2007). Evidence
supports that high concentrations of EHEC in feces or pro-
longed shedding may result from intimate colonization at the RAJ
(Cobbold et al., 2007). Once shed into the environment, humans
acquire EHEC by consuming contaminated bovine-derived prod-
ucts such as meat, milk, and dairy products (Armstrong et al.,
1996) or contaminated water, unpasteurized apple drinks, and
vegetables (Cody et al., 1999; Hilborn et al., 1999; Olsen et al.,
2002). Direct contact with ruminants at petting zoos or through
interactions with infected people within families, daycare centers,
and healthcare institutes represent another source of EHEC trans-
mission (Spika et al., 1986; Carter et al., 1987; Rowe et al., 1993;
Rangel et al., 2005). Bovine manure can harbor viable EHEC for
more than seven weeks (Wang et al., 1996), and the long-term
environmental persistence of EHEC poses an increased risk for
transmission of EHEC through the fecal-oral route through wash-
off to nearby farms or in contaminated grass consumed by other
cattle. By gaining a better understanding of how EHEC colonizes

the cow, methods can be devised to limit fecal shedding of EHEC
into the environment and limit sources of contamination and
consequent human infection.

FACTORS IMPORTANT FOR EHEC SURVIVAL AND
COLONIZATION IN CATTLE
ACID RESISTANCE SYSTEMS
EHEC adapts an oral-fecal lifestyle in cattle and other rumi-
nants. After being ingested, EHEC enters the rumen of cattle.
In order to reach the RAJ for colonization, EHEC must first
breach the acidic barrier of the stomachs. EHEC has an intri-
cate acid resistance (AR) system that enables it to survive through
the acidic environment of the stomach, as exemplified by its low
infectious dose of 10–100 colony-forming units (Tuttle et al.,
1999). Three important AR systems have been identified in E. coli:
the AR system 1 (glucose-repressed or oxidative), AR system 2
(glutamate-dependent), and AR system 3 (arginine-dependent).
The relative importance of each AR system in vivo is still being
delineated; however, induction and function of these systems
in vitro varies depending on the type of culture medium used and
growth conditions (Lin et al., 1995, 1996; Hersh et al., 1996).

Among the three AR systems, the mechanism of
glucose-repressed AR system is the least understood. The
glucose-repressed AR system is activated in stationary phase in
Luria-Bertani broth (LB) and repressed by addition of glucose
to culture media. Activation of the glucose-repressed AR system
depends on two global regulators: the cAMP receptor protein
(CRP), and the stress response alternative sigma factor RpoS.
(Castanie-Cornet et al., 1999). Calves inoculated with equal
numbers of wild type EHEC and an rpoS mutant strain shed the
rpoS mutant significantly less than the wild type, indicating an
important role for RpoS and the glucose-repressed AR system in
passage through the GI tract of cattle (Price et al., 2000). Since
RpoS is a global stress regulator, eliminating this transcription
factor may have other pleiotropic effects that can alter the ability
of EHEC to colonize the host.

The glutamate-and arginine-dependent AR systems have sim-
ilar modes of action (Figure 1). The glutamate decarboxylases

FIGURE 1 | The model of acid resistance system 2 and 3 (A) and the

schematic diagram of the formation of attaching and effacing (A/E)

lesions (B). EHEC injects effector proteins such as Tir and EspFu into the host

cytoplasm through the T3SS (1). Tir localizes to the host membrane and binds
to intimin to intimately attach the bacteria to the cell. Tir and EspFu recruit
host factors (2) to subvert host cytoskeleton and actin polymerization (3).
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GadA and GadB and the arginine decarboxylase AdiA convert
glutamate or arginine to γ-amino butyric acid (GABA) or agma-
tine, respectively, by displacing the α-carboxyl group of the amino
acids with a proton that is transported from the environment
into the cytoplasm. GABA and agmatine are exchanged for new
amino acids through their cognate antiporters GadC and AdiC,
respectively (Hersh et al., 1996; Castanie-Cornet et al., 1999).
The uptake of the protons increases the internal pH and helps
maintain pH homeostasis.

Regulation of the glutamate-dependent AR system is com-
plex and varies with different environmental conditions (detailed
review in Foster, 2004). Of the three AR systems, the glutamate-
dependent AR system provides the highest level of acid protection
(Lin et al., 1996; Castanie-Cornet et al., 1999). Additionally,
Price et al. demonstrated that among the three AR systems,
glutamate-dependent AR system is necessary for passage through
the acidic stomachs and colonization in cattle. Interestingly, the
glutamate-dependent AR system was not required for EHEC sur-
vival in acidic foods such as apple cider. Instead EHEC utilizes
the glucose-repressed AR system to withstand the acid challenge
when stored in foods containing low pH (Price et al., 2004). This
versatility allows EHEC to utilize different AR systems to persist
in diverse environments. Further investigation into the mecha-
nisms EHEC uses to activate the AR systems in cattle will be
useful for developing new techniques to reduce EHEC survival
through the acidic stomachs and its subsequent colonization at
the RAJ.

FORMATION OF ATTACHING AND EFFACING LESIONS
ON EPITHELIAL CELLS
After passage through the acidic barrier, EHEC forms attach-
ing and effacing (A/E) lesions on the mucosal epithelium at the
RAJ, allowing for its colonization at the RAJ. A/E lesions are
characterized by destruction of microvilli, intimate attachment
of the bacteria to the cell, and accumulation of polymerized
actin beneath the site of bacterial attachment to form a pedestal-
like structure cupping individual bacteria (Figure 1) (Nataro and
Kaper, 1998). The genes required for formation of A/E lesions are
encoded within the chromosomal pathogenicity island known as
the locus for enterocyte effacement (LEE) (McDaniel et al., 1995;
Elliott et al., 1998). The LEE consists of approximately 41 genes,
divided into five major operons (LEE1-5), that encode for a type 3
secretion system (T3SS), regulators, chaperones, and effector pro-
teins. The LEE-encoded regulator (Ler), the first gene encoded in
LEE1, acts as the master transcription factor of the pathogenicity
island, regulating expression of the entire LEE (Elliott et al., 1998;
Muller et al., 2009).

The structure of the T3SS resembles a “molecular syringe”
where EHEC can inject effector proteins through the T3SS
needle directly into the cytoplasm of the target cells. One
important secreted protein that is injected into the host is the
translocated intimin receptor (Tir). Once released into the host
cytoplasm, Tir is directed to the host cytoplasmic membrane
and is inserted as a hairpin-like structure, with its N- and
C-terminus in the cytoplasm and central domain exposed to
the surface. The central domain of Tir interacts with the LEE-
encoded surface protein intimin to form a tight attachment of

the bacteria to the eukaryotic cell (Kenny et al., 1997; Deibel
et al., 1998). Another non-LEE encoded effector protein, E. coli
secreted protein F-like protein from prophage U (EspFu), is
secreted into the cell and works co-operatively with Tir to
recruit host proteins to subvert host cytoskeleton and actin
polymerization. EspFu recruits actin nucleation-promoting fac-
tor Wiskott-Aldrich syndrome protein (N-WASP) and insulin
receptor tyrosine kinase substrate p53 (IRSp53), an impor-
tant regulator for actin cytoskeleton reorganization. This results
in accumulation of actin beneath attached bacteria, forming
the characteristic pedestal-like structure (Figure 1) (Campellone
et al., 2004; Weiss et al., 2009).

In vitro studies demonstrate the crucial role A/E lesion for-
mation plays in EHEC attachment to cultured cells. Various
groups have investigated whether the formation of A/E lesions
is also required for EHEC to attach to bovine intestinal epithe-
lial cells to promote colonization in cattle. Immunofluorescence
staining of tissues reveals that EHEC tightly adheres predomi-
nately to the epithelial cells in the RAJ of cattle (Naylor et al.,
2003). Dziva et al. used signature-tagged transposon mutage-
nesis (STM) to identify EHEC genes required for colonization
and survival in cattle. Transposon insertions in the genes encod-
ing for the T3SS machinery resulted in reduced fecal shedding
of EHEC (Dziva et al., 2004). Similarly, deletion of the LEE4
operon, which encodes for essential structural components of
the T3SS, resulted in reduced EHEC ability to colonize cattle
(Naylor et al., 2005). These data suggest that the secretion appa-
ratus is important for colonization in cattle. Tir and intimin
have also been shown to play an important role in intestinal
colonization in neonatal calves and piglets (Donnenberg et al.,
1993; McKee et al., 1995; Tzipori et al., 1995; Dean-Nystrom
et al., 1998) and in adult cattle and sheep (Cornick et al., 2002).
Together the data indicate that LEE-mediated adherence of EHEC
to intestinal epithelia is important for promoting colonization
in cattle.

In recent years, several non-LEE encoded effectors—EspJ,
NleB, NleE, NleF, and NleH—also have been shown to influence
EHEC survival and colonization. Although EspJ is not required
for A/E lesion formation in HEp-2 cells or human intestinal
explants, in vivo studies in mice show that EspJ aids in the pas-
sage of EHEC through the host’s intestinal tract, suggesting a role
for EspJ in host survival and pathogen transmission (Dahan et al.,
2005). The mouse pathogen Citrobacter rodentium, which shares
homology of many virulence factors with EHEC, had reduced
colonization of nleB, nleH, nleF mutants in mice compared to
the wild-type strain (Kelly et al., 2006; Echtenkamp et al., 2008;
Garcia-Angulo et al., 2008). Wild-type EHEC also outcompeted
the nleF mutant in gnotobiotic piglets for colonization of the
piglet colon and RAJ (Echtenkamp et al., 2008). Co-infection of
lambs with wild-type EHEC and an nleH mutant demonstrated
a competitive advantage of the wild-type strain over the mutant
(Hemrajani et al., 2008). In contrast, Hemrajani et al. found that
the nleH mutant colonized the bovine gut more efficiently than
wild-type EHEC. While studies in mice and other animal models
provide insight into the roles of EHEC virulence genes, further
studies are required to evaluate the role that these EHEC effectors
perform in cattle.
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REGULATION OF ACID FITNESS AND LEE GENES BY
QUORUM-SENSING
Acid resistance and formation of A/E lesions are crucial for EHEC
to establish a persistent oral-fecal lifestyle in cattle. Elucidating
the mechanisms by which EHEC regulates these two systems in
its natural reservoir provides insight for developing better pre-
ventative strategies to reduce EHEC carriage. Progress toward
understanding how EHEC regulates both acid resistance and the
LEE genes was made recently with the discovery that the tran-
scriptional regulator SdiA regulates both transcription of the
LEE genes for A/E lesion formation (Kanamaru et al., 2000;
Hughes et al., 2010) and the gad genes for acid resistance in cat-
tle (Kanamaru et al., 2000; Hughes et al., 2010). A member of the
LuxR family of transcription factors, SdiA senses acyl-homoserine
lactones (AHLs) produced by other bacteria.

Bacteria coordinate their behavior through the production
and sensing of chemical signals, a mechanism termed quorum-
sensing (Fuqua et al., 2001). The LuxR/I system in Vibrio fischeri
represents the prototypical quorum-sensing system (Nealson
et al., 1970; Nealson and Hastings, 1979). Briefly, through LuxI,
V. fischeri synthesizes AHLs, which diffuse freely across the bac-
terial membrane into the environment. When the bacterial pop-
ulation reaches a sufficient density, AHLs diffuse back into the
bacterial cytoplasm where they bind to the transcriptional regu-
lator LuxR. LuxR senses AHLs through an AHL-binding region
at the amino terminus, enabling LuxR to bind DNA through a
helix-turn-helix at the carboxyl terminus to modulate expression
of target genes (Nealson et al., 1970; Fuqua et al., 2001; Lupp et al.,
2003).

Unlike V. fischeri, EHEC lacks a LuxI-like synthase; therefore,
SdiA function depends on AHLs produced by other bacteria in
the environment (Ahmer et al., 1998). Hughes et al. found that
AHLs present in the rumen of cattle activate the gad genes that are
vital to acid resistance for the passage through the acidic stom-
achs, and repress the LEE genes to prevent colonization within
the rumen. EHEC lacking the SdiA sensor results in significantly
reduced acid survival compared to wild type both in vitro and in
cattle rumen (Hughes et al., 2010). Additionally, wild-type EHEC
outcompetes the sdiA mutant for colonization at the RAJ (Hughes
et al., 2010). Based on these studies, a model has been proposed
in which SdiA senses AHLs in rumen to activate acid fitness genes
that allow EHEC passage through the acidic stomachs but also
downregulate LEE genes to ensure colonization does not occur
in hostile environments. EHEC does not encounter AHLs beyond
the rumen, alleviating the SdiA-mediated repression of the LEE
and allowing EHEC to colonize the RAJ (Figure 2). Intervention
in quorum-sensing provides an alternative strategy to reduce car-
riage in cattle and subsequently, shedding and contamination of
EHEC in the environment.

Developing strategies to reduce EHEC survival and colo-
nization in cattle have been an ongoing challenge. Strategies
to increase cattle resistance to EHEC colonization include sup-
plementation with probiotics, administration of antibiotics,
and vaccination against T3SS machinery (detailed review in
Callaway et al., 2009; Jacob et al., 2009). Conflicting results
from these studies has thwarted efforts to control EHEC pop-
ulations within cattle (Potter et al., 2004; Van Donkersgoed
et al., 2005; Peterson et al., 2007; Sargeant et al., 2007) and

FIGURE 2 | Proposed EHEC SdiA-AHL signaling in cattle.
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emphasizes the necessity for additional research to be performed.
The dearth of knowledge on the mechanisms regulating intesti-
nal colonization of ruminants by EHEC has hindered these
strategies. With cattle being the major reservoir of EHEC and

bovine-derived products as the prominent source of EHEC
outbreaks, understanding the biology of EHEC colonization
in cattle is vital to the development of new preventative
strategies.
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