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Abstract

Objective

To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning

(DL) techniques for automated or semi-automated classification of myositis.

Methods

Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis

(PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this

study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were

acquired. We considered three problems of classification including (A) normal vs. affected

(DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or

PM). We studied the use of an automated DL method using deep convolutional neural net-

works (DL-DCNNs) for diagnostic classification and compared it with a semi-automated con-

ventional ML method based on random forests (ML-RF) and “engineered” features. We

used the known clinical diagnosis as the gold standard for evaluating performance of muscle

classification.

Results

The performance of the DL-DCNN method resulted in accuracies ± standard deviation of

76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the

ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and

68.9% ± 2.5% for (C).

Conclusions

This study demonstrates the application of machine learning methods for automatically or

semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Com-

pared to the conventional random forest machine learning method used here, which has the

drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based
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classification by and large improved the accuracies in all classification problems while pro-

viding a fully automated approach to classification.

Introduction

Imaging plays an important role in the assessment of muscle diseases, providing additional

information to the clinician about the presence, severity, extent and activity of the disease

[1, 2]. Although MRI has been considered the gold standard imaging modality for myopathies,

it can be expensive, time-consuming, and difficult to obtain in patients with implants and

pacemakers.

In recent years, the use of muscle ultrasound has become an important evaluation tool in

neuromuscular diseases given its ease of use, lack of contraindications, and improved resolu-

tion for soft tissue structures [3–5]. In myopathies like muscular dystrophies, where increased

connective tissue and fatty replacement is well visualized as increased echogenicity [6–8],

quantitative assessments of echointensity have been found to correlate with functional status

and worsening disease [9, 10]. Ultrasound however, can be subject to issues of operator and

interpreter bias, and given dependence on echointensity changes, there is difficulty comparing

results across different systems, hampering its widespread use. Various methods including

quantitative ultrasound, or backscatter analysis [11, 12] have been employed to overcome

some of these problems.

Our study focuses on myositis, an immune-mediated inflammatory muscle disease. Derma-

tomyositis (DM) and polymyositis (PM) are treatment responsive diseases, affecting primarily

proximal muscles, with skin involvement in DM. Inclusion body myositis (IBM) preferentially

affects the quadriceps and distal limb muscles and is refractory to standard treatment leading

to severe muscle atrophy and fat replacement. Muscle and soft tissue changes in myositis can

take the form of edema within and around muscles, fatty infiltration, subcutaneous reticula-

tion and calcification [13]. Detecting and quantifying pathology as seen on ultrasound in the

various stages and types of diseases is a challenging problem for this group, particularly for

those changes which can reverse with treatment. Muscle inflammation and edema in the

important active stage of disease do not seem to be discriminated well by a simple assessment

of muscle echointensity. An early study using muscle ultrasound in myositis showed lower

echointensities with increased muscle thickness in acute myositis [14]. Other studies in juve-

nile dermatomyositis however, have found that acutely, muscle echointensity first increases

then normalizes with successful therapy [15]. The chronic stage of myositis where there is fatty

replacement and fibrosis is easily discernible however, with higher echointensities and

decreased muscle thickness [14]. Studies in IBM show good discrimination for the disease

when screening affected muscles like the flexor digitorum profundus or gastrocnemius

[16, 17].

We hypothesized that given the varying types of pathologies involved in myositis, and the

different structures affected, extraction of multiple features or whole image analysis may be

more ideal for the task of myositis evaluation. For example in edema, there may be a loss of

perimysial echoes and a “see through” effect where underlying bone is still noted to be distinct

despite increase in echointensity [3]. In dermatomyositis, there can be thickening of the fascia,

subcutaneous inflammation, and patchy muscle involvement [18, 19]. These types of changes

may only be appreciated by considering the entire image and not the muscle alone.

Computer-aided diagnosis of myositis from muscle ultrasound
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In this study, we investigate the use of computer-aided diagnostics (CAD), taking into

account the entire image, which can make the muscle assessments more reproducible and

accurate [20, 21]. Computer algorithms can leverage, detect and quantify image biomarkers

and features which an operator may not always be able to do in a consistent fashion. The emer-

gence of novel machine-learning techniques, including deep learning, may therefore have rele-

vance for computer aided myopathy diagnostics.

A simplified taxonomy of terms in that domain and used subsequently in this paper is as

follows: artificial intelligence (AI) is the broad field of computer science concerned with

designing systems capable of intelligent reasoning and interacting with the environment.

Machine learning (ML) is a subfield of AI, with goals of developing algorithms that can per-

form predictions on data. This generally works by building a model from training data (e.g.,

statistical model) which then allows one to perform inference on new data, for example by

doing classification [22] or regression [23]. Deep learning (DL) [24, 25] is a subfield of ML

which makes use of neural networks consisting of a multi-layered cascade of mathematical

functions through which input data is processed to infer class labels [24, 25]. The mathematical

functions performed by the network involve millions of parameters that are automatically

learned using training data with known class labels. One technique in deep learning com-

monly used on image data is deep convolutional neural networks (DCNN), which help reduce

the vast number of network parameters by convolving the input image with small reusable

filters.

Conventional machine learning methods broadly follow a common design pattern [26, 27]:

first a set of image features that fit the problem are hand selected and computed, then these fea-

tures are pooled together to form feature vectors that are used to train and test a classifier such

as Support Vector Machines (SVM) [22, 28] or Random Forests (RF) [29, 30]. These conven-

tional approaches to engineered feature design may result in a set of features that are poorly

chosen or too specialized to a given training dataset, which can lead to suboptimal perfor-

mance and poor generalization. In general, conventional approaches may rely too much on

the skill and craft of the algorithmic designer at selecting these features.

On the other hand, deep learning methods such as DCNNs [24, 25, 31], produce features

that are not designed or selected by an engineer. For DCNNs in particular, image features are

learned automatically from the data. Additionally, DCNNs implement all stages of a process-

ing pipeline including feature computation, combination and final classification, all in an

end-to-end model. While DCNN methods also trace their roots back many decades, recent

technological and algorithmic advances have led to dramatic performance improvements for

general purpose image classification. It is now possible to achieve certain tasks (e.g., whole

image classification) with accuracy on par with humans. The factors mentioned above have

motivated the use of DCNNs for the automated muscle disease diagnostic classification task in

this study.

In sum, we explore the use of machine learning in ultrasound-based myositis assessment,

particularly the use of deep learning techniques versus more conventional methods for muscle

classification. As a starting point, the goal of this pilot study is to determine whether these

techniques can detect changes in normal muscle versus those affected by myositis and then

distinguish between types of myositis among those affected.

Materials and methods

We first describe the data acquisition used in this study. This data has been made publicly

available at https://github.com/jalbayd1/myopathy_US
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Standard protocol approvals, registrations, and patient consents

This study was approved by the Johns Hopkins University School of Medicine Institutional

Review Board. All subjects were over the age of 18 and signed informed consent prior to study

procedures.

Subjects

Normal (N) subjects were recruited from the university staff and outside volunteers. Normal

controls were required to have no neuromuscular or neurological disease, display normal

strength and be in otherwise good health. Patients with polymyositis (PM), dermatomyositis

(DM) and inclusion body myositis (IBM) were recruited from the Johns Hopkins Myositis

Clinic in Baltimore, Maryland (Table 1). Patients were classified as dermatomyositis if they

met Bohan and Peter criteria for definite or probable dermatomyositis [32, 33], or dermatomy-

ositis by muscle biopsy using European Neuromuscular centre (ENMC) criteria [34]. Patients

were classified as inclusion body myositis if they met 2011 ENMC criteria for clinicopathologic

or clinically defined IBM [35]. Patients were classified as polymyositis if they met Bohan and

Peter criteria for polymyositis with a compatible muscle biopsy, or carried a myositis specific

or associated antibody and were not DM or IBM.

Normal subjects were screened by questionnaire and strength testing. For patients with

myositis, the creatine phosphokinase (CPK) level closest to the time of ultrasound evaluation

was recorded, along with duration of symptoms of weakness (in months). All subjects under-

went muscle strength testing, using the Medical Research Council scale which was then trans-

formed to a modified Kendall’s 0-10 scale [36] and averaged per individual. Myositis specific

and associated antibodies were recorded when present.

Ultrasound acquisition protocol and tissue delineation

Ultrasound images were acquired using a GE Logiq E system (GE, Fairfield, CT, USA) outfit-

ted with a 12 MHz linear array transducer. Imaging parameters remained constant throughout

the study with frequency at 10 Mhz, gain at 40, and dynamic range at 87 with cross beam and

other enhancers turned off. Seven muscle groups were imaged bilaterally per subject (deltoids,

biceps, flexor carpi radialis, flexor digitorum profundus, rectus femoris, tibialis anterior and

gastrocnemius). Depth was set at 4 cm for all muscles except the rectus femoris, which was set

at 6 cm. The focal zones (four focal points) were distributed evenly along the depth of the

image. In this protocol, we controlled for position on the muscle, with a maximum of three B-

mode images independently acquired of the transverse (cross sectional) view of each muscle to

account for changes in echointensity with slight positional changes of the probe. For a few

patients, only two views were captured for some muscles. In the end, this resulted in a dataset

of 3214 muscle images captured for our experiments. The resulting input images had pixel res-

olutions (width × height) of 476 × 499 and 318 × 499 when imaging at depths of 4 cm and 6

cm, respectively. Examples of ultrasound images for healthy and diseased individuals are

shown in Fig 1 for each muscle group.

Table 1. Types of pathologies considered.

Abbreviation Pathology/Disease Notes

N Normal Control, no muscle disease

PM Polymyositis Muscle inflammation, proximal muscle involvement

DM Dermatomyositis Muscle and skin inflammation, proximal muscle involvement

IBM Inclusion Body Myositis Treatment refractory, with distal muscle involvement

https://doi.org/10.1371/journal.pone.0184059.t001
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Fig 1. Example ultrasound images. Examples of ultrasound images for both healthy and affected

individuals are shown for each muscle group studied. Each row represents one muscle group. The first

column contains images of healthy individuals, whereas the second column contains images of patients

suffering from myositis. The third and fourth columns show the manual segmentations of muscle and fat

tissues corresponding to these images as red (for muscle) and green (for subcutaneous fat) overlays. The

Computer-aided diagnosis of myositis from muscle ultrasound
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Gold-standard annotation

Gold-standard assignment of disease type was performed for each muscle and was assigned by

the clinical expert (JA) based on known clinical diagnosis.

Taxonomy of 2-class classification problems studied

The study considered three separate binary (two-class) automated muscle ultrasound diagnos-

tic classification problems (Table 2). These address the following questions. First, whether

imaged muscles can be differentiated as healthy or affected by myositis. In particular, problem

(A) looks at this question with the entire cohort (N versus IBM, PM, DM), while problem (B)

uses only healthy individuals and IBM (N versus IBM), which is the most severe type of myosi-

tis given lack of treatment-response. Finally, we consider problem (C), which looks at only

those individuals with myositis: We focus our classification on Inclusion Body Myositis com-

pared to other myositis (PM, DM versus IBM) as IBM has a different type of muscle involve-

ment from the other two and is clinically treated differently.

Classification via deep learning and deep convolutional neural networks

(DL-DCNN)

We used a DCNN [24, 37–39] for automated muscle classification, a deep learning approach

capable of solving complex and generic image classification and medical image analysis tasks

[24, 40–43]. A DCNN can be thought of as a processing network consisting of numerous layers

including convolutional (e.g., filtering/matching layers), activation and pooling layers. A sim-

ple interpretation of DCNNs is that they compute image features at different levels of abstrac-

tion, using convolutional filters whose weights are obtained directly from the data by using

training via a backpropagation process. Backpropagation learns the filter weights that result in

the best fitting function, mapping the DCNN input (training muscle images) to the output

diagnostic labels. DCNNs combine the computed features and output a final probability score

characterizing whether the muscle image belongs to a specific diagnosis class (e.g., healthy vs.

diseased).

We trained a specific DCNN for each of the problems (A), (B) and (C). We used the Keras

framework with Theano as back end and the AlexNet network model [44] (Fig 2). For weight

muscle group/disease type represented by each row are as follows. A: biceps/DM. B: deltoid/PM. C: FCR/

IBM. D: FDP/IBM. E: gastrocnemius/PM. F: rectus femoris/PM. G: tibialis anterior/IBM.

https://doi.org/10.1371/journal.pone.0184059.g001

Table 2. Problems studied.

Problem Cohort inclusion Clinical problem Number of patients Number of images

A All subjects 2-class patient diagnostics

N vs. {IBM, PM, DM}

80 3214

B Normal + IBM only 2-class patient diagnostics

N vs. IBM

52 2107

C Myopathic

patients only

2-class diagnostics

{PM, DM} vs IBM

47 1901

Problem A involves mixing all types of recruited patients (normal and any type of myositis). We are interested in distinguishing normal muscle from diseased

muscle (N versus PM, DM, IBM). In Problem B, we seek to differentiate out the extremes of the spectrum on imaging, Normal from Inclusion Body Myositis

(N versus IBM). Problem C involves only affected individuals. We attempt to differentiate IBM which has a different type of muscle involvement, from PM

and DM (PM, DM versus IBM)

https://doi.org/10.1371/journal.pone.0184059.t002
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initialization we used AlexNet weights pre-trained on the ImageNet dataset [45] consisting of

over 1 million images and one thousand classes. We then replaced the (Softmax) last layer of

the network to output a two class probability for the diagnosis and retrained all the network

weights for all layers of the network by using labeled muscle ultrasound training images. Train-

ing was done using stochastic gradient descent with a learning rate = 0.001, a momentum = 0.9,

and Nesterov momentum enabled, which was used to minimize a categorical cross-entropy

loss function. Using a step decay learning rate scheduler, the learning rate was decreased with

multiplicative γ = 0.1 every 100 epochs. Training termination used an early stopping method,

which monitored the validation loss, and stopped training after 100 epochs of no

improvement.

Classification via conventional machine learning using random forests

(ML-RF)

We compared the DCNN-based automatic diagnosis to a more conventional machine learning

method consisting of first computing image features and then automatically classifying the dis-

ease using a random forest (RF) classifier. To be useful, these low-level image features must be

computed within delineated regions of the image corresponding to muscle and fat tissues.

ITK-Snap [46] (Kitware, Clifton Park, NY, USA) was used by the study physician (JA) to man-

ually segment the desired muscle and subcutaneous fat tissues from each US image. Examples

of these segmentations are shown in Fig 1. Since it required manual image delineation by a cli-

nician the method is therefore semi-automated.

Image features. We included as image features the absolute and relative measures of

echointensity for muscle and fat, as these were shown to be useful biomarkers for ultrasound

image-based myopathy diagnosis [6, 47]. We used five echointensity features including mean

and standard deviation of echointensity of muscle as well as fat, and the ratio of these means.

The computed ultrasound image features were augmented with Nakagami and Haralick image

features. Nakagami is a probability distribution well suited for modeling US echointensity

[48]. Its two parameters describing shape and scale (m, ω) can characterize scattering condi-

tions and tissue microstructure. Lastly, we also combined the above features with 13 Haralick

image features, which also characterize image texture and the underlying tissue structure

Fig 2. DCNN architecture. This figure depicts the architecture of the AlexNet DCNN used in this study. The muscle images are input at left and the final

class probabilities for categorization are output at right. Layers C1-C5 are convolutional layers, followed by fully connected layers (FC6 and FC7), and

finally by the Softmax layer outputting the probabilities of the image corresponding to each disease. (For further architectural details, see the original

AlexNet paper by Krizhevsky [44]).

https://doi.org/10.1371/journal.pone.0184059.g002
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[21, 49]. All together, these features formed a 22-element image feature vector fed to a random

forest classifier.

Random forests. Random forests (RF) [29] were used to perform classification on each

image feature vector. A random forest is a collection of random decision trees, where at each

node of the tree a randomly selected subset of features is chosen to make a decision. Training

of the tree is done using a random subset of the training data. This leads to a collection (forest)

of decision trees each of which forms a unique classifier. The collection of trees then takes as

input the computed image features vector and each tree provides a vote to automatically clas-

sify the disease.

Data analysis. For each problem (P), and each method—either the deep learning or ran-

dom forest approach—we assessed performance using the following metrics: accuracy, equal

to 100% minus the classification error rate; sensitivity, equivalent to true positive rate or recall,

which measures the proportion of positive examples that are correctly classified as positive;

specificity, the true negative rate, which measures the proportion of negative examples that are

correctly classified as negative; positive predictive value (PPV) and negative predictive value

(NPV), which are the proportions of positive and negative predictions that are actually true

positive and true negative; Cohen Kappa score, which discounts agreement occurring due to

chance; and finally, the positive and negative likelihood ratios (LR+ and LR-, respectively),

which help determine whether a test result is useful in changing the prior probability that a

condition exists. For each metric, the standard deviation of the values across different folds

(explained next) was calculated and provides a measure of the confidence interval (COI) (as

under a Gaussian assumption the 95% COI is about twice the standard deviation).

Performance was measured using a conventional N-fold cross-estimation of the above met-

rics. We split the data randomly into N = 5 subsets (folds); for each of five runs, the folds were

rotated between four folds used for training and one fold used for testing. A separate classifier

was trained for each run, for each classification method (either DL-DCNN or ML-RF), and for

each of the problems (A)–(C). For each problem and classification method an average accu-

racy and a standard deviation were then calculated across folds. When sub-dividing the data

into different folds, care was taken to ensure that all images of the same muscle—which are

considered unique entities—were always assigned to the same fold.

For the DCNN method, an additional hold out data subset was carved out as validation

data; for each N-fold run, 70% of the total data was used for training, 10% for validation, and

20% for testing. The hold-out validation data (independent from the testing data) was used to

decide when to stop training the DCNN based on the validation loss.

Results

Demographics

We recruited 80 subjects (49 female and 31 male) including 33 normal, 19 IBM, 14 PM, and 14

DM. Subject ages ranged from 23 to 84 years of age; ages distributed by decade included 5 sub-

jects at 20-29 years of age, 10 at 30–39 years, 11 at 40–49 years, 17 at 50–59 years, 20 at 60–69

years, 13 at 70–79 years, and 4 at 80–89 years. Patients with IBM had a much longer duration

of disease (as measured from onset of weakness) than the PM and DM groups. The IBM group

had moderate elevations of muscle enzyme levels (CPK) and were the weakest group overall.

Muscle enzyme levels were highest for the PM group which was made up mostly of immune-

mediated necrotizing myopathies. These patients were already on treatment and had largely

preserved strength despite muscle enzyme elevations. The DM group on the other hand had

the lowest CPK levels but displayed more weakness than the PM group likely due to multiple

factors including muscle atrophy, hypomyopathic forms and more multi-system disease.
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Antibody specificities are reported in Table 3. For patients with IBM, no myositis specific anti-

bodies were found, but the cytosolic 5’-nucleotidase 1A (c5n1A) antibody was not routinely

tested for.

Classification performance assessment and N-fold cross estimation of

accuracy

Classification performance was assessed by using the metrics described earlier in the data anal-

ysis subsection and computed for each of the problems (A)–(C) defined in Table 4.

The resulting performance metrics and standard deviation for the three classification prob-

lems (A)-(C) and each method (DL-DCNN and ML-RF) are reported in Table 4. In this table

it can be seen, in particular, that performance ranged from a high of 86.6% accuracy for the

best performing method (DL-DCNN) on classification problem (B), to a low of 68.9% for the

worst performing method (ML-RF) on problem (C). From the table one can see that that the

single metrics performance (accuracy, Kappa score, LR+ and LR-) gave a preference for the

DL-DCNN approach when compared to the ML-RF method.

It should be noted that a higher LR+ (and conversely a lower LR-) indicate better perfor-

mance. With regard to LR+ and LR- values in the results table, we can note that these do make

a difference with regard to altering the probability of the condition being present before and

after the test was performed. This is especially the case for problem B where both methods can

be said to yield a moderate to large increase in post test probability of having the disease should

the test come up positive, with a preference for the DL-DCNN method. The DL-DCNN

method also has a good influence on the post-test probability for problems A and C with

Table 3. Demographics and subject characteristics table: Mean and standard deviation (parenthesized) are provided. Duration of weakness is

expressed in units of months. N/A indicates that duration of weakness and CPK was not collected for normal subjects. For the associated antibodies rubric,

the parenthesized values indicate the number of patients falling in the category. Also the abbreviations are as described next. C5N1A: cytosolic 5’-nucleotid-

ase 1A; SRP: signal recognition particle; HMGCR: 3-hydroxy-3-methyl-glutaryl-CoA reductase; TIF1gamma: transcriptional intermediary factor 1 gamma.

IBM PM DM Normal

Number of

Subjects

19 14 14 33

Male / Female 10 / 9 2 / 12 5 / 9 14 / 19

Age 64.0 (10.2) 59.4 (14.5) 52.6 (17.1) 50.9

(15.5)

Duration of

weakness

134.8 (91.8) 63.1 (68.8) 57.2 (38.3) N/A

CPK (24-195) 566 (596) 1547 (1808) 242 (292) N/A

Strength 8.5 (2.1) 9.4 (1.6) 8.9 (2.3) 10 (0)

Associated

Antibodies

c5N1a not routinely

tested

HMGCR (6), RNP (2), Ku (2), PL-12 (2),

mitochondrial (1), SRP (1)

TIF1-γ (3), SAE (2), PL-7 (1), Jo-1 (5), PM-Scl

(1), EJ (1), Mi-2 (1)

N/A

https://doi.org/10.1371/journal.pone.0184059.t003

Table 4. Classification performance and standard deviation (parenthesized) for each problem.

P Method Accuracy Sensitivity Specificity PPV NPV Kappa LR+ LR-

A DL-DCNN 76.2 (3.1) 81.6 (3.6) 68.6 (6.1) 79.1 (3.3) 72.1 (4.1) 0.51 (0.07) 2.69 (0.66) 0.27 (0.05)

ML-RF 72.3 (3.3) 77.3 (1.8) 65.0 (6.8) 76.3 (3.8) 66.4 (3.1) 0.42 (0.07) 2.29 (0.56) 0.35 (0.05)

B DL-DCNN 86.6 (2.4) 81.2 (6.0) 89.9 (2.6) 83.0 (3.5) 89.0 (3.0) 0.71 (0.05) 8.43 (2.19) 0.21 (0.07)

ML-RF 84.3 (2.3) 71.8 (4.5) 91.9 (2.2) 84.3 (3.8) 84.4 (2.1) 0.66 (0.05) 9.35 (2.54) 0.31 (0.05)

C DL-DCNN 74.8 (3.9) 66.6 (4.7) 80.7 (5.8) 71.6 (6.1) 77.1 (2.7) 0.48 (0.08) 3.71 (1.19) 0.42 (0.06)

ML-RF 68.9 (2.5) 59.2 (2.1) 75.9 (4.2) 63.9 (4.0) 72.1 (1.4) 0.35 (0.05) 2.51 (0.42) 0.54 (0.04)

https://doi.org/10.1371/journal.pone.0184059.t004
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regard to positive values and negative values when compared to ML-RF. The same can be said

on the influence on the post probability should the test come up negative.

Discussion

In past studies, parameters such as muscle echointensity, relative echointensity of muscle com-

pared to subcutaneous fat, as well as texture characteristics were shown to be useful for neuro-

muscular diseases [50–52]. These were also used in our conventional ML-RF method. In this

study, compared to ML-RF, deep-learning-based classification by and large improved accuracy

in all problems. This is interesting and supports the notion that features that are manually

selected—while effective—are probably suboptimal or may not be exhaustive for full disease

characterization when compared to data-driven features found via deep learning. We surmise

that other aspects not captured by these selected features are somehow computed by the deep

learning approach. The enhanced performance results of the DL-DCNN approach is also com-

plemented by other distinct advantages. As opposed to the ML-RF approach used in this

study, which required the clinician to perform manual muscle delineation to yield usable fea-

tures (semi-automated), the DL-DCNN approach is applied to the entire image, and is also

fully automated which would have implications for simpler clinician workflows.

The overall performance results obtained in this small study are encouraging. The best

results were obtained for problem B, which involves marked differences with regard to muscle

condition and image presentation—i.e., normal muscles versus IBM, where atrophy and highly

echogenic muscle predominate. By contrast, Problem A, which considers the problem of nor-

mals versus all myositis in general—yields images with many more variations of presentation

for the computer to disambiguate in terms of differences in pathology, which likely explains

lower performance. Indeed, our sample of patients with PM, DM, and IBM span a range of

acute to chronic cases, mild to moderate disease, with patients already on treatment (except

for IBM). This is actually more challenging for the algorithm given the variety of pathology

and the inclusion of near-normal appearing muscles that are instead annotated as diseased

cases. This fact can negatively influence the computer aided assessment by providing training

exemplars of images that seem normal but belong to cases annotated as affected. We would

expect that obtaining more homogeneous patient groups would significantly improve perfor-

mance. Performance was lowest for distinguishing treatable (PM, DM) versus treatment

refractory (IBM) disease. This is not surprising given the fact that it involves only myositis var-

iants and has the smallest cohort of patients and images to train from, including nearly half of

the images and patients when comparing problem (C) to problem (B)

Of note, this study used all muscle data irrespective of muscle type for machine inference of

the disease type. This also is a challenging problem in that the machine would have to learn to

recognize together both the muscle type and the pathology case. A simpler method—also likely

to yield more accurate results—would consist of posing the diagnostic inference problem for

each muscle separately: this would essentially result in “informing” the algorithm of the muscle

type and would likely lead to better performance given that each muscle looks different, and

that subgroups of myositis affect certain muscles preferentially. We hope to pursue this type of

analysis differentiating between muscle types (as was done for example in a study of myositis

patients, which concentrated only on biceps brachii [21]) as well as grouping all the muscles

together per each individual in the future. This however would also require more patient data

and was a limitation of our study.

Given the rarity of this disease and the difficulties with recruitment, our population repre-

sents a real world convenience sample, and the small numbers represent a significant limita-

tion. Another limitation was that patients and controls were not age and sex matched. It has
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been shown that muscle echointensity does increase slightly with age [53, 54], and diseased

muscle usually shows much higher echointensities than expected for age [14]. Though not

matched, we did include healthy controls ranging from the age of 23 to 74 which would also

allow for assessment of other age-related changes in parameters. Disease duration could also

not be controlled as patients with IBM present with slowly progressive weakness leading to

later detection, versus DM and PM which come to the attention of a physician earlier due to

symptoms. Another point of contrast for the groups is that effective treatment in DM and PM

can improve weakness as well as the quality of the muscle as seen on ultrasound, and this is

not true of IBM where changes continue to accrue. Therefore, rigorous matching to control

for differences in the patient groups could not be done for this population. However, given

inherent differences in the nature of these diseases which are actually capitalized on clinically,

we feel that results shown are still valid.

For this study, clinical exam, strength testing, antibody results, and histopathologic criteria

were used to clinically categorize patients into disease subgroups and ensure the exclusion of

IBM from the PM group. This served as the gold standard adjudication of disease categories.

Further correlation with these parameters was beyond the scope of this study but is of interest

for future investigation. The incorporation of additional clinical information such as muscle

strength, muscle enzyme levels, treatment and the like, along with image data to perform

machine inference, may potentially enhance classification performance [55] and could mimic a

clinician’s process. The addition of this ‘side channel’ information in DCNNs is a potential ave-

nue for future improvement of the myositis diagnostic algorithm, particularly since distinguish-

ing between types of disease is usually difficult when considering the result of only imaging [56]

Recognizing the limitations of our study, we hope to accrue more patients in each disease

subgroup, including enough with both early and late disease to allow for more granular analy-

ses, as well as be able to separate out those with inactive disease (and near-normal appearing

muscles), from those with clinical activity. We also plan to compare ultrasound findings with

MRI, and when available histopathology, to understand the nature of the changes detected

(edema, fat replacement, etc). With improvement in classification performance, we hope to

test these methods on a different cohort, particularly using a different ultrasound system.

While this study sought to classify images into disease subtypes in very challenging condi-

tions, other aspects of the diagnostic problem may constitute good candidate applications for

the use of machine learning methods: these include for example looking at longitudinal fol-

low-up in known disease, or classifying acute versus chronic muscle changes (picking up

edema).

Summing up all considerations, and taking into account the aforementioned challenges,

the results of this study, while preliminary and exploratory, provide an instructive foray into

the use of deep learning methods for muscle disease classification. We demonstrate the poten-

tial of combining machine learning and deep learning methods in particular, with muscle

ultrasound, for myositis assessment. To our knowledge, this is the first application of deep

learning to muscle imaging. Therefore, one of the values of this pilot study is in laying a foun-

dation and providing a baseline performance assessment for future work in this arena.

Conclusion

This study considers the development of machine learning methods for automatically or semi-

automatically classifying inflammatory muscle disease, in particular myositis. We show that

when compared to the conventional machine learning method that requires careful clinician

delineation, the deep learning approach used here always performs better, while being fully

automated and requiring no user intervention.
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