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RIPK3 promotes cell death and NLRP3
inflammasome activation in the absence of MLKL
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Cathrine Hall1,2, Sukhdeep Kaur Spall1,2, Holly Anderton1,2, Seth L. Masters1,2, Maryam Rashidi1,2, Ian P. Wicks1,2,

Warren S. Alexander1,2, Yasuhiro Mitsuuchi5, Christopher A. Benetatos5, Stephen M. Condon5,

W. Wei-Lynn Wong6, John Silke1,2,*, David L. Vaux1,2,* & James E. Vince1,2,*

RIPK3 and its substrate MLKL are essential for necroptosis, a lytic cell death proposed to

cause inflammation via the release of intracellular molecules. Whether and how RIPK3 might

drive inflammation in a manner independent of MLKL and cell lysis remains unclear. Here we

show that following LPS treatment, or LPS-induced necroptosis, the TLR adaptor protein TRIF

and inhibitor of apoptosis proteins (IAPs: X-linked IAP, cellular IAP1 and IAP2) regulate RIPK3

and MLKL ubiquitylation. Hence, when IAPs are absent, LPS triggers RIPK3 to activate cas-

pase-8, promoting apoptosis and NLRP3–caspase-1 activation, independent of RIPK3 kinase

activity and MLKL. In contrast, in the absence of both IAPs and caspase-8, RIPK3 kinase

activity and MLKL are essential for TLR-induced NLRP3 activation. Consistent with in vitro

experiments, interleukin-1 (IL-1)-dependent autoantibody-mediated arthritis is exacerbated in

mice lacking IAPs, and is reduced by deletion of RIPK3, but not MLKL. Therefore RIPK3 can

promote NLRP3 inflammasome and IL-1b inflammatory responses independent of MLKL and

necroptotic cell death.
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T
he mammalian inhibitor of apoptosis (IAP) proteins,
X-linked IAP (XIAP), cellular IAP1 and IAP2 (cIAP1 and
cIAP2) are RING domain E3 ubiquitin ligases1. XIAP

binds and directly inhibits apoptotic caspase activity (caspase-3,
-7 and -9). In contrast, cIAP1/2 indirectly protect from caspase-8-
mediated cell death on toll-like receptor (TLR) and death receptor
ligation. For example, upon binding of tumour-necrosis factor
(TNF) to tumour-necrosis factor receptor 1 (TNFR1), cIAP1/2
ubiquitylate receptor interacting protein kinase-1 (RIPK1)2–4 and
recruit the linear ubiquitin chain assembly complex (LUBAC)5.
Ubiquitylated RIPK1 and LUBAC activity propagate pro-survival
NF-kB signals, while ubiquitylation of RIPK1 also prevents its
association with a FADD-caspase-8 complex that would initiate
apoptotic cell death. In circumstances where caspase-8 activity is
low and TNF or TLR pathways are activated, cIAP1/2 also repress
programmed necrosis, known as necroptosis6. Necroptotic
signalling requires RIPK1, RIPK3 (refs 7–9) and the RIPK3
substrate, mixed lineage kinase domain-like (MLKL)10–12. On
phosphorylation by RIPK3, MLKL has been reported to interact
with lipids in the plasma membrane to induce necroptosis13–16.

Recent studies have proposed that cIAP1/2 and XIAP have
overlapping roles in the regulation of death receptors, innate
pattern recognition receptors and organism development.
Combined loss of XIAP and cIAP1, or cIAP1 and cIAP2, causes
embryonic lethality at E10.5 with a similar phenotype, and both
doubly deficient IAP embryos are rescued to BE14.5–E16.5 by
RIPK1 co-deletion17. Similarly, both XIAP and cIAP1/2 have
been reported to ubiquitylate RIPK2 to promote anti-microbial
cytokine responses following NOD receptor ligation18,19.
Combined loss of XIAP and cIAP1/2 also enhances
spontaneous formation of the ripoptosome, a death signalling
complex comprised of RIPK1, FADD, caspase-8 and cFLIP20,21.

We have recently shown that addition of lipopolysaccharide
(LPS) or TNF to cells lacking all three IAPs, due to genetic
deletion or treatment with IAP antagonist compounds, promotes
ripoptosome formation and secretion of the potent pro-
inflammatory cytokine interleukin-1b (IL-1b), both in vitro22,
and in vivo23. TLR stimulation induces the production of inactive
precursor IL-1b (pro-IL-1b), which is cleaved following a second
stimulus that promotes NOD-like receptor (NLR) inflammasome
and associated caspase-1 activity24. In macrophages, we found
that LPS priming and IAP loss promoted RIPK3-dependent
caspase-8 activation leading to caspase-8 cleavage of pro-IL-1b.
We also demonstrated that RIPK3 specifically activates the
NLRP3–caspase-1 inflammasome22. Similarly, it was recently
reported that LPS stimulation of caspase-8-deficient dendritic
cells induces RIPK3-dependent activation of NLRP3, triggering
IL-1b-dependent endotoxic shock in vivo25. Despite these
advances, it remains unclear how IAPs repress LPS-induced

RIPK3 activity, how RIPK3 couples to the NLRP3 inflammasome,
and whether RIPK3 can induce inflammation directly or can only
do so indirectly by induction of necroptosis. We now show that in
the absence of IAPs, TLR-induced RIPK3 promotes caspase-8 to
activate the NLRP3 inflammasome in the absence of RIPK3
kinase activity and the necroptotic effector MLKL. Furthermore,
inflammatory arthritis disease persistence and ankle joint
secretion of IL-1b requires RIPK3 and caspase-8, but not
MLKL. Therefore, RIPK3 can drive inflammation in the
absence of necroptotic cell death.

Results
XIAP loss is required for LPS or TNF-induced IL-1b secretion.
IAP antagonist compounds are better tolerated in vivo when their
functional affinity for XIAP is less than for cIAP1/2 ref. 26.
We therefore tested a range of IAP antagonists with varying IAP
specificities26 to assess whether XIAP antagonism might
contribute to toxicity by inducing macrophage secretion of pro-
inflammatory cytokines, such as IL-1b (Fig. 1a–h). Only bivalent
IAP antagonists ‘termed Smac-mimetics’, which antagonized
XIAP efficiently, in addition to cIAP1/2 (030, 031, 455, Cp.A;
Fig. 1g), caused significant IL-1b secretion in LPS- or TNF-
primed wild-type (WT) bone marrow-derived macrophages
(BMDM) (Fig. 1a,d). In contrast, cIAP1/2-selective IAP
antagonists (711 (birinapant), 851, 883, LBW242) only
promoted IL-1b secretion in Xiap� /� (x� /� ) cells
(Fig. 1a,d,h). LPS or TNF priming followed by IAP antagonist
addition did not alter TNF or IL-6 secretion to the same extent
(Fig. 1b,c,e,f).

To validate the results seen using Smac-mimetic compounds,
we examined mice lacking genes for one or more IAPs
(Fig. 1h–o and Supplementary Fig. 1a–d). Significantly fewer
cIAP1fl/fl.LysMcrecIAP2� /� (c1LysMcrec2� /� ) and cIAP1fl/fl.LysMcre

Xiap� /� cIAP2� /� (c1LysMcrex� /� c2� /� ) BMDM were re-
covered compared with the yield from WT, Xiap� /� (x� /� ) or
Xiap� /� cIAP2� /� (x� /� c2� /� ) BM (Fig. 1i). Despite this,
and as previously reported by us22, when all three IAPs were
deleted we observed maximal secretion of the inflammasome
dependent cytokines IL-1b and IL-18 in BMDM stimulated with
LPS or TNF, and the levels were considerably greater than when
IAPs were antagonized by the Smac-mimetic Cp.A (Fig. 1j and
Supplementary Fig. 1a–d). Prolonged incubation with LPS also
caused IL-1b secretion in x� /� BMDM (that was enhanced by
co-deletion of cIAP2), although levels produced after 9 h were
B70-fold lower when compared with IAP triple knockout
macrophages (Fig. 1j and Supplementary Fig. 1a–d). In
contrast, co-deletion of cIAP1 and cIAP2 did not induce IL-1b
activation in primed cells (Fig. 1j and Supplementary Fig. 1c,d).
LPS-induced TNF and IL-6 secretion were similar in WT

Figure 1 | XIAP is required to repress LPS- and TNF-induced IL-1b secretion. (a–f) WT and Xiap-deficient (x� /� ) macrophages were pre-incubated with

or without (a–c) LPS (20 ng ml� 1) or (d–f) human Fc-TNF (100 ng ml� 1) for 2–3 h and cultured with or without IAP antagonists of differing IAP

specificities (see g). After 24 h, cell supernatants were assayed for (a,d) IL-1b, (b,e) TNF and (c,f) IL-6 levels by ELISA. n¼ 3 mice; Data are represented as

meanþ s.e.m., from one of three experiments. (g) Efficiency of functional XIAP antagonism by IAP antagonist compounds (þ , high; � ,low). (h) WT,

cIAP1� /� (c1� /� ), cIAP2� /� (c2� /� ) and Xiap� /� (x� /� ) BMDM were primed with LPS (20 ng ml� 1) for 3 h and cultured with the IAP antagonist

LBW242 (20 mM) or alum (320 mg ml� 1) for a further 6 h. Secreted IL-1b was measured in supernatants by ELISA. n¼ 3 mice; meanþ s.e.m. (i) Yield of

macrophages from WT and IAP mutant bone marrow after 6 days of culture with L929 cell conditioned media. n¼ 3–6 mice per genotype, meanþ s.e.m.

(j–l) WT and IAP mutant macrophages were stimulated with LPS (20 ng ml� 1) for up to 24 h, and (j) IL-1b, (k) TNF and (l) IL-6 levels were assayed in

supernatants by ELISA. n¼ 3–4 mice, data are represented as meanþ s.e.m., one of three experiments. (m) Yield of WT, c1lox/loxx� /� c2� /� , c1LysMcre

x� /� c2� /� and c1ERcrex� /� c2� /� bone marrow macrophages after 6 days of culture with L929 cell conditioned media. n¼ 3–6 mice per genotype,

meanþ s.e.m. (n,o) WT, c1lox/loxx� /� c2� /� , c1LysMcrex� /� c2� /� and c1ERcrex� /� c2� /� macrophages were pulsed for 16 h with 40-hydroxy-

tamoxifen (4HT 1000 nM) and then rested for 10 h prior to stimulation with or without LPS (50 ng ml� 1) for a further 8 h. (n) Secreted IL-1b was measured

in supernatants by ELISA, n¼ 3 mice per group; c1LysMcrex� /� c2� /� (n¼ 2), meanþ s.d., one of three experiments, and (o) IL-1b and caspase-1

activation assayed by immunoblot of supernatants and lysates. Representative blot from the analysis of 4 c1ERcrex� /� c2� /� mice. Full-size immunoblots

are presented in Supplementary Fig. 9.
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and XIAP-deficient BMDM, while c1LysMcrex� /� c2� /�

macrophages secreted more TNF at later time points (Fig. 1k).
Compared with LPS, TNF-induced less cytokine secretion, but
did cause a late increase in TNF secretion in c1LysMcrec2� /�

BMDM that was greater than in WT, x� /� and x� /� c2� /�

cells (Supplementary Fig. 1c,d).
To ensure the markedly enhanced IL-1b secretion observed in

LPS- or TNF-stimulated c1LysMcrex� /� c2� /� BMDM did not
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reflect cell intrinsic defects in macrophage differentiation, we
generated BMDM from c1fl/fl ERcrex� /� c2� /� (c1ERcrex� /�

c2� /� ) mice. Unlike c1LysMcrex� /� c2� /� mice, the number of
macrophages recovered from c1ERcrex� /� c2� /� BM was
normal (Fig. 1m). Treatment of c1ERcrex� /� c2� /� BMDM for
42–48 h with 4-hydroxy-tamoxifen (4HT) efficiently deleted
cIAP1, and caused significant cell death that correlated with
increased caspase-8 processing (Supplementary Fig. 1e,f). In
contrast, 4HT treatment of c1ERcrex� /� c2� /� BMDM for 24 h
did not cause cell death but reduced cIAP1 protein levels to
that observed in c1LysMcrex� /� c2� /� cells (B50% of WT;
Supplementary Fig. 1e,f). Under these conditions, LPS stimula-
tion of 4HT-treated c1ERcrex� /� c2� /� BMDM mimicked
c1LysMcrex� /� c2� /� BMDM responses, and induced increased
levels of active IL-1b and caspase-1 (Fig. 1n,o). Therefore, the
removal of all three IAP proteins promotes maximal TNF- or
LPS-induced IL-1b secretion, but the inhibition or deletion of
XIAP is essential.

XIAP limits TLR- and TNF-induced apoptosis and necroptosis.
IL-1b secretion caused by LPS and Cp.A treatment occurs prior
to a loss of macrophage plasma membrane integrity, but these
cells eventually die22. Since XIAP critically prevents IL-1b
activation following addition of LPS, we tested whether it also
reduced apoptotic or necroptotic cell death.

Inhibiting or removing cIAP1 alone, or in combination with
cIAP2, sensitizes many cell types to death receptor triggered
caspase-8 activation and apoptosis3,4,27. Consistent with this,
cIAP1/2 targeting by 711 (birinapant) and TNF stimulation
induced significant apoptotic or necroptotic cell death of
immortalized murine dermal fibroblasts (Supplementary
Fig. 1g). Surprisingly, BMDM were more resistant to cell death
induced by cIAP1/2 targeted IAP antagonists and TNF or LPS
stimulation (Fig. 2a,b), as were c1LysMcrec2� /� macrophages
(Fig. 2c,d). In contrast, BMDM were susceptible to apoptosis
induced by LPS and TNF stimulation when XIAP was co-deleted
with cIAP1/2, or all three IAPs were targeted by IAP antagonists
(Fig. 2a–d).

XIAP directly inhibits effector caspase activity. Yet, immuno-
blots revealed that the processing of the initiator caspase,
caspase-8, was increased following LPS or TNF stimulation of
BMDM lacking XIAP, and particularly when all three IAPs were
deleted or inhibited (Fig. 2e,f and Supplementary Fig. 1f,h). In
contrast, cIAP1/2 depletion alone had less impact on LPS or
TNF-induced caspase-8 activation (Fig. 2e,f and Supplementary

Fig. 1h). These data identify XIAP as an important repressor
of both TNFR1- and TLR-induced caspase-8 activation and
apoptosis.

To examine the relative contributions of cIAP1/2 and XIAP
to necroptotic cell death, IAP gene-targeted or IAP antagonist-
treated BMDM were co-treated with the caspase inhibitor
(Q-VD-Oph) in combination with either LPS or TNF; conditions
previously shown to induce RIPK3–MLKL-dependent necrop-
tosis7,20,28. We observed that LPS- and TNF-induced necroptotic
killing of BMDM was significantly enhanced in XIAP deleted cells
(Fig. 2g), as well as IL-1b production (Supplementary Fig. 1i).
This was most striking for TNF-induced necroptosis, where in
combination with the compound 711 and caspase inhibition
(Q-VD-OPh), TNF failed to induce necroptosis of WT BMDM,
but efficiently killed XIAP-deficient BMDM (Fig. 2g).
Interestingly, RIPK3 deletion not only abrogated necroptotic
cell death, but also significantly delayed and diminished apoptotic
cell death induced by LPS and Cp.A, when compared with WT
and Mlkl� /� BMDM (Fig. 2h and Supplementary Fig. 2a,b).
Delayed apoptotic death in Ripk3� /� , but not Mlkl� /� , BMDM
correlated with reduced caspase-8 modification, possibly
ubiquitylation, that is linked to enhanced caspase-8 function
(Fig. 2i)29. Subsequently, complete abrogation of TLR and
Cp.A-induced apoptosis was observed in Ripk3� /�Casp8� /�

macrophages (Fig. 2j, Video 1 and Supplementary Fig. 2c,d). In
contrast to RIPK3-deficient cells, the loss of MLKL only blocked
necroptosis (Fig. 2h–j and Supplementary Fig. 2a,b).

Collectively, these data show that RIPK3 can promote
activation of caspase-8 apoptotic and MLKL necroptotic signal-
ling, and XIAP limits both these cell death pathways.

RIPK3 activates NLRP3 independent of MLKL. We next sought
to understand whether RIPK3–MLKL-mediated necroptotic
death signalling is also necessary for RIPK3 to induce NLRP3
inflammasome activation. Examination of responses in LPS-
primed WT, Ripk3� /� and Mlkl� /� macrophages to the
NLRP3 activator, alum, revealed similar IL-1b and TNF secretion
(Fig. 3a,b). In contrast, and as expected22, Ripk3� /� BMDM
were defective in LPS- and Cp.A-induced NLRP3–caspase-1 and
IL-1b activation (Fig. 3c,d). Surprisingly, however, caspase-1 and
IL-1b activation in Mlkl� /� BMDM was similar to that in WT
cells (Fig. 3c,d), demonstrating that RIPK3 can specifically
promote NLRP3–caspase-1 and IL-1b activation in the absence
of MLKL, and hence in the absence of necroptosis.

Figure 2 | XIAP limits LPS- and TNF-induced apoptosis and necroptosis in macrophages. (a,b) WT and x� /� BMDM were pre-incubated with or

without (a) LPS (20 ng ml� 1) or (b) TNF (100 ng ml� 1) for 2–3 h and were cultured with IAP antagonists of differing IAP specificities (500 nM; see Fig. 1g)

as indicated for 24 h. Cell death was assessed by flow cytometric analysis of PI uptake. Data are presented as the % Dead cells, n¼ 3 mice, meanþ s.e.m.,

one of two experiments. (c,d) WT, c1LysMcrec2� /� or c1LysMcrex� /� c2� /� BMDM were stimulated with (c) LPS (20 ng ml� 1) or (d) TNF (100 ng ml� 1)

and cell death (% Dead cells) measured by flow cytometric analysis of PI uptake. n¼ 3 mice, meanþ s.e.m., one of three experiments. (e) WT,

c1LysMcrec2� /� or c1LysMcrex� /� c2� /� BMDM were stimulated with LPS (20 ng ml� 1) or TNF (100 ng ml� 1) and lysates were analyzed for caspase-8

processing by immunoblot as indicated. Representative of one of two experiments. Full-size immunoblots are presented in Supplementary Fig. 10. (f) WT,

x� /� and x� /� c2� /� BMDM were primed with LPS (20 ng ml� 1) or TNF (100 ng ml� 1) and cultured with cIAP1/2-selective antagonist, 711 (500 nM),

as indicated, and lysates analyzed for caspase-8 processing by immunoblot. Representative of one of three experiments. Full-size immunoblots are

presented in Supplementary Fig. 10. (g) WT, x� /� , or x� /� c2� /� BMDM were primed for 3 h with LPS (20 ng ml� 1) or TNF (100 ng ml� 1), and as

indicated cultured with the cIAP1/2-selective antagonist, 711 (500 nM), in the presence or absence of Q-VD-OPh (20 mM, added in the last 20 min of

priming). Cell death was measured after 24 h by PI uptake. n¼ 3 mice, meanþ s.e.m., one of two experiments. (h) WT, Mlkl� /� and Ripk3� /� BMDM

were primed for 3 h with LPS and treated with Q-VD-OPh (20mM) as indicated for the final 20 min prior to addition of Cp.A (500 nM). Cell death was

measured by assaying lactate dehydrogenase (LDH) release (n¼ 3 mice per genotype). (i) Cell lysates of WT, Mlkl� /� and Ripk3� /� BMDM primed

with LPS for 3 h and treated with Cp.A (500 nM) for 6 h were analyzed by immunoblot. Representative immunoblot analysis of three mice of each

genotype. Full-size immunoblots are presented in Supplementary Fig. 10. (j) WT, Ripk3� /� , Mlkl� /� and Ripk3� /�Caspase-8� /� BMDM were primed

with Pam3Cys (2.5mg ml� 1) for 3 h, treated with Q-VD-OPh in the final 20 min of priming, and Cp.A added, as specified, for 24 h. In some cases RIP3

kinase inhibitor (R3 inhib, GSK872; 1 mM) was added 20 min prior to the addition of Cp.A. Cell death was measured by PI uptake and flow cytometric

analysis (% Dead cells). n¼ 3 mice, meanþ s.e.m.
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We also blocked caspase function to force RIPK3–MLKL
activation by treating LPS- and Cp.A-stimulated BMDM with
Q-VD-OPh. Strikingly, caspase-1 and IL-1b processing and
secretion observed in Mlkl� /� or Ripk3� /� BMDM stimulated
by LPS and Cp.A was abolished when cells were co-treated with a
concentration of Q-VD-OPh that inhibits caspase-8 but not
caspase-1 (Fig. 3c,d)22. In comparison, WT BMDM co-treated
with Q-VD-OPh secreted processed IL-1b and caspase-1 at
similar, if not higher, levels compared with LPS and Cp.A

treatment only (Fig. 3c,d). These results suggest that RIPK3 can
promote NLRP3 activation in both an MLKL-independent and
-dependent manner, which is dictated by the levels of caspase-8
activity (summarized in Fig. 3e).

To verify that caspase-8 loss promotes IL-1b secretion via
RIPK3–MLKL–NLRP3, we deleted caspase-8 in myeloid cells
(Caspase-8LysMcre), as Caspase-8� /� mice are embryonic lethal.
As previously reported30, BMDM derived from Caspase-8LysMcre

mice showed inefficient caspase-8 deletion, B30–50% (Fig. 3f).
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Figure 3 | RIPK3 activates caspase-1 independent of MLKL unless caspase-8 is inhibited. (a–c) WT, Mlkl� /� and Ripk3� /� BMDM were primed with

LPS (20 ng ml� 1) for 3 h and cultured with Q-VD-OPh (20mM), where indicated, which was added in the last 20 min of priming. Cells were then stimulated

with Cp.A (500 nM) or alum (300mg ml� 1) for a further 6 h. Supernatants were analyzed for (a,c) IL-1b and (b) TNF by ELISA. n¼ 3 mice per genotype.

Data are represented as meanþ s.e.m. and are representative of one of three independent experiments. (d) WT, Mlkl� /� and Ripk3� /� BMDM were

primed with LPS for 2.5 h. In the last 20 min of priming, cells were incubated with Q-VD-OPh (20 mM) and then cultured with Cp.A (1 mM) for 5 h.

Cell supernatants and lysates were analyzed by immunoblot. Representative of one of three experiments. Full-size immunoblots are presented in

Supplementary Fig. 11. (e) Schematic depicting how RIPK3 signals IL-1b activation based on the data presented in Figs 1–3. (f) Lysates from WT (Casp8fl/fl)

littermate and caspase-8-deficient (Casp8LysMcre) BMDM (n¼ 2 mice) were subjected to immunoblot to assess efficiency of caspase-8 deletion. Full-size

immunoblots are presented in Supplementary Fig. 11. (g) WT littermate and Caspase-8LysMcre BMDM were primed for 3 h with Pam3Cys (2mg ml� 1),

and as indicated treated with Nec-1 (50 mM) in the last 20 min of priming. Cells were then exposed to Cp.A (500 nM), as specified, for a further 24 h,

after which IL-1b release was measured by ELISA. n¼ 3 mice per genotype, meanþ s.e.m. Representative of one of three experiments. (h) WT littermate

and Caspase-8LysMcre BMDM were pre-incubated with glyburide for 20 min, as indicated, and cultured with Pam3Cys (2mg ml� 1) or LPS (100 ng ml� 1)

for 24 h. Cell supernatants were assayed for IL-1b by ELISA. n¼4 mice per genotype, meanþ s.e.m. Representative of one of two experiments.

Figure 4 | RIPK3 kinase activity is not required for MLKL-independent activation of NLRP3. (a) WT littermate and Caspase-8LysMcre BMDM were

primed for 3 h with Pam3Cys (2mg ml� 1), and as indicated RIPK3 inhibitor (R3 inhib GSK872; 1 mM) was added in the last 20 min of priming. Cells were

then exposed to Cp.A (500 nM), as specified, for a further 24 h. Levels of IL-1b secretion were measured by ELISA. n¼4 mice per genotype, meanþ s.e.m.

(b,c) WT, Ripk3� /� and Mlkl� /� BMDM were primed for 3 h with LPS (20 ng ml� 1) in the absence or presence of RIPK3 inhibitor (R3 inhib;

1mM), prior to addition of Cp.A for a further 6 h. Supernatants were assayed for (b) IL-1b and (c) TNF by ELISA or death assessed by lactate dehydrogenase

(LDH) activity (see Supplementary Fig. 2f). n¼ 3 mice per genotype, meanþ s.e.m. (d,e) Cell supernatants (d) and lysates (e) from WT, Mlkl� /� and

Ripk3� /� BMDM primed with LPS (3 h) and treated with Q-VD-OPh (20 mM) and R3 inhibitor (1 mM, last 20 min of priming), as indicated, and

subsequently treated with Cp.A (1 mM, 5 h) were analyzed by immunoblot as indicated. One of three experiments. Full-size immunoblots are presented in

Supplementary Fig. 12. (f) WT and caspase-1� /� BMDM were primed for 3 h with LPS, and as indicated treated with Q-VD-OPh (20mM) and R3 inhib

(1mM) for the last 20 min of priming. BMDM were then cultured with Cp.A (1 mM) or Alum (300mg ml� 1) for a further 6 h. Culture supernatants were

assayed for IL-1b levels by ELISA. n¼ 3 mice, meanþ s.e.m., one of two experiments. (g–i) WT, Ripk3� /� and Mlkl� /� BMDM were primed for

3 h with LPS (20 ng ml� 1) in the presence of Q-VD-OPh (20mM), and where indicated 1 mM RIPK3 inhibitor (R3 inhib), prior to addition of Cp.A for a

further 6 h. Supernatants were assayed for (g) IL-1b and (i) TNF by ELISA, and (h) cell death was measured via an LDH assay. n¼ 3 mice per genotype,

meanþ s.e.m. *NS, non-specific band.
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Nevertheless, Pam3Cys (TLR1/2) priming alone resulted in
appreciable IL-1b secretion from Caspase-8LysMcre macrophages,
and enhanced Cp.A-mediated IL-1b and TNF secretion (Fig. 3g
and Supplementary Fig. 2e). Pam3Cys-induced IL-1b secretion in

Caspase-8LysMcre BMDM was inhibited by the RIPK1 kinase
inhibitor necrostatin-1 (Nec-1; Fig. 3g) and the NLRP3 inhibitor
glyburide (Fig. 3h). Therefore, when caspase-8 function is
reduced, RIPK3–MLKL signals NLRP3–caspase-1 activation.
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RIPK3 kinase activity is dispensable for IL-1b activation.
To test if the kinase activity of RIPK3 is necessary for MLKL-
independent NLRP3 activation, we utilized the RIPK3 kinase
inhibitor GSK872 (ref. 31). Spontaneous IL-1b secretion from
Pam3Cys-treated Caspase-8LysMcre BMDM was prevented by
RIPK3 kinase inhibition (Fig. 4a). In contrast, RIPK3 kinase
inhibition did not alter caspase-1 and IL-1b activation, or
TNF secretion, induced by LPS and Cp.A stimulation of

WT, Ripk3� /� or Mlkl� /� BMDM (Fig. 4b–e). Likewise, RIPK3
kinase inhibition did not affect TLR and Cp.A-triggered
caspase-8 activation and apoptosis (Figs 2j,4e and Supplementary
Fig. 2f), nor the caspase-8-dependent processing of IL-1b
observed in caspase-1-deficient macrophages (Fig. 4f). Therefore,
RIPK3 kinase activity is not required for RIPK3-mediated caspase-
8 activation, or caspase-8-mediated IL-1b maturation and
secretion.
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In contrast, similar to the deletion of caspase-8, when
RIPK3–MLKL-mediated inflammasome activation was forced
by Q-VD-OPh treatment of LPS- and Cp.A-stimulated macro-
phages, RIPK3 kinase activity was essential for caspase-1 and
IL-1b processing and secretion (Fig. 4d,g and Supplementary
Fig. 2g), as well as necroptosis (Figs 2j,4h). RIPK3 kinase
inhibition did not alter TNF secretion under these conditions
(Fig. 4i), nor did it impact NLRP3 activation by alum (Fig. 4f).

Collectively, these data demonstrate that RIP3 kinase activity
can cause IL-1b secretion via RIPK3–MLKL-dependent NLRP3
activation when caspase-8 function is reduced. However, in the
presence of caspase-8, RIPK3 kinase activity is not required to
promote NLRP3–caspase-1 activation of IL-1b that can occur in
the absence of MLKL.

In the absence of MLKL, RIPK3/caspase-8 activate NLRP3. Our
data suggest that caspase-8 may engage NLRP3-associated cas-
pase-1 to activate IL-1b. In view of the incomplete caspase-8
deletion in Caspase-8LysMcre mice, we tested this hypothesis by
examining Ripk3� /�Caspase-8� /� macrophages. We, and
others, have recently reported that Ripk3� /�Caspase-8� /�

BMDM are defective in TLR-induced inflammasome prim-
ing32,33. Despite this, Pam3Cys induced sufficient inflammasome
priming to allow studies into inflammasome activation, where we
observed significant caspase-1 and IL-1b activation in Ripk3� /

�Caspase-8� /� BMDM in response to the NLRP3 stimuli ATP
or nigericin (Fig. 5a,b). In contrast, no caspase-1 or IL-1b
activation, nor cell death, was detectable in either LPS or
Pam3Cys-primed Ripk3� /�Caspase-8� /� BMDM treated with
Cp.A for 6–24 h, compared with the significant accumulation
observed over time in WT, Ripk3� /� and
Mlkl� /� BMDM (Figs 2j,5c,d, Supplementary Fig. 3 and
Video 1). These results mirrored our findings in Ripk3� /�

BMDM treated with Q-VD-OPh (to inhibit caspase-8) and Cp.A
(Fig. 5d, Fig. 2j and Supplementary Fig. 3).

To circumvent the priming defects of Ripk3� /�Caspase-
8� /� BMDM, we attempted to activate NLRP3 using unprimed
cells. Notably, basal levels of NLRP3 expression in Ripk3� /�

Caspase-8� /� BMDM were comparable to WT and Ripk3� /�

cells (Fig. 5e,f). Nigericin treatment induced significant NLRP3-
dependent caspase-1 processing and secretion in unprimed
BMDM, which was comparable in WT and Ripk3� /�Caspase-
8� /� BMDM (Fig. 5e,f). For reasons unclear, unprimed cells
only responded weakly to ATP treatment, despite robust ATP-
mediated caspase-1 activation in cells first primed with LPS
(Fig. 5e–g). In contrast to nigericin stimulation, Cp.A-mediated
NLRP3-dependent caspase-1 processing and secretion was

completely absent in Ripk3� /�Caspase-8� /� BMDM when
compared with WT BMDM, and the significant caspase-1
processing observed in Ripk3� /� BMDM after 20 h treatment
(Fig. 5e,f). These findings show that upon IAP loss, RIPK3 and
caspase-8 specifically activate NLRP3-associated caspase-1 (sum-
marized in Fig. 5h).

RIPK1 inhibits RIPK3 activation of the inflammasome. RIPK1
is often requisite for RIPK3 activation and necroptosis6 and
therefore may play a role in TLR and Cp.A-induced IL-1b
activation. However, we observed that the RIPK1 kinase inhibitor,
Nec-1, did not prevent IL-1b secretion in LPS- and Cp.A-treated
BMDM (Fig. 6a). This conflicts with the ability of Nec-1 to
prevent Pam3Cys-induced IL-1b secretion in caspase-8-deficient
BMDM (Fig. 3g). However, Pam3Cys induces autocrine TNF
production to activate RIPK3 in a TNFR1/RIPK1-dependent
manner, whereas LPS can directly engage RIPK3 via TRIF31.

To further examine if RIPK1 can contribute to NLRP3–
caspase-1 activation following LPS stimulation of IAP-depleted
cells, we generated Ripk1� /� foetal liver-derived macrophages
(FLDM). TLR stimulation of Ripk1� /� FLDM, unlike RIPK3-
deficient macrophages, caused low levels of spontaneous
caspase-1 and IL-1b activation, which was not further enhanced
by Cp.A (Fig. 6b and Supplementary Fig. 4a,b). Ripk1� /�

FLDMs also displayed a reduced capacity for inflammasome
priming (Fig. 6b), and TNF production following LPS stimulation
(Fig. 6d and Supplementary Fig. 4c).

We have recently demonstrated that LPS-induced IL-1b
activation in the absence of RIPK1 is RIPK3 dependent34.
Similar to RIPK3-dependent IL-1b activation in caspase-8 or
IAP-depleted macrophages, the caspase-1 and IL-1b secretion
(but not TNF secretion) observed in LPS-treated Ripk1� /�

FLDMs was abrogated by glyburide inhibition of NLRP3 (Fig. 6c–e).
Ripk1� /� FLDMs were also killed by LPS (or TNF)

stimulation (Fig. 6f, Supplementary Fig. 4d–h, and Video 2),
which correlated with caspase-1 and caspase-8 processing and
activation (Supplementary Fig. 4h). TNF-induced death of
Ripk1� /� FLDMs was prevented by caspase inhibition
(Supplementary Fig. 4d,e). Remarkably, LPS-induced death of
Ripk1� /� FLDMs, like IL-1b secretion, was blocked in Ripk1� /
�Ripk3� /� cells (Fig. 6f, Supplementary Fig. 4g and Video 2).
Therefore, in response to LPS, RIPK1 expression is required to
limit RIPK3 activation of NLRP3–caspase-1 and cell death.

TRIF and IAPs regulate RIPK3 and MLKL ubiquitylation.
LPS–TLR4 signalling can directly engage RIPK3 by RHIM–RHIM

Figure 5 | Deletion of both RIPK3 and caspase-8 abrogates TLR- and Cp.A-induced activation of caspase-1 and IL-1b. (a) WT, Mlkl� /� , Ripk3� /� and

Ripk3� /�Caspase-8� /� BMDM were primed with Pam3Cys for 3 h and incubated with Alum (300mg ml� 1) for 6 h, and ATP (5 mM) or nigericin (10mM)

for 40 min. Supernatants were assayed for IL-1b release. n¼ 3 mice per genotype, meanþ s.e.m., one of three experiments. (b) WT, Ripk3� /� and

Ripk3� /�Caspase-8� /� BMDM were primed with Pam3Cys for 3 h and cultured with Nigericin as indicated for 40 min. Supernatants and lysates were

analyzed by immunoblot. One of two experiments. Full-size immunoblots are presented in Supplementary Fig. 13. (c) WT, Mlkl� /� , Ripk3� /� and

Ripk3� /�Caspase-8� /� BMDM were primed with Pam3Cys for 3 h and incubated with increasing concentrations of Cp.A for 24 h and supernatants

and lysates were analyzed by immunoblot. One of two experiments. Full-size immunoblots are presented in Supplementary Fig. 13. (d) WT, Mlkl� /� ,

Ripk3� /� and Ripk3� /�Caspase-8� /� BMDM were primed with Pam3Cys for 3 h, and as indicated Q-VD-OPh (20 mM) for the last 20 min of priming,

and then cells were treated where shown with Cp.A for a further 6 h. Supernatants were assayed for IL-1b levels. n¼ 3 mice per genotype; meanþ s.e.m.,

representative of one of three experiments. (e) Unprimed WT and Ripk3� /�Caspase-8� /� BMDM were cultured with Nigericin (10mM, 2 h), Cp.A (1mM,

20 h) and ATP (5 mM, 2 h), and supernatants and lysates were analyzed by immunoblot for caspase-1 activation and NLRP3 levels. n¼ 3 mice per genotype

(numbered). Full-size immunoblots are presented in Supplementary Fig. 13. (f) Unprimed WT, Ripk3� /� , Ripk3� /�Caspase-8� /� and Nlrp3� /� BMDM

were stimulated with Nigericin (10 mM, 2 h), Cp.A (1 mM), and ATP (5 mM, 2 h) as indicated, and supernatants and cell lysates were analyzed by

immunoblot. One of three experiments. Full-size immunoblots are presented in Supplementary Fig. 13. (g) WT BMDM were primed with LPS (20 ng ml� 1)

for 3 h, stimulated with Nigericin or ATP, and lysates analyzed by immunoblot. (h) Schematic depicting how RIPK3 signals NLRP3–caspase-1 and IL-1b
activation based on the data presented in Figs 1–5. *NS, non-specific band.
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homotypic interactions with the adaptor protein TRIF28,31.
Consistent with this, early LPS- and Cp.A-induced IL-1b
secretion required TRIF, and was not blocked by Nec-1
inhibition of RIPK1 or TNF deficiency (Fig. 7a,b). After 24 h of
LPS and Cp.A treatment, however, autocrine TNF production
contributed to IL-1b secretion and cell death, because
TRIF-deficient BMDM displayed increased IL-1b secretion and
cell death, which was reduced by the addition of neutralizing TNF

antibody or Nec-1 (Fig. 7c,d and Supplementary Fig. 5a–c). On
the other hand, Myd88 is essential for LPS-induced NF-kB and
inflammasome priming (that is, pro-IL-1b induction) and
therefore its deletion abrogated all LPS- and Cp.A-induced
IL-1b secretion (Fig. 7a,c and Supplementary Fig. 5a–c), but not
LPS and Cp.A killing (Fig. 7d).

The above data suggests that IAPs may regulate a LPS–TLR4–
TRIF–RIPK3 complex to limit RIPK3 activation. Considering
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that purified IAPs can ubiquitylate RIP kinases in vitro35,
we utilized tandem-ubiquitin binding entities (TUBEs) to purify
ubiquitylated proteins from macrophages (Fig. 7e–g). TNF
stimulation of WT BMDM induced rapid RIPK1 ubiquitylation,

as anticipated, but did not markedly ubiquitylate RIPK3 (Fig. 7e).
In contrast, LPS stimulation induced significant RIPK3
ubiquitylation within 30–60 min, while it was less efficient
at causing RIPK1 ubiquitylation (Fig. 7e). Notably, efficient
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LPS-induced RIPK3 ubiquitylation observed after 60 min was
dependent on TRIF (Fig. 7f) and IAPs (Fig. 7g). Because LPS
alone does not induce macrophage death, this suggests that
although TRIF directly engages RIPK3 following LPS treatment,
IAPs may ubiquitylate RIPK3 to facilitate pro-survival responses.

To investigate if TRIF and IAPs may regulate ubiquitylation of
the necrosome (RIPK3–MLKL), we performed TUBEs on BMDM
treated with LPS, Q-VD-OPh and Cp.A. Remarkably, after 3 h of
necroptotic stimulation, we observed significant ubiquitylation of
both RIPK3 and MLKL, which at this time point was largely
TRIF-dependent (Fig. 7g and Supplementary Fig. 5d). This
implies that IAP proteins suppress E3 ligases that ubiquitylate
RIPK3 and MLKL on induction of necroptosis to promote
necrosome-induced NLRP3 activity, death and/or regulate
necrosome stability.

IAPs suppress spontaneous inflammatory joint disease. We
next sought to determine if IAPs act together to suppress
inflammatory disease and cytokine production in vivo, similar to
in vitro. Because IAP deletion can be embryonic lethal due to
excessive RIPK1/RIPK3 signalling17, we compared c1LysMcre

x� /� c2� /� mice23 and c1LysMcrec2� /� mice, where cIAP1 is
deleted in the myeloid cell compartment only. Unexpectedly, both
IAP mutant mice presented with spontaneous inflammatory
arthritis (Fig. 8a–e). Joint disease was more severe in the
c1LysMcrec2� /� mice, as evidenced by clinical scores (Fig. 8b),
and measurement of neutrophil activity in limbs (Fig. 8c).
In vivo myeloperoxidase (MPO) imaging demonstrated that both
articular and para-articular tissues were inflamed in c1LysMcre

x� /� c2� /� and c1LysMcrec2� /� mice, including the spine,
paws, knees, tail and mandible, but only the c1LysMcrex� /�

c2� /� mice appeared to have dermal inflammation (Fig. 8d).
Histological examination confirmed inflammatory cell infiltration
and destructive changes in multiple joints from c1LysMcrex� /�

c2� /� and c1LysMcrec2� /� mice (Fig. 8e and Supplementary
Fig. 6a). Other common changes in c1LysMcrex� /� c2� /� and
c1LysMcrec2� /� mice included splenomegaly and signs of splenic
architecture disruption (Fig. 8f and Supplementary Fig. 6a).

Inflammatory joint disease was related to myeloid cell
dysfunction in both c1LysMcrex� /� c2� /� and c1LysMcrec2� /�

mice, as mice reconstituted with BM from c1LysMcrex� /� c2� /�

mice presented with weight loss and exhibited mild arthritis. In
comparison, c1LysMcrec2� /� BM chimeras presented with more
severe inflammatory arthritis (Supplementary Fig. 6b–d).

Consistent with severe inflammatory disease in c1LysMcre

c2� /� and c1LysMcrex� /� c2� /� mice, both harboured
increased inflammatory cell numbers, with elevated neutrophil
and monocyte numbers, particularly the inflammatory Ly6chi

subset (Fig. 8g,h and Supplementary Fig. 6e). Elevated serum

cytokines were also observed in mice lacking all three IAPs in
myeloid cells, particularly IL-1b and IL-6, while c1LysMcrec2� /�

mice had elevated TNF (Fig. 8i and Supplementary Fig. 6f). These
observations correlate with our in vitro findings, showing that
XIAP is important for repressing IL-1b activation induced by LPS
or TNF. Cytokine levels were most likely attributable to myeloid
cells, as suggested by elevated serum and joint cytokines in IAP
knockout BM chimeric mice (Supplementary Fig. 6g,h). Further-
more, WT myeloid cell responses to LPS and IAP inhibition
in vitro also revealed that IL-1b and TNF were mainly derived
from macrophages and inflammatory Ly6chi monocytes
(Supplementary Fig. 7).

Joint disease in IAP-deficient mice is TNF dependent. TNF is a
common pathological factor in human arthritic disease36. We
therefore examined if the elevated TNF observed in c1LysMcre

c2� /� and c1LysMcrex� /� c2� /� mice was driving arthritic
pathology. Indeed, we found that treatment of B3-week-old
c1LysMcrec2� /� and c1LysMcrex� /� c2� /� mice with neutral-
izing TNF antibody reduced clinical manifestations including,
clinical arthritis and neutrophil MPO activity in limbs (Fig. 8j,k).
TNF inhibition also promoted increased body weight and
growth, and reduced splenomegaly (Supplementary Fig. 6i–k).
Examination of serum cytokine profiles following TNF blockade
revealed reduced TNF (and granulocyte-colony stimulating factor
(G-CSF) in c1LysMcrec2� /� mice, but more importantly reduced
IL-1b, TNF, IL-6 and G-CSF in c1LysMcrex� /� c2� /� mice
(Fig. 8l). Therefore, in vivo TNF drives systemic inflammation on
cIAP1/2 loss alone, or together with XIAP, but loss of XIAP is
required for TNF to drive high levels of IL-1b production in vivo.

RIPK3 but not MLKL promotes arthritis chronicity. In vitro
IAP suppression can drive RIPK3 and caspase-8-dependent
production of IL-1b, and similarly, in vivo IAP loss activates
RIPK3 refs 17,23 and causes spontaneous inflammatory arthritis.
We therefore evaluated whether IAP deficiency would also
exacerbate K/B�N serum transfer arthritis, which is a murine
arthritis model that recapitulates many of the innate-immune cell
driven features of human rheumatoid arthritis37. Pathology is
dependent on caspase-1-independent IL-1 production38

(Supplementary Fig. 8a), and is partially TNF dependent39

(Supplementary Fig. 8b,c).
We generated compound IAP mutant BM chimeric mice for

arthritis experiments to avoid the severe systemic inflammation
in c1LysMcrec2� /� and c1LysMcrex� /� c2� /� mice. Deficiency of
all three IAPs (c1LysMcrex� /� c2� /� BM chimeras), but not
XIAP and cIAP2, in the myeloid compartment led to accelerated
and exacerbated K/B�N arthritis (Fig. 9a–c and Supplementary

Figure 8 | Loss of IAPs in myeloid cells drives TNF-dependent inflammatory joint disease. (a–e) WT, littermate controls and c1LysMcrex� /� c2� /� and

c1LysMcrec2� /� mice were monitored for spontaneous inflammatory disease. (a) Photos depicting examples of a normal ankle (littermate) and severe

swelling in the ankle and tail of a c1LysMcrex� /� c2� /� mouse. (b) Clinical severity score of swelling and redness (0–3 for severity per limb). Data are the

clinical score of individual mice (out of 12). Mean±s.e.m., **Po0.01, Mann–Whitney two-sample rank test. (c) Neutrophil activity assessed by

myeloperoxidase (MPO) average radiance of four limbs per mouse, measured using an IVIS spectrum after bioluminescent luminol injection. Data are the

mean of individual mice. Mean±s.e.m., **Po0.01, Mann–Whitney two-sample rank test. (d) Representative bioluminescent images of MPO activity in

control and indicated mutant mice. (e) Representative histological examples of disease in WT control, and diseased c1LysMcrex� /� c2� /� and

c1LysMcrec2� /� ankle (top) and knee (bottom) tissue. Magnification, � 10; scale bar, 100 mM. (f) WT and IAP mutant splenocyte counts. Symbols indicate

individual mice and data are the mean±s.e.m. *Po0.05, Student’s two-tailed t-test. (g,h) WT and IAP mutant mice peripheral blood (g) neutrophil and

(h) monocyte subset number were analyzed by flow cytometry. Symbols indicate individual mice. Mean±s.e.m., *Po0.05, **Po0.01, Student’s two-tailed

t-test. (i) Levels of cytokines, IL-1b, TNF and IL-6 were measured in the serum of WT and IAP mutant mice by ELISA. Symbols indicate individual mice

Data show the mean±s.e.m. *Po0.05, Student’s two-tailed t-test. (j–l) c1LysMcrex� /� c2� /� and c1LysMcrec2� /� mice were treated with anti-TNF

monoclonal antibody (XT-22) or isotype control for 3 weeks, after which (j) clinical severity (grey shading indicates pre-treatment clinical scores) and

(k) MPO activity in limbs and (l) serological cytokine levels were assessed. Symbols represent individual mice, mean±s.e.m. *Po0.05, Mann–Whitney

two-sample rank test (j,k) or Student’s two-tailed t-test (l).
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Fig. 8f,g). This was associated with high serum and local
cytokine production, particularly IL-1b and TNF (Fig. 9d,e). In
comparison, K/B�N serum injection revealed similar levels of
arthritis in c1� /� , c2� /� , x� /� and WT mice (Supplementary
Fig. 8d,e).

Considering IAPs regulate RIPK3 activity, and suppress
K/B�N arthritis severity, we sought to determine if a TLR–
TRIF–RIPK3 axis could regulate K/B�N arthritis via caspase-8
or MLKL signalling. K/B�N arthritis disease chronicity, but not
initiation, is dependent on TLR4 ref. 40. Similar to this
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observation, we also documented reduced K/B�N arthritis
persistence, but not initiation, in TRIF-deficient mice (Fig. 9f–i).
Importantly, K/B�N arthritis clinical severity and inflammatory
profile was dependent on IL-1R expression, the essential IL-1R

signalling adaptor Myd88, and both the IL-1R ligands, IL-1a and
IL-1b (Fig. 9h–k).

Remarkably, injection of WT, Ripk3� /� , Ripk3� /�

Caspase-8� /� and Mlkl� /� mice with K/B�N serum revealed
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Figure 10 | Model for how XIAP and cIAPs repress inflammatory cytokine production, apoptosis and necroptosis. (a) When IAPs are present, TNFR1 or

TLR–TRIF signalling results in IAP-mediated ubiquitylation of RIPK1 or RIPK3, respectively, to propagate pro-survival signals and gene induction. (b) If IAPs

are inactivated but caspase-8 is present (left panel), LPS stimulation induces the ripoptosome platform to activate caspase-8 (ubiquitylated). Caspase-8

can (i) trigger apoptosis, (ii) cleave pro-IL-1b directly into its mature form or (iii) promote NLRP3-associated caspase-1 activation, by a mechanism yet to be

defined. Alternatively, if both IAPs and caspase-8 are inactive (right panel), LPS induces the formation of the RIPK3–MLKL necrosome that, in addition to

causing necroptotic cell death, activates the NLRP3 inflammasome. This necroptotic pathway is associated with RIPK3 and MLKL ubiquitylation, which may

control RIPK3/MLKL signalling and/or stability. (c) Genetic loss or inhibition of cIAPs alone or XIAP and cIAPs in myeloid cells cause differential effects on

cell death, cytokine production and haematopoiesis leading to spontaneous arthritis. Loss of all three IAPs leads to spontaneous systemic inflammatory

disease, featuring mild joint inflammation. Disease is associated with increased cytokine release, including IL-1b and TNF, as well as apoptotic and

necroptotic cell death and the accumulation of innate inflammatory cells. In contrast, loss of cIAP1/2 causes severe arthritis that is associated specifically

with enhanced TNF levels and only modest effects on haematopoiesis.

Figure 9 | RIPK3 deficiency, but not MLKL loss, decreases innate K/B�N arthritis chronicity. (a–e) WT, c1LysMcrec2� /� and c1LysMcrex� /� c2� /� BM

chimeras were injected with 100ml K/B�N pathogenic serum, and (a,b) clinical severity of disease (0–3 per limb) was measured; data are represented as

mean±s.e.m., (a) n¼4–5 mice per group, *Po0.05, (b) nZ11 mice per group (WT versus c1LysMcrex� /� c2� /� , P¼0.0196; WT versus c1LysMcrec2� /� ,

P¼0.083). P values were calculated using the Mann–Whitney two-sample rank test. (c) MPO activity was measured in limbs of mice at day 2 of model.

Data show individual mouse MPO average radiance, and a representative bioluminescent image of MPO levels in arthritic mice. Mean±s.e.m., *Po0.05,

Mann–Whitney two-sample rank test. (d,e) Serum (d) and ankle joint secretions (e) from mice at day 5 of K/B�N arthritis were analyzed for cytokine

levels by ELISA. Symbols represent individual mice, mean±s.e.m. *Po0.05, **Po0.01, Student’s two-tailed t-test. (f–i) WT (n¼ 5–6/ experiment),

IL-1 R� /� (n¼ 5), IL-1a� /� (n ¼ 5), Myd88� /� (n¼4) and Trif� /� (n¼ 5–6 per experiment) mice were injected with 100ml K/B�N serum and (f,h)

clinical severity and (g,i) MPO activity (average radiance of individual mice) measured. Mean±s.e.m. *Po0.05, **Po0.01. (WT versus Trif�/� , total

clinical course (f) 0.03, (h) NS, not significant; resolution phase (h) P¼0.0079, (f) 0.0173). P values were calculated using the Mann–Whitney two-

sample rank test. (j,k) WT mice were treated with 200mg antibodies to IL-1b (B122, n¼4 mice) or control polyclonal hamster antibody (n¼ 6 mice) on

days � 1, 0, 2, 4, 6, 8 and 10 after injection of 100ml K/B�N pathogenic serum. Mice were evaluated (j) daily for clinical severity, and (k) MPO activity

(average radiance) was measured in limbs on days 7 and 12. Mean±s.e.m. **Po0.01, Mann–Whitney two-sample rank test. One of two experiments.

(l,m) WT, Ripk3� /� and Ripk3� /�Caspase-8� /� mice (nZ6 mice per group) were injected with 100ml K/B�N serum. (l) Clinical severity,

(m) MPO activity (average radiance) in limbs of individual mice. Mean±s.e.m. Representative of at least one of two independent experiments. (WT versus

Ripk3� /� , clinical course NS, resolution phase P¼0.008; WT versus Ripk3� /�Caspase-8� /� clinical course NS, resolution phase P¼0.0075).

*Po0.05, **Po0.01, Mann–Whitney two-sample rank test. (n,o) WT and Mlkl� /� mice (n¼6 mice per group) were injected with 100ml K/B�N serum.

(n) Clinical severity and (o) MPO activity in limbs of individual mice are shown. Mean±s.e.m. (p–s) WT, Ripk3� /� and Ripk3� /�Caspase-8� /� mice

(n¼ 5–6 mice per group) were injected with 100 ml K/B�N serum and during the resolution phase of disease (day 10) analyzed for (p) clinical severity,

(q) MPO activity in limbs, and IL-1b levels measured in (r) serum and (s) ankle joint secretions. Data symbols are individual mice and different symbols

within each group indicate separate experiments. Mean±s.e.m. *Po0.05, **Po0.01. P values were calculated using the Mann–Whitney two-sample rank

test (p,q) or the Student’s two-tailed t-test (r,s).
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accelerated disease resolution in mice lacking RIPK3 alone, or in
combination with caspase-8 (Fig. 9l–q and Supplementary
Fig. 8h–k). In contrast, MLKL deficiency failed to alter disease
development or resolution (Fig. 9n,o and Supplementary
Fig. 8j,k). Associated with accelerated disease resolution in
Ripk3� /� and Ripk3� /�Caspase-8� /� mice (day 10,
Fig. 9p,q) were marked reductions in IL-1b levels in serum, and
more importantly, ankle joint secretions (Fig. 9r,s).

Collectively, these data document substantial in vivo evidence
that the clinical chronicity of K/B�N arthritis is dependent on a
TLR–TRIF–RIPK3–IL-1b axis that occurs independent of the
RIPK3 substrate and essential necroptotic effector, MLKL.

Discussion
We report that even in the absence of MLKL, RIPK3 can promote
activation of IL-1b both in vitro and in a mouse model of
inflammatory arthritis, in vivo. However, under conditions of
chemical or genetic caspase-8 suppression, the necrosome
(RIPK3–MLKL) can also engage the NLRP3 inflammasome to
activate IL-1b (summarized in Fig. 10). Importantly, both
pathways appear to be cell intrinsic, demonstrating that
necroptotic cell death and the release of damage-associated
molecular patterns (DAMPs) need not be the only drivers of
RIPK3-induced inflammation.

RIPK3 and its substrate, MLKL, are essential for TLR and TNF
receptor-mediated necroptosis7–12,28,31,41, and RIPK3 has been
implicated in the inflammatory response in different disease
models, including viral infection, retinal degeneration, brain and
renal injury, and atherosclerosis6. However, in these and other
disease models the reliance on MLKL for pathology and
inflammatory cytokine production has yet to be evaluated6.
Recently it was reported that RIPK3 is required for optimal
transcription of LPS-induced cytokines in dendritic cells42 and
MLKL-independent NLRP3 inflammasome activation in response
to dsRNA viral infection43. Similarly, we have shown that RIPK3
can drive TNF production independent of MLKL in response to
IAP antagonist treatment23. Therefore, considering these reports
and our findings here, it will be important to assess which
RIPK3-driven inflammatory diseases can occur independently of
MLKL and necroptosis, particularly with the emergence of
potential therapeutics targeting RIPK3 kinase activity and
MLKL itself31,44,45.

The loss of IAPs triggers the spontaneous formation of a RIP
kinase, FADD, caspase-8, cFLIP signalling complex termed the
ripoptosome20,21. In response to TNF or TLR ligation this
complex can signal apoptosis, or in the absence of caspase-8
RIPK3–MLKL-mediated necroptosis, or as we have demonstrated,
IL-1b activation22. IAPs harbour RING domains that can act as
E3 ubiquitin ligases, of which, cIAP1/2 ubiquitylate RIPK1 in
response to TNF stimulation to prevent RIPK1 signalling cell
death, and to propagate pro-survival signals3,35,46. Together with
a recent study47, our data describe a more intricate picture,
because in macrophages XIAP appears to be a key repressor of
TNF- and LPS-induced caspase-8 activation, necroptosis and
caspase-1/IL-1b activity. Although our data, and that of others48,
clearly demonstrate that cIAP1/2 co-operate with XIAP to repress
these ripoptosome-driven responses, it is notable that the RING
domain of XIAP is important47. In this regard, it will be
interesting to determine the requisite substrates of XIAP RING
E3 ligase activity.

In IAP-depleted cells, LPS engagement can activate RIPK3
signalling, with at least three distinct observable outcomes. First,
in macrophages RIPK3 can promote caspase-8 activity and
apoptosis independent of its kinase function and substrate MLKL.
Unlike some cell lines where cIAP1/2 loss is sufficient for rapid

TNF killing, the co-deletion of XIAP in macrophages is obligate
for efficient TNF- or LPS-induced caspase-8 activity and death.
Notably, TNF stimulation and IAP antagonism or RIPK3 over-
expression, can also signal RIPK3–caspase-8-mediated apopto-
sis49,50. More recently, it was reported that chemicals targeting
the RIPK3 kinase domain45, or expression of D161N kinase dead
RIPK3 in vivo51, induces spontaneous apoptosis via RIPK3 RHIM
domain-mediated recruitment and activation of a ripoptosome
complex. Interestingly, kinase dead RIPK3 per se does not drive
caspase-8 activation, and the generation of viable RIPK3 kinase
dead mice that are unable to signal necroptosis but retain
apoptotic potential45, will help decipher what role RIPK3-induced
apoptosis and RIPK3–caspase-8 activation of NLRP3 may play
in vivo.

Second, active caspase-8, resulting from IAP loss and LPS-
induced RIPK3 signalling, promotes NLRP3-associated caspase-1
activation and IL-1b maturation. This function is distinct from
the ability of caspase-8 to directly cleave pro-IL-1b into its mature
bioactive form22,52. In RIPK3-deficient macrophages, caspase-8 is
required for the LPS and Cp.A-induced NLRP3–caspase-1
activation that accumulates over time, since this was completely
abrogated by caspase-8 inhibition or deletion. Although the
mechanism by which caspase-8 can activate NLRP3-associated
caspase-1 is unclear, it has recently been proposed that
caspase-8 may influence caspase-1 proteolysis following NLRP3
engagement33,53,54. Significantly, however, caspase-8 engagement
of NLRP3–caspase-1 appears to be stimulus-specific, because we
only observed this phenomenon in IAP-depleted cells, and not
cells treated with the canonical NLRP3 activator nigericin.

Third, if caspase-8 function is reduced LPS stimulation of
IAP-depleted cells triggers RIPK3 kinase activity and activation of
MLKL. Other than necroptosis, under these conditions we
observed that MLKL is essential for NLRP3–caspase-1 activation.
This finding is consistent with the observation that following
caspase-8 deletion in dendritic cells, small interfering RNA
depletion of MLKL reduced RIPK3-driven NLRP3 activity25.
Recent studies report that MLKL can disrupt plasma membrane
integrity to modulate ion influx, such as Ca2þ ref. 14, which is
also one means proposed to trigger NLRP3 activation55–58, and is
therefore a candidate mechanism by which MLKL signalling
causes inflammasome activation.

Auto-inflammatory syndromes, such as neonatal onset multi-
organ inflammatory disease that features arthropathy have been
linked with mutations in the NACHT domain of NLRP3, while
inflammatory arthropathies, such as rheumatoid arthritis and
ankylosing spondylitis, have been associated with mutations in
the TNF superfamily24,59,60. We now find that mice with
myeloid-specific loss of all three IAPs or only cIAP1/2 exhibit
spontaneous inflammatory cytokine secretion and joint disease.
As expected, based on numerous murine and human studies
implicating TNF in arthritis36, we found that TNF was the master
regulator of cytokine production and inflammatory arthritis in
IAP-deficient mice. Why arthritis was worsened by cIAP1/2 co-
deletion, compared with the triple IAP-deficient mice, remains
unclear. However, loss of all IAPs causes severe systemic
inflammatory features reminiscent of endotoxic shock, or mice
expressing constitutively active NLRP3 ref. 61, thus the
accumulation of myeloid cells in the periphery may divert the
innate-immune response. Alternatively, excessive macrophage
cell death within joint tissues upon loss of all IAPs could limit
inflammatory cell influx, akin to depleting joint macrophages in
arthritis models62.

In rheumatoid arthritis, disease chronicity and worsened
prognosis is associated with joint macrophage accumulation63.
In mice and humans, IL-1 is a major pathogenic cytokine
in arthritis, including the innate cell-mediated, caspase-1-
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independent, K/B�N serum transfer arthritis model38,64.
Neutrophil proteases have been linked with IL-1b activation
during disease initiation64, however, the pathways driving
monocyte/macrophage secretion of IL-1b responsible for
arthritis chronicity, remain ill-defined. Importantly, our findings
reveal that a TLR–TRIF–RIPK3–caspase-8 signalling pathway
may promote K/B�N arthritis disease persistence by driving IL-
1b production via transcriptional induction, and/or cleavage
induced activation. Although dependent on RIPK3, this
mechanism occurs independent of necroptosis, since MLKL
deficiency did not alter arthritis pathogenesis. Enhanced K/B�N
arthritis disease resolution observed upon TRIF or RIPK3
deletion phenocopies TLR4 mutant mice40, suggesting that host
danger molecules present in arthritic joints may promote
rheumatic flares via TLRs present on synovial macrophages65.
Therefore, for optimal therapeutic targeting of RIPK3 in
inflammatory diseases, such as arthritis, it will be important to
carefully evaluate the bifurcation of RIPK3-induced necroptosis
and DAMP-driven inflammation versus cell intrinsic-induced
cytokine production and activation.

Methods
Mice. Mice were housed under standard conditions at WEHI. All procedures were
approved by the WEHI Animal Ethics Committee. Female and male mice were
3–12 weeks old at the time of experimentation, with the exception of K/B�N
arthritis experiments that were performed on 6–8-week-old male mice (BM
reconstituted male mice were used at 12–14 weeks). All animal numbers used for
each experiment are reported in the figure legends. The inducible K/B�N arthritis
model and spontaneous inflammation in the IAP deficient mice have 90–100%
penetrance. 4–12 mice were used per genotype per experiment, sufficient to cal-
culate statistical significance. Mouse strains and sources are detailed in the
Supplementary Methods.

IAP antagonist compounds. The IAP antagonist compounds and their antag-
onism of cIAPs versus XIAP were previously described26. The compound
nomenclature has been changed in the current study, with compounds 2, 1, 9, 10
and 8 described in ref. 26 now designated as Cp.A, 711 (birinapant), 030, 455 and
851, respectively. Compounds 031 and 883 are reported for the first time here.
Their synthesis and structure are described in detail in the Supplementary
Methods.

Cell culture. Bone marrow cells were harvested from femoral and tibial bones, or
foetal liver cells sieved from E13.5 livers. To generate macrophages, BM and foetal
liver cells were cultured in bacterial Petri dishes for 6 days in Dulbecco’s modified
Eagle’s medium (DMEM) containing 8% foetal bovine serum, 50 U ml� 1 penicillin
and 50mg ml� 1 streptomycin (complete media) and supplemented with 20% L929
conditioned media (37 �C, 10% CO2). For isolation of neutrophils and monocyte
populations, cells were stained with fluorochrome-conjugated anti-mouse Ig anti-
bodies—CD11b, F4/80, Ly6G and Ly6C—and sorted using a Moflo instrument.

BMDM and foetal liver-derived macrophages were plated in tissue culture
plates overnight at 1–2� 105 per well (96 wells) or 3–5� 105 per well (24 wells).
Neutrophils, Ly6chi, Ly6cint and Ly6clo monocytes were plated at
1–2� 105 per well (96 wells). Cells were primed for 3 h with ultra-pure LPS
(20 ng ml� 1, Invivogen), Fc-human TNF (100 ng ml� 1, in-house) or Pam3Csk4

(P3Cys; 2–2.5 mg ml� 1, Invivogen), and stimulated as specified with Smac-
mimetics (500 nM, unless specified), Q-VD-OPh (10–20 mM, R&D Systems), Nec-1
(50 mM, in-house), GSK872 (ref. 31; RIPK3 inhibitor, 1 mM, in-house), Glyburide
(100–200 mM, Sigma), Alum (300 mg ml� 1, ThermoScientific), Nigericin (5–10 mM,
Sigma) and ATP (5 mM, Sigma). Supernatants were routinely collected at 5–6 h
(45 min for ATP and Nigericin) and 24 h post stimulation for analysis of cytokines
and lactate dehydrogenase release (Promega). In some cases, cells were harvested
from tissue culture/non-tissue culture treated 24-well plates using 5 mM EDTA/
phosphate-buffered saline (PBS) to assess viability (propidium iodide (PI) uptake)
by flow cytometry (see below). A viable cell gate was generated to determine the
percentage of dead cells. Alternatively cells were lysed in reducing sample buffer for
analysis by immunoblot.

Time lapse imaging. BMDMs and FLDMs were plated at 0.75–1� 105 per well in
L929 conditioned media in a 96-well optical-bottom plate (Nunc) and allowed to
adhere overnight at 37 �C, 10% C02. Media were removed and cells were labelled
with CellTracker Green CMFDA (CTG, 1 mM, Life Technologies, Thermo-
Scientific) in serum-free DMEM for 30 min at 37 �C, 10% CO2. Following two to
three washes in phenol-red-free DMEM, cells were incubated in 8% FCS phenol-
red-free DMEM. Cells were then stimulated with LPS (20 ng ml� 1), as indicated,

and treated in the final 20 min of priming period with Q-VD-Oph (10–20 mM). PI
(1 mg ml� 1) and Cp.A (500 nM) were added prior to imaging on a Zeiss Wide
scope microscope (37 �C, 10% CO2). Cells were imaged (� 10 magnification) from
2–4 h post-LPS stimulation every 30 min, and images were analyzed for number of
CTGþ and PIþ cells over time using MetaMorph software image analysis.
Movies were generated using Image J software (4 frames per s).

Cytokine ELISA. IL-1b and IL-18 (R&D Systems, Ebioscience), and TNF and IL-6
(Ebioscience, R&D Systems) ELISA kits and paired G-CSF antibodies and standard
(R&D Systems, Peprotech) were used to perform ELISAs on serum, joint fluid and
supernatants according to the manufacturer’s instructions.

Leucocyte counts. Peripheral blood cells from retro-orbital bleeds or cardiac
bleeds were counted on an Advia 120 cell analyzer (Bayer Diagnostics, Tarrytown,
NY, USA). Spleen and BM preparations were subjected to red blood cell lysis prior
to automated (Countess) or manual cell counts using Trypan blue for dead cell
exclusion.

Flow cytometry. Single cell suspensions of blood and BM were prepared.
Cells were incubated with Fc block (FcgRIIb/III, 2.4G2) and stained with the
following fluorochrome-conjugated anti-mouse Ig antibodies according to the
manufacturer’s instructions (BD Biosciences (San Diego, CA, USA), eBioscience
(San Diego, CA, USA), Biolegend (San Diego, CA, USA) or the WEHI Monoclonal
Antibody facility): CD45.1 (A20), CD45.2 (104), CD11b (Mac-1), F4/80 (A3–1),
Ly6G (1A8), GR1 (Ly6C/Ly6G), RB6.8C5 (WEHI), Ly6c (HK1.4), Annexin V and
PI. Stained cells were profiled on a LSR1, LSRII or LSR Fortessa instrument (all
Becton Dickinson) using CellQuest Software version 3.3 or FACSDiva Software
(BD Immunocytometry Systems, North Ryde, Australia) and data were analyzed
using in-house developed WEASEL version 2.7 software (WEHI).

BM reconstitutions. BM was harvested from the femur, tibial and pelvic bones of
WT and conditional IAP mutant mice and red blood cells were lysed. C57BL/6
Ly5.1 mice were lethally irradiated (2� 550R) 3 h apart. Mice received 6–10� 106

BM cells by i.v. tail injection and were allowed to reconstitute for 3–8 weeks to
achieve B85–90% reconstitution.

Gross scoring of clinical parameters. WT and IAP compound mutant mice were
graded for inflammatory arthritis from 0 (normal) to 3 (severe) for joint inflam-
mation (limbs). For TNF neutralization experiments, mice were scored at 3 weeks
of age and matched for disease severity then assigned to receive 10 mg kg� 1 of
anti-TNF monoclonal antibody (XT-22; WEHI Monoclonal Antibody Facility)
or isotype control (GL113) three times a week for 3 weeks. Gross parameters,
including arthritis (clinical/MPO levels IVIS imaging), weights, body length, spleen
weight and serum cytokines, were measured.

In vivo bioluminescent imaging of MPO activity. Mice were injected i.p.
with luminol (200 mg kg� 1) and anaesthetized (isoflurane inhalation) prior to
bioluminescence imaging on an IVIS spectrum instrument (Caliper; exposure time
180 s; binning 4, Field of view 12.5 cm) on specified days, based on previous
studies66. Regions of interest (ROI) were manually selected over front and rear
paws using Living Image Software, and identical ROIs were used for time course
analysis. For spontaneous disease, mice were imaged front and back. C57BL/6
naı̈ve mice injected with luminol were used to control for background
luminescence (B400 average radiance).

K/B�N serum transfer arthritis. K/B�N arthritis was induced as described66.
Briefly, 100–200 ml of pooled serum (based on batch testing) from arthritic K/B�N
mice was injected i.p. Mice were examined daily for clinical signs of arthritis and
paws graded from 0 to 3 for severity of paw/ankle inflammation.
In some experiments, mice were imaged for MPO activity in limbs (see above).
Weight loss of B15% for more than 2 consecutive days and/or severe disease was
the endpoint for studies (that is, Fig. 9a–c). In some cases, serum was harvested,
and ankles were cultured in 0.1% BSA in DMEM for 1–2 h, and supernatants and
serum were analyzed by ELISA.

For anti-IL-1b therapeutic studies, mice were treated i.p. 1 day prior to K/B�N
arthritis induction with 200 mg anti-IL-1b (B122, Bio X Cell,) or control (polyclonal
Armenian hamster IgG, Bio X Cell) antibodies. Mice were then injected (d0) with
K/B�N serum and received 200mg doses of anti-IL-1b or control on days 2, 4, 6, 8
and 10 of the model.

Histology. Tissues were harvested (for example, spleen, knees, limbs, and tail),
fixed in 10% (w/v) neutral buffered formalin, decalcified and embedded in paraffin.
Frontal tissue sections were stained with haematoxylin and eosin and assessed by
blinded investigators.
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Immunoblotting. Cell lysates and supernatants (reduced and denatured) were
separated on 4–12% gradient gels (Invitrogen) and protein transferred nitrocellu-
lose membrane (Amersham) for detection. Membranes were blocked with 5%
skimmed milk in PBS containing 0.1% Tween 20 (PBST) for 1–2 h and were then
probed overnight with primary antibodies (all diluted 1/1,000 unless noted
otherwise) to mouse b-actin (Sigma; A-1978), cIAP1 (1/500 dilution, ALX-803-
335;Alexis Bio-chemicals), RIPK3 (Axxora; PSC-2283-c100), RIPK1 (BD Trans-
duction Laboratories; 610458), MLKL (in-house; 3H1), pro and mature IL-1b
(R&D Systems; AF-401-NA), pro- and cleaved-caspase-1 (Santa Cruz; sc-514),
Adipogen (AG-20B-0042-C100), pro-caspase-8 (in-house), cleaved caspase-8
Asp387 (9429; Cell Signaling) and Ubiquitin (3933; Cell Signaling). Relevant
horseradish peroxidase-conjugated secondary antibodies were applied for 1–2 h.
Membranes were washed four to six times in PBST between antibody incubations
and all antibodies were diluted in PBST containing 5% skimmed milk. Membranes
were developed using ECL (Millipore). For images cropped for presentation, the
full-size images are presented in Supplementary Figs 9–14.

TUBE purification. Following specified stimulations, ice-cold PBS-washed
BMDMs (10–12� 106) were harvested in 1,000ml of lysis buffer (30 mM Tris-HCl
(pH 7.4), 120 mM NaCl, 2 mM EDTA, 2 mM KCl, 1% Triton X-100, Roche
complete protease-inhibitor cocktail, 1 mM NEM) and lysed on ice for 30 min.
Lysates were cleared by centrifugation (14,000g, 10 min) and endogenous
ubiquitylated proteins were isolated from the soluble lysate at 4 �C for 3–20 h using
agarose TUBEs (TUBE1, Life sensors, performed according to the manufacturer’s
instructions). Following 4� washes in lysis buffer, bound proteins were eluted
using reducing and denaturing western blot sample buffer.

Statistical analyses. The Mann–Whitney two-sample rank test was used to
analyze the level of significance between mean clinical score, MPO measurements
and clinical readouts. The Student’s two-tailed t-test (assuming equal variance) was
used to compare cytokine levels and for fluorescence activated cell sorting (FACS)
analysis. For each test, P values o0.05 were considered statistically significant.
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