
METHODS ARTICLE
published: 11 June 2013

doi: 10.3389/fninf.2013.00010

The irtual rain: a simulator of primate brain network
dynamics
Paula Sanz Leon1*, Stuart A. Knock2, M. Marmaduke Woodman1, Lia Domide3, Jochen Mersmann 4,

Anthony R. McIntosh5 and Viktor Jirsa 1*

1 Institut de Neurosciences des Systèmes, Aix Marseille Université, Marseille, France
2 Department of Neurology, BrainModes Group, Charité University of Medicine, Berlin, Germany
3 Codemart, Cluj-Napoca, Romania
4 CodeBox GmbH, Stuttgart, Germany
5 Rotman Research Institute at Baycrest, Toronto, ON, Canada

Edited by:

Daniele Marinazzo, University of
Gent, Belgium

Reviewed by:

Ingo Bojak, University of Reading,
UK
Hans Ekkehard Plesser, Norwegian
University of Life Sciences, Norway
Laurent U. Perrinet, Centre National
de la Recherche Scientifique, France

*Correspondence:

Paula Sanz Leon and Viktor Jirsa,
Institut de Neurosciences des
Systèmes, Aix Marseille
Université, 27, Bd. Jean Moulin,
13005 Marseille, France
e-mail: paula.sanz-leon@univ-amu.fr;
viktor.jirsa@univ-amu.fr

We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network
simulations using biologically realistic connectivity. This simulation environment enables
the model-based inference of neurophysiological mechanisms across different brain scales
that underlie the generation of macroscopic neuroimaging signals including functional
MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from
an integrative software platform including a supporting framework for data management
(generation, organization, storage, integration and sharing) and a simulation core written
in Python. TVB allows the reproduction and evaluation of personalized configurations of
the brain by using individual subject data. This personalization facilitates an exploration
of the consequences of pathological changes in the system, permitting to investigate
potential ways to counteract such unfavorable processes. The architecture of TVB supports
interaction with MATLAB packages, for example, the well known Brain Connectivity
Toolbox. TVB can be used in a client-server configuration, such that it can be remotely
accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical
user interface. TVB is also accessible as a standalone cross-platform Python library and
application, and users can interact with the scientific core through the scripting interface
IDLE, enabling easy modeling, development and debugging of the scientific kernel. This
second interface makes TVB extensible by combining it with other libraries and modules
developed by the Python scientific community. In this article, we describe the theoretical
background and foundations that led to the development of TVB, the architecture and
features of its major software components as well as potential neuroscience applications.

Keywords: connectome, neural masses, time delays, full-brain network model, virtual brain, large-scale simulation,

web platform, python

1. INTRODUCTION
Brain function is thought to emerge from the interaction of
large numbers of neurons, under the spatial and temporal con-
straints of brain structure and cognitive demands. Contemporary
network simulations mainly focus on the microscopic and meso-
scopic level (neural networks and neural masses representing
a particular cortical region), adding detailed biophysical infor-
mation at these levels of description while too often losing
perspective on the global dynamics of the brain. On the other
hand, the degree of assessment of global cortical dynamics,
across imaging modalities, in human patients and research sub-
jects has increased significantly in the last few decades. In
particular, cognitive and clinical neuroscience employs imag-
ing methods of macroscopic brain activity such as intracere-
bral measurements, stereotactic Encephalography (sEEG) (von
Ellenrieder et al., 2012), Electroencephalography (EEG) (Nunez
and Srinivasan, 1981; Nunez, 1995; Niedermeyer and Lopes
Da Silva, 2005), Magnetoencephalography (MEG) (Hämäläinen,

1992; Hämäläinen et al., 1993; Mosher et al., 1999), and func-
tional Magnetic Resonance Imaging (fMRI) (Ogawa et al., 1993,
1998; Logothetis et al., 2001) to assess brain dynamics and evalu-
ate diagnostic and therapeutic strategies. Hence, there is a strong
motivation to develop an efficient, flexible, neuroinformatics
platform on this macroscopic level of brain organization for
reproducing and probing the broad repertoire of brain dynamics,
enabling quick data analysis and visualization of the results.

The Virtual Brain (TVB) is our response to this need. On the
one hand, it provides a general infrastructure to support multi-
ple users handling various kinds of empirical and simulated data,
as well as tools for visualizing and analyzing that data, either via
internal mechanisms or by interacting with other computational
systems such as MATLAB. At the same time it provides a simula-
tion toolkit to support a top–down modeling approach to whole
brain dynamics, where the underlying network is defined by its
structural large-scale connectivity and mesoscopic models that
govern the nodes’ intrinsic dynamics. The interaction with the

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 1

NEUROINFORMATICS

V B

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00010/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PaulaSanz_Leon&UID=22421
http://community.frontiersin.org/people/MichaelWoodman/40494
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LiaDomide&UID=82601
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=JochenMersmann&UID=82672
http://community.frontiersin.org/people/AnthonyMcIntosh/7299
http://community.frontiersin.org/people/ViktorJirsa/4334
mailto:paula.sanz-leon@univ-amu.fr; viktor.jirsa@univ-amu.fr
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

dynamics of all other network nodes happens through the con-
nectivity matrix via specific connection weights and time delays,
where the latter make a significant contribution to the biological
realism of the temporal structure of dynamics.

Historically, Jirsa et al. (2002) first demonstrated neural field
modeling on a spherical brain hemisphere employing EEG and
MEG forward solutions to obtain simulation imaging signals. In
this work, homogeneous (translationally invariant) connectivity
was implemented along the lines of Jirsa and Haken (1996, 1997);
Bojak and Liley (2010) yielding a neural field equation, which
has its roots in classic works (Wilson and Cowan, 1972, 1973;
Nunez, 1974; Amari, 1975, 1977). At that time more detailed
large-scale connectivity of the full primate brain was unavail-
able, hence the homogeneous connectivity scaled up to the full
brain was chosen as a first approximation (Nunez, 1974). The
approach proved successful for the study of certain phenomena
as observed in large-scale brain systems including spontaneous
activity (Wright and Liley, 1995; Robinson et al., 2001, 2003;
Breakspear et al., 2003; Rowe et al., 2004; Freyer et al., 2011),
evoked potentials (Rennie et al., 1999, 2002), anesthesia (Liley
and Bojak, 2005), epilepsy (Breakspear et al., 2006), sensori-
motor coordination (Jirsa and Haken, 1996, 1997), and more
recently, plasticity (Robinson, 2011) [see Deco et al. (2008) and
Jirsa (2004) for a review].

Careful review of this literature though shows that these mod-
els mostly emphasize the temporal domain of brain organization,
but leave the spatiotemporal organization untouched. This may
be understood by the fact that the symmetry of the connectivity
imposes constraints upon the range of the observable dynamics.
This was pointed out early by Jirsa et al. (2002) and a sug-
gestion was made to integrate biologically realistic DTI based
connectivity into full brain modeling efforts. Large scale brain
dynamics are basically expected to reflect the underlying anatomi-
cal connectivity between brain areas (Bullmore and Sporns, 2009;
Deco et al., 2011), even though structural connectivity is not the
only constraint, but the transmission delays play an essential role
in shaping the brain network dynamics also (Jirsa and Kelso,
2000; Ghosh et al., 2008; Knock et al., 2009; Jirsa et al., 2010).
Recent studies (Pinotsis et al., 2012) have systematically inves-
tigated the degree to which homogeneous approximations may
serve to understand realistic connection topologies and have con-
cluded that homogeneous approximations are more appropriate
for mesoscopic descriptions of brain activity, but less well suited
to address full brain network dynamics. All this underscores the
need to incorporate realistic connectivity into large scale brain
network models. Thus the simulation side of TVB has evolved out
of a research program seeking to identify and reproduce realistic
whole brain network dynamics, on the basis of empirical connec-
tivity and neural field models (Jirsa and Stefanescu, 2010; Deco
et al., 2011).

1.1. MODELING
In line with these previous studies, TVB incorporates a biologi-
cally realistic, large-scale connectivity of brain regions in the pri-
mate brain. Connectivity is mediated by long-range neural fiber
tracts as identified by tractography based methods (Hagmann
et al., 2008; Honey et al., 2009; Bastiani et al., 2012), or obtained

from CoCoMac neuroinformatics database (Kötter, 2004; Kötter
and Wanke, 2005; Bakker et al., 2012). In TVB, the tract-lengths
matrix of the demonstration connectivity dataset is symmetric
due to the fiber detection techniques used to extract the infor-
mation being insensitive to directionality. On the other hand,
the weights matrix is asymmetric as it makes use of directional
information contained in the tracer studies of the CoCoMac
database. Such details are specific to the connectivity demonstra-
tion dataset included in the distribution packages of TVB. The
symmetry (or lack thereof) is neither a modeling constraint nor
an imposed restriction on the weights and tract-length matrices.
The general implementation for weights and tract lengths are full
nodes × nodes matrices without any symmetry restrictions.

Two types of structural connectivity are distinguished in TVB,
that is long- and short-range connectivity, given by the connec-
tivity matrix and the folded cortical surface, respectively. The
connectivity matrix defines the connection strengths and time
delays via finite signal transmission speed between two regions
of the brain. The cortical surface allows a more detailed spa-
tial sampling resulting in a spatially continuous approximation
of the neural activity as in neural field modeling (Deco et al.,
2008; Coombes, 2010; Bressloff, 2012). When using neural mass
models, building the network upon the surface allows for the
application of arbitrary local connectivity kernels which rep-
resent short-range intra-cortical connections. Additionally, net-
works themselves can be defined at two distinct spatial scales
yielding two types of simulations (or brain network models):
surface-based and region-based. In the former case, cortical and
sub-cortical areas are shaped more realistically, each vertex of the
surface is considered a node and is modeled by a neural popula-
tion model; several nodes belong to a specific brain region, and
the edges of the network have a distance of the order of a few
millimeters. The influence of delayed activity coming from other
brain regions is added to the model via the long-range connectiv-
ity. In the latter case of nodes only per region, the connectome
itself is used as a coarser representation of the brain network
model. The networks comprise discrete nodes, each of which
models the neural population activity of a brain region and the
edges represent the long-range connectivity (interregional fibers)
on the order of a few centimeters. Consequently, in surface-based
simulations both types of connectivity, short- and long-range,
coexist whereas in region-based simulations one level of geometry
is lost: the short-range connectivity.

Neural field models have been developed over many years
for their ability to capture the collective dynamics of relatively
large areas of the brain in both analytically and computationally
tractable forms (Beurle, 1956; Wilson and Cowan, 1972, 1973;
Nunez, 1974; Amari, 1975, 1977; Wright and Liley, 1995; Jirsa and
Haken, 1996, 1997; Robinson et al., 1997; Jirsa et al., 2002; Atay
and Hutt, 2006; Bojak and Liley, 2010). Effectively neural field
equations are tissue level models that describe the spatiotempo-
ral evolution of coarse grained variables such as synaptic voltage
or firing rate activity in populations of neurons. Some of these
models include explicit spatial terms while others are formulated
without an explicit spatial component leaving open the possibil-
ity to apply effectively arbitrary local connectivity kernels. The
lumped representation of the dynamics of a set of similar neurons

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

via a common variable (e.g., mean firing rate and mean postsy-
naptic potential) is known as neural mass modeling (Freeman,
1975, 1992; Lopes da Silva et al., 1974). Neural mass models
accounting for parameter dispersion in the neuronal parame-
ters include Assisi et al., 2005; Stefanescu and Jirsa, 2008, 2011;
Jirsa and Stefanescu, 2010. Networks of neural masses, with-
out an explicit spatial component within the mass but with the
possibility to apply local connectivity kernels (e.g., Gaussian or
Laplacian functions) between masses, can be used to approximate
neural field models. Both neural field and neural mass model-
ing approaches embody the concept from statistical physics that
macroscopic physical systems obey laws that are independent of
the details of the microscopic constituents of which they are built
(Haken, 1983). These and related ideas have been exploited in
neurosciences (Kelso, 1995; Buzsaki, 2006).

In TVB, our main interest lies in using the mesoscopic laws
governing the behavior of neural populations and uncovering
the laws driving the processes on the macroscopic brain network
scale. The biophysical mechanisms available to microscopic single
neuron approaches are absorbed in the mean field parameters on
the mesoscopic scale and are not available for exploration other
than through variation of the mean field parameters themselves.
As a consequence, TVB represents a neuroinformatics tool that is
designed to aid in the exploration of large-scale network mecha-
nisms of brain functioning [see Ritter et al. (2013) for an example
of modeling with TVB].

Furthermore, TVB’s approach to multi-modal neuroimaging
integration in conjunction with neural field modeling shares
common features with the work of Bojak et al. (2010, 2011) and
Babajani-Feremi and Soltanian-Zadeh (2010). The crucial differ-
ence is that the structure upon which TVB has been designed rep-
resents a generalized large-scale “computational neural model” of
the whole brain. The components of this large-scale model have
been separated as cleanly as possible, and a specific structure has
been defined for the individual components. This generic struc-
ture is intended to serve the purpose of restricting the form of
models enough to make direct comparison straight forward while
still permitting a sufficiently large class of models to be expressed.
Likewise, the paradigms presented during the last few years in this
line of research (Sotero et al., 2007; Sotero and Trujillo-Barreto,
2008) could potentially be reproduced, tested and compared in
TVB. The mathematics underlying our model-based approach
have been partially described in various original articles (Deco
et al., 2011; Deco and Jirsa, 2012) and will be reviewed in more
detail in future articles.

1.2. INFORMATICS
From an informatics perspective, a large-scale simulation project
requires a well defined yet flexible workflow, i.e., adaptable
according to the users profiles. A typical workflow in TVB
involves managing project information, uploading data, setting
up simulation parameters (model, integration scheme, output
modality), launching simulations (in parallel if needed), ana-
lyzing and visualizing, and finally storing results and sharing
output data.

The web interface allows users without programming knowl-
edge to access TVB to perform customized simulations (e.g.,

clinicians could use their patient’s data obtained from DTI stud-
ies). In addition, it enables them to gain a deeper understanding
of the theoretical approaches behind the scenes. On the other
hand, theoreticians can design their own models and get an idea
of their biophysical realism, their potential physiological applica-
tions and implications. As both kinds of users may work within
the same framework, the interplay of theory and experiment
or application is accelerated. Additionally, users with stronger
programming skills benefit from all the advantages provided by
the Python programming language: easy-to-learn, easy-to-use,
scriptable and with a large choice of scientific modules (Oliphant,
2006).

TVB has been principally built in the Python programming
language due to its unique combination of flexibility, existing
libraries and the ease with which code can be written, docu-
mented, and maintained by non-programmers. The simulation
core, originally developed in MATLAB, was ported to Python
given its current significance in the numerical computing and
neuroscience community and its already proven efficiency for
implementing modeling tools (Spacek et al., 2008).

Simulations benefit from vectorized numerical computations
with NumPy arrays and are enhanced by the use of the num-
expr package. Although this allows rather efficient single simu-
lations, the desire to systematically explore the parameter spaces
of the neural dynamic models, and to compare many connectiv-
ity matrices, has lead to the implementation of code generation
mechanisms for the majority of the simulator core—producing
C code for both native CPU and also graphics processing units
(GPU), leading to a significant speed up of parameter sweeps and
parallel simulations (5x from Python to C, 40x from C to GPU).
Such graphics units have become popular in scientific computing
for their relatively low price and high computing power. Going
forward, the GPU implementation of TVB will require testing and
optimization before placing it in the hands of users.

This article intends to give a comprehensive but non-
exhaustive description of TVB, from both technical and scientific
points of view. It will describe the framework’s architecture, the
simulation core, and the user interfaces. It will also provide
two examples, using specific features of the simulator, extracted
from the demo scripts which are currently available in TVB’s
distribution packages.

2. TVB ARCHITECTURE
The architectural model of the system has two main components:
the scientific computing core and the supporting framework with
its graphical user interface. Both software components communi-
cate through an interface represented by TVB-Datatypes, which
are described in section 2.2. In Figure 1 TVB’s architectural details
are illustrated and explained in more depth.

General aspects: TVB is designed for three main deployment con-
figurations, according to the available hardware resources: (1)
Stand Alone; (2) Client-Server or, (3) Cluster. In the first, a local
workstation is assumed to have certain display, computing power
and storage capacity resources. In the second, an instance of
TVB is running on a server connected through a network link
to client units, and thus accessible to a certain number of users.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 1 | The Virtual Brain Architecture: TVB provides two

independent interfaces depending on the interaction with users.

Blocks in the back-end are transparently used by different top application
layers. TVB-Datatypes, are the common language between different
components (analyzers, visualizers, simulator, uploaders). They represent

“active data” in the sense that, when TVB is configured with a database,
data contained in TVB-Datatypes instances are automatically persistent.
Currently the console interface works without the storage layer, keeping
the results just in memory. S-Users need to manually handle data import
and export operations.

In this deployment model, simulations use the back-end server’s
computing power while visualization tasks use resources from
the client machine. The third is similar to the client-server con-
figuration, but with the additional advantage of parallelization
support in the back-end. The cluster itself needs to be configured
separately of TVB.

Based on the usage scenarios and user’s level of program-
ming knowledge, two user profiles are represented: a graphical
user (G-user) and scripting user (S-user). We therefore provide
the corresponding main interfaces based on this classification: a
graphical user interface (web) and a scripting interface (IDLE).
S-users and G-users have different levels of control over different
parts of the system. The profile of S-users is thought to be that of
scientific developers, that is, researchers who can elaborate com-
plex modeling scenarios, add their own models or directly modify
the source code to extend the scientific core of TVB, mostly work-
ing with the scientific modules. They do, nevertheless, have the
possibility to enable the database system. In contrast, G-users
are relatively more constrained to the features available in the
stable releases of TVB, since their profile corresponds more to
that of researchers without a strong background in computational
modeling. The distinction between these two profiles is mainly a
categorization due to the design architecture of TVB. For instance,
we could also think of other type of users who want to work with
TVB’s GUI and are comfortable with programming, and there-
fore they could potentially make modifications in the code and
then see the effect of those when launching the application in a
web browser.

The development of TVB is managed under Agile tech-
niques. In accord therewith, each task is considered as done,

after completing a validation procedure that includes: adding a
corresponding automated unit-test, labeling the task as finished
from the team member assigned to implement the task and fur-
ther tagging as closed from a team member responsible for the
module, which means a second level of testing. Before releas-
ing stable packages, there is a period for manual testing, that
is, a small group of selected users from different institutions
check the main features and functionalities through both inter-
faces. The navigation and workflows scenarios through the web-
based interface are evaluated by means of automated integration
tests for web-applications running with Selenium (http://docs.
seleniumhq.org/) and Apache-JMeter (http://jmeter.apache.org/)
on top of a browser engine. Special effort is being made to provide
good code-coverage, including regression tests. Accordingly, the
simulation engine of TVB has automated unit-tests, to guarantee
the proper and coordinated functioning of all the modules, and
simple programs (demonstration scripts), that permit qualitative
evaluation of the scientific correctness of results.

The development version of TVB is currently hosted on a
private cluster, where we use the version control system svn
(subversion). Additionally, as any large collaborative open-source
project, it is also available in a public repository, using the dis-
tributed version control system git (Chacon, 2009) to make
accessible the scientific core and to gather, manage and inte-
grate contributions from the community. The distribution pack-
ages for TVB come with an extensive documentation, including:
a User Guide, explaining how to install TVB, set up models
and run them; Tutorials, Use Cases and Script Demos, guid-
ing users to achieve predefined simulation scenarios; and a
Developer Guide and API reference. Table 1 provides the links

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 4

http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://jmeter.apache.org/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

Table 1 | TVB links.

TVB official website http://www.thevirtualbrain.org

Distribution packages http://www.thevirtualbrain.org/register

Public repository https://github.com/the-virtual-brain

User group https://groups.google.com/group/tvb-users/

to: the official TVB website, where distribution packages for Linux
and Mac OS (32 and 64 bits) and Windows (32 bits) are avail-
able for download; the active users group of TVB hosted in
Google Groups, where users can ask questions, report issues and
suggest improvements or new features; and the public reposi-
tory, where the source code of both the framework and scien-
tific library (which contains the simulation engine) are avail-
able.

Installation and System Requirements: When using the web
interface, users are recommended to have a high definition mon-
itor (at least 1600 × 1000 pixels), a WebGL and WebSockets
compatible browser (latest versions of Mozilla Firefox, Apple
Safari or Google Chrome), and a WebGL-compatible graphics
card, that supports OpenGL version 2.0 or higher (Shreiner et al.,
2005).

Regarding memory and storage capacity, for a stand alone
installation a minimum of 8 GB of RAM is recommended. For
multi-users environments 5 GB of space per user is suggested.
This is a storage quota specified by an administrator to manage
the maximum hard disk space per user. As for computing power
one CPU core is needed for a simulation with a small number
of nodes, while simulations with a large number of nodes, such
as surface simulations, can make use of a few cores if they are
available. When the number of launched simulations is larger
than the number of available cores, a serialization is recom-
mended (a serialization mechanism is provided by the supporting
framework through the web user interface by specifying the max-
imum of simultaneous jobs allowed). In order to use the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010), MATLAB or
Octave should be installed, activated and accessible for the current
user.

2.1. TVB FRAMEWORK
The supporting framework provides a database back-end, work-
flow management and a number of features to support collab-
orative work. The latter feature permits TVB to be setup as
a multi-user application. In this configuration, a login system
enables users to access their personal sessions; by default their
projects and data are private, but they can be shared with other
users. The graphical user interface (GUI) is web based, making
use of HTML 5, WebGL, CSS3 and Java Script (Bostock et al.,
2011) tools to provide an intuitive and responsive interface that
can be locally and remotely accessed.

2.1.1. Web-based GUI
TVB provides a web-based interactive framework to generate,
manipulate and visualize connectivity and network dynamics.
Additionally, TVB comprises a set of classic time-series analysis
tools, structural and functional connectivity analysis tools, as well

as parameter exploration facilities which can launch simulations
in parallel on a cluster or on multiple compute cores of a server.
The GUI of TVB has six main working areas: USER, PROJECT,
SIMULATOR, ANALYZE, STIMULUS, and CONNECTIVITY.
In USER, the users manage their accounts and TVB settings.
In PROJECT, individual projects are managed and navigation
tools are provided to explore their structure as well as the data
associated with them. A sub-menu within this area provides
a dashboard with a list of all the operations along with their
current status (running, error, finished), owner, wall-time and
associated data, among other information. In SIMULATOR the
large-scale network model is set up and simulations launched,
additional viewers for structural and functional data are offered
in 2D and 3D, as well as other displays to visualize the results
of a simulation. A history of simulations is also available in this
area. In ANALYZE time-series and network analysis methods
are provided. In STIMULUS, users can interactively create stim-
ulation patterns. Finally, in CONNECTIVITY, users are given
a responsive interface to edit the connectivity matrices assisted
by interactive visualization tools. Figure 2 depicts the different
working areas, as well as a number of their sub-menus, avail-
able through the web UI. A selection of screenshots illustrating
the interface in a web browser is given in Figure 3.

2.1.2. Data management and exchange
One of the goals of TVB is to allow researchers from differ-
ent backgrounds and with different programming skills to have
quick access to their simulated data. Data from TVB can be
exchanged with other instances of TVB (copies installed on differ-
ent computers) or with other applications in the neuroscientific
community, e.g., MATLAB, Octave, The Connectome ToolKit
(Gerhard et al., 2011).

Export: A project created within TVB can be entirely exported
to a .zip file. Besides storing all the data generated within a par-
ticular project in binary files, additional XML files are created to
provide a structured storage of metadata, especially with regard to
the steps taken to set up a simulation, configuration parameters
for specific operations, time-stamps and user account informa-
tion. This mechanism produces a summary of the procedures
carried on by researchers within a project which is used for shar-
ing data across instances of TVB. The second export mechanism
allows the export of individual data objects. The data format used
in TVB is based on the HDF5 format (The HDF Group, 2010)
because it presents a number of advantages over other formats:
(1) huge pieces of data can be stored in a condensed form; (2)
it allows grouping of data in a tree structure; (3) it allows meta-
data assignment at every level; and (4) it is a widely used format,
accessible in several programming languages and applications.
Additionally, each object in TVB has a global unique identifier
(GUID) which makes it easy to identify an object across systems,
avoiding naming conflicts among files containing objects of the
same type.

Import: A set of mechanisms (“uploaders”) is provided in TVB
to import data into the framework, including neuroimaging data
generated independently by other applications. The following for-
mats are supported: NIFTI-1 (volumetric time- series), GIFTI

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 2 | Main working areas of The Virtual Brain ’s web interface: in

USER personal information (account settings) as well as hardware and

software preferences (technical settings) are configured. Through the
PROJECT area users access and organize their projects, data, figures and the
operations dashboard. Input and output simulated data can be exported in
HDF5 format and may be used outside of the framework. Brain network
models and execution of simulations are configured and launched,

respectively in SIMULATOR. In this area results can be immediately analyzed
and visualized to have a quick overview of the current model. A history of
launched simulations is kept to have the traceability of any modifications that
took place in the simulation chain. STIMULUS provides a collection of tools
to build stimulation patterns that will be available to use in the simulations.
Finally, CONNECTIVITY provides an interactive environment to the edit and
visualize connectivity matrices.

(surfaces) and CFF (connectome file). General compression for-
mats, such as ZIP and BZIP2 are also supported for certain
data import routines that expect a set of ASCII text files com-
pressed in an archive. Hence the use of general compression
formats means that preparing datasets for TVB is as simple as
generating an archive with the correct ASCII files, in contrast
to some of the other neuroscientific data formats found else-
where. For instance, a Connectivity dataset (connectome) may be
uploaded as a zip folder containing the following collection of
files: (1) areas.txt, (2) average_orientations.txt, (3) info.txt, (4)
positions.txt, (5) tract_lengths.txt, and (6) weigths.txt. More con-
ventions and guidelines to use each uploader routine can be found
in the User Guide of TVB’s documentation.

2.1.3. File storage
The storage system is a tree of folders and files. The actual
location on disk is configurable by the user, but the default
is a folder called “TVB” in the user’s home folder. There is a
sub-folder for each Project in which an XML file containing
details about the project itself is stored. Then for each opera-
tion, one folder per operation is created containing a set of .h5

files generated during that particular operation, and one XML
file describing the operation itself. The XML contains tags like
creation date, operation status (e.g., Finished, Error), algorithm
reference, operation GUID, and most importantly input param-
eters dictionary. Sufficiently detailed information is stored in
the file system to be able to export data from one instance
of TVB and to then import it into another instance, correctly
recreating projects, including all operations and their results.
Even though the amount of data generated per operation varies
greatly, since it depends strongly on the Monitors used and
parameters of the simulation, some rough estimates are given
below:

• A 1000 ms long, region-based simulation with all the default
parameters requires approximatively 1 MB of disk space.

• A 10 ms long, surface-based simulation, using a precalculated
sparse matrix to describe the local connectivity kernel and all
the default parameters, requires about 280 MB.

Users can manually remove unused data using the correspond-
ing controls in TVB’s GUI. In this case, all files related to these

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 3 | UI screenshots. (A) SIMULATOR Area. Having multiple panels
allows a quick overview of previous simulations (left), model parameters for
the currently selected simulation (middle), and summary displays of the data
associated with the currently selected simulation (right). (B) Shows the

interface for editing and visualising the structural connectivity, for one of the
six possible connectivity visualisations. (C) PROJECT Area—operations
dashboard. On the left column, users can compose filters to search through
all the operations on the list.

data are also deleted, freeing disk space. The amount of phys-
ical storage space available to TVB can be configured in the
USER → Settings working area of the GUI—this is, of course,
limited by the amount of free space available on the users
hard drives.

2.1.4. Database management system
Internally, TVB framework uses a relational database (DB),
for ordering and linking entities and as an indexing facil-
ity to quickly look up data. At install time, users can choose
between SQLite (a file based database and one of the most
used embedded DB systems) and PostgreSQL (a powerful,
widely spread, open-source object-relational DB system which
requires a separate installation by users) as the DB engine.
In the database, only references to the entities are stored,
with the actual operation results always being stored in files,

due to size. A relational database was chosen as it provides
speed when filtering entities and navigating entity relationship
trees.

2.2. TVB DATATYPES
In the architecture of TVB, a middleware layer represented by
TVB-Datatypes allows the handling and flow of data between the
scientific kernel and the supporting framework. TVB-Datatypes
are annotated data structures which contain one or more data
attributes and associated descriptive information, as well as meth-
ods for operating on the data they contain. The definition
of a Datatype is achieved using TVB’s traiting system, which
was inspired by the traiting system developed by Enthought
(Enthought, 2001). The traiting system of TVB, among other
things, provides a mechanism for annotating data, that is, associ-
ating additional information with the data which is itself usually

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

a single number or an array of numbers. A complete descrip-
tion of TVB’s traiting system is beyond the scope of this article.
However, in describing TVB’s Datatypes we will give an example
of its use, which should help to provide a basic understanding of
the mechanism.

A number of basic TVB-Datatypes are defined based on
Types that are part of the traiting system, with these traited
Types, in turn, wrapping Numpy data types. For instance,
TVB-FloatArray is a datatype derived from the traiting system’s
Array type, which in turn wraps Numpy’s ndarray. The trait-
ing system’s Array type has attributes or annotations, such as:
dtype, the numerical type of the data contained in the array;
label, a short (typically one or two word) description of what
the Array refers to, this information is used by the support-
ing framework to create a proper label for the GUI; doc, a
longer description of what the Array refers to, allowing the
direct integration of useful documentation into array objects; and
default, the default value for an instance of an Array type. In
the case of a FloatArray, the dtype attribute is fixed as being
numpy.float64.

More complex, higher-level, TVB-Datatypes are then built
up with attributes that are themselves basic TVB-Datatypes. For
example, TVB-Connectivity is datatype which includes multi-
ple FloatArrays, as well as a number of other traited types, such

as Integer and Boolean, in its definition. An example of a
FloatArray being used to define an attribute of a Connectivity can
be seen in Code 1. The high-level Datatypes currently defined in
TVB are summarized in Table 2.

An example indicating the usage and features of TVB-
Datatypes is provided below. When a user uploads a connectivity
dataset through the UI, an instance of a Connectivity datatype is
generated. This Connectivity datatype is one of the required input
arguments when creating an instance of SIMULATOR. As a result
of the execution of a simulation, other TVB-Datatypes are gener-
ated, for instance one or more TimeSeries datatypes. Specifically,
if the simulation is run using the MEG and EEG recording
modalities then TimeSeriesMEG, TimeSeriesEEG, which
are subclasses of TimeSeries, are returned. Both the Connectivity

Code 1 | An instance of TVB’s FloatArray Datatype being used to

define the conduction speed between brain regions as an attribute of

a Connectivity Datatype.

speed = FloatArray(
label = "Conduction speed",
default = numpy.array([3.0]),
doc = """A single number or matrix of conduction speeds for the

myelinated fibre tracts between regions.""")

Table 2 | TVB Datatypes.

Base class datatype Description Derived classes

Connectivity Maps connectivity matrix data Connectivity

Surfaces Covers surface representations CorticalSurface, SkinAir, BrainSkull, SkullSkin,
EEGCap, FaceSurface, Cortex, RegionMapping,
LocalConnectivity

Volumes Wraps volumetric data ParcellationMask, StructuralMRI

Sensors Wraps sensors data used in different acquisition techniques to
generate physiological recordings

SensorsEEG, SensorsMEG, SensorsInternal

ProjectionMatrix Wraps matrices defining a linear operator to map the spatial sources
into the leadfield domain

ProjectionRegionEEG, ProjectionSurfaceEEG,
ProjectionRegionMEG

It relates two datatypes: a source of type Connectivity or Surface
and a set of Sensors

ProjectionSurfaceMEG

The matrix is computed using OpenMEEG. (Gramfort et al., 2010)

Equations Commonly used functions for defining local connectivity kernels and
stimulation patterns

SpatialPattern Contains patterns mainly used as stimuli. It makes use of Equation
datatypes

SpatioTemporalPattern, StimuliRegion,
StimuliSurface, SpatialPatternVolume

TimeSeries One of the most important TVB-Datatypes. Derived classes wrap
measurements recorded under different acquisition modalities

TimeSeriesRegion, TimeSeriesSurface,
TimeSeriesVolume, TimeSeriesEEG, TimeSeriesMEG

Graph Wraps results from a covariance analysis or results from BCT
analyzers

Covariance, ConnectivityMeasure

MappedValues Wraps a single value computed from a TimeSeries object

ModeDecomposition Wraps results from matrix factorization analysis (i.e., PCA and ICA) PrincipalComponents, IndependentComponents

Spectral Wraps results from frequency analysis FourierSpectrum, WaveletCoefficients,
ComplexCoherenceSpectrum

Specifications about the requirements to build a TVB-Datatype can be found in the documentation of the distribution packages.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

and TimeSeries datatypes are accepted by a range of appropriate
analysis and visualization methods.

Further, TVB-Datatypes have attributes and metadata which
remains accessible after exporting in TVB format. The meta-
data includes a technical description of the data (storage size
for instance) as well as scientifically relevant properties and use-
ful documentation to properly interpret the dataset. In the shell
interface, the attributes of TVB-Datatype can be accessed by their
key-names in the same way as Python dictionaries.

2.3. TVB SIMULATOR
The simulation core of TVB brings together a mesoscopic model
of neural dynamics with structural data. The latter defines both
the spatial support (see Figure 4), upon which the brain net-
work model is built, and the hierarchy of anatomical connectivity,
that determines the spatial scale represented by the structural
linkages between nodes (Freeman, 1975). Simulations then recre-
ate the emergent brain dynamics by numerically integrating this
coupled system of differential equations. All these entities have
their equivalent representation as classes either in the sci-
entific MODULES or datatypes, and are bound together in an
instance of the Simulator class. In the following paragraphs
we describe all the individual components required to build a
minimal representation of a brain network model and run a simu-
lation, as well as the outline of the operations required to initialize
a Simulator object and the operations of the update scheme.

2.3.1. Coupling
The brain activity (state variables) that has been propagated over
the long-range Connectivity pass through these functions before
entering the equations of a Model describing the local dynam-
ics. A Coupling function’s primary purpose is to rescale the
incoming activity to a level appropriate to the population model.
The base Coupling class as well as a number of different cou-
pling functions are implemented in the COUPLING module, for
instance Linear and Sigmoidal.

FIGURE 4 | Demonstration datasets exist in TVB for the anatomical

structure on which simulations are built, including a triangular mesh

surface representation of the neocortex (A) and white matter fiber

lengths (B). However, new data from structural imaging such as MRI, DTI,
and DSI for individual subjects, as well as data from the literature can be
used and wrapped in a TVB-Datatype.

2.3.2. Population models
A set of default mesoscopic neural models are defined in TVB’s
MODELS. All these models of local dynamics are classes derived
from a base Model class.

We briefly discuss the implemented population models in
order of increasing complexity. They include a generic two
dimensional oscillator, a collection of classical population mod-
els and two recently developed multi-modal neural mass models.
Below, N refers to the number of state variables or equations
governing the evolution of the model’s temporal dynamics; M
is the number of modes and by default M = 1 except for the
multi-modal models.

The Generic2dOscillator model (N = 2) is a generic
phase-plane oscillator model capable of generating a wide range
of phenomena observed in neuronal population dynamics, such
as multistability, the coexistence of oscillatory and non-oscillatory
dynamics, as well as displaying dynamics at multiple time
scales.

The WilsonCowan model (Wilson and Cowan, 1972)
(N = 2) describes the firing rate of a neural population con-
sisting of two subpopulations (one excitatory and the other
inhibitory). It was originally derived using phenomenological
arguments. This neural mass model provides an intermediate
between a microscopic and macroscopic level of description of
neural assemblies and populations of neurons since it can be
derived from pulse-coupled neurons (Haken, 2001) and its con-
tinuum limit resembles neural field equations (Jirsa and Haken,
1996).

The WongWang model (Wong and Wang, 2006) represents
a reduced system of N = 2 coupled non-linear equations, orig-
inally derived for decision making in two-choice tasks. The
BrunelWang model (Brunel and Wang, 2001, 2003) is a mean
field model derived from integrate-and-fire spiking neurons and
makes the approximation of randomly distributed interspike
intervals. It is notable that this population model shows only
attractor states of firing rates. It has been extensively used to
study working memory. Its complexity resides in the number of
parameters that it uses to characterize each population (N = 2).
These parameters correspond to physical quantities that can be
measured in neurophysiology experiments. The current imple-
mentation of this model is based on the approach used in (Deco
and Jirsa, 2012).

The JansenRit model (Jansen and Rit, 1995) is a deriva-
tive of the Wilson-Cowan model and features three coupled
subpopulations of cortical neurons: an excitatory population of
pyramidal cells interacting with two populations of interneu-
rons, one inhibitory and the excitatory. This model can produce
alpha activity consistent with that measured in EEG, and is
capable of simulating evoked potentials (Jansen et al., 1993). It
displays a surprisingly rich and complex oscillatory dynamics
under periodic stimulation (Spiegler et al., 2010). Each popu-
lation is described by a second order differential equation. As a
consequence the system is described by a set of N = 6 first order
differential equations.

The StefanescuJirsa2D and StefanescuJirsa3D
models (Stefanescu and Jirsa, 2008; Jirsa and Stefanescu, 2010;
Stefanescu and Jirsa, 2011) are neural mass models derived from a

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

globally coupled population of neurons of a particular kind. The
first one has been derived from coupled FitzHugh-Nagumo neu-
rons (FitzHugh, 1961; Nagumo, 1962), which, with N = 2, are
capable of displaying excitable dynamics, as well as oscillations.
The second is derived from coupled Hindmarsh-Rose neurons
(Hindmarsh and Rose, 1984), which are also capable of pro-
ducing excitable and oscillatory dynamics, but with N = 3 have
the additional capability of displaying transient oscillations and
bursts. The two Stefanescu-Jirsa models show the most complex
repertoire of dynamics (including bursting and multi-frequency
oscillations). They have been derived using mean field tech-
niques for parameter dispersion (Assisi et al., 2005) and have an
additional dimension, the mode M, which partitions the dynam-
ics into various subtypes of population behavior. These models
are therefore composed of 12 (N = 4, M = 3) and 18 (N = 6,
M = 3) state variables, respectively.

2.3.3. Integrators
The base class for integration schemes is called Integrator, an
INTEGRATORS module contains this base class along with a set of
specific integration scheme classes for solving both deterministic
and stochastic differential equations. The specific schemes imple-
mented for brain network simulations include the Euler and
Heun methods. The 4th-order Runge-Kutta (rk4) method is
only available for solving ordinary differential equations (ODEs),
i.e., deterministic integration, given that there are various vari-
ants for the stochastic version of the method, differing rates of
convergence being one of the points that several attempts of cre-
ating a stochastic adaptation fail at [see Burrage et al. (2004)
for an overview]. Therefore, this method is available for drawing
example trajectories in the interactive phase-plane plot tool.

2.3.4. Noise
Noise plays a crucial role for brain dynamics, and hence for
brain function (McIntosh et al., 2010). The NOISE module con-
sists of two base classes: RandomStream that wraps Numpy’s
RandomState class and Noise. The former provides the ability
to create multiple random streams which can be independently
seeded or set to an explicit initial state. The latter is the base
class from which specific noises, such as white and colored (Fox
et al., 1988), are derived. In TVB’s implementation Noise enters
as an additional term within the stochastic integration schemes,
and can be either an Additive or Multiplicative process
(Klöden and Platen, 1995). As well as providing a means to gener-
ate reproducible stochastic processes for the integration schemes,
the related classes in NOISE are used to set the initial conditions
of the system when no explicit initial conditions are specified.

2.3.5. Monitors
The data from a simulation is processed and recorded while
the simulation is running, that is, while the differential equa-
tions governing the system are being integrated. The base class
for these processing and recording methods is the Monitor
class in the MONITORS module. We consider two main types
of online-processing: (1) raw or low-level; and (2) biophysical
or high-level. The output of a Monitor is a 4-dimensional
array (which can be wrapped in the corresponding TimeSeries

datatype), i.e., a 3D state vector as a function of time. For
the first kind of Monitors these dimensions correspond to
[time, state variables, space, modes] where “space” can be either
brain regions or vertices of a cortical surface plus non-cortical
brain regions. The number of state variables as well as the num-
ber of modes strictly depend on the Model. For the second kind
of Monitors, the dimensions are [time, 1, sensors, 1]. The sim-
plest form of low-level Monitor returns all the simulated data,
i.e., time points are returned at the sampling rate correspond-
ing to the integration scheme’s step size and all state variables
are returned for all nodes. All other low-level Monitors per-
form some degree of down-sampling, such as returning only a
reduced set state variables (by default the variables of interest of
a Model), or down-sampling in “space” or time. Some vari-
ations include temporally sub-sampled, spatially averaged and
temporally sub-sampled, or temporally averaged. The biophysical
Monitors instantiate a physically realistic measurement pro-
cess on the simulation, such as EEG, MEG, SEEG or BOLD. For
the first two, a ProjectionMatrix is also required. This matrix
maps source activity (“space”) to sensor activity (“sensors”).
OpenMEEG (Gramfort et al., 2010) was used to generate the
demonstration projection matrix, also known as lead-field or gain
matrix, that corresponds to the EEG/MEEG forward solution.
The forward solution modeling the signals from depth electrodes
is based on the point dipole model in homogeneous space (Sarvas,
1987). The BOLD monitor is based on Buxton and Frank (1997)
and Friston et al. (2000). Figure 5 summarizes the fundamental
blocks required to configure a full model, launch a simulation and
retrieve the simulated data.

In most neural mass models there is a state variable represent-
ing some type of neural activity (firing rate, average membrane
potential, etc.), which serves as a basis for the biophysical moni-
tors. The state variables used as source of neural activity depend
both on the Model and the biophysical space that it will be pro-
jected onto (MEG, EEG, BOLD). Given a neural mass model with
a set of state variables, G-Users can choose which subset of state
variables will be fed into a Monitor (independently for each
monitor). However, how a given Monitor operates on this sub-
set of state variables is an intrinsic property of the monitor. Users
with programming experience can, of course, define new moni-
tors according to their needs. Currently, there is not a mechanism
providing automatic support for general operations over state
variables before they are passed to a monitor. As such, when the
neural activity entering into the monitors is anything other than
a summation or average over state variables then it is advised to
redefine the Model in a way that one of the state variables actually
describes the neural activity of interest.

2.3.6. Outline of the simulation algorithm
The Simulator class has several methods to set up the
spatiotemporal dimensions of the input and output arrays,
based on configurable attributes of the individual
components such as integration time step (e.g., INTE-
GRATORS.HeunDeterministic.dt), structural spatial
support (e.g., connectivity.Connectivity or surfaces.
CorticalSurface) and transmission speed (e.g., connec-
tivity.Connectivity .speed) as well as a cascade of specific

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 5 | Diagram of the configurable elements for building a brain

network model and launching a simulation. TVB can incorporate cortical
connectivity information from an individual’s tractographic and cortical
geometry data. The Connectivity object contains matrices defining the
connection strengths and time delays via finite signal transmission speed
between all regions, while the folded Cortical Surface mesh provides the
spatial support for finer resolution models. In the latter case a Local

Coupling defines the interaction between neighboring nodes. In its simplest
form local connectivity is spatially invariant, however, support exists for
spatial inhomogeneity. Signal propagation via local connectivity is
instantaneous (no time delays), which is a reasonable approximation
considering the short distances involved. Together, the cortical surface with
its local connectivity, the long-range connectivity matrix, and the neural mass

models defining the local dynamics define a full brain network model.
Additionally, stimulation can be applied to a simulation. The stimulation
patterns are built in terms of spatial and temporal equations chosen
independently. For region-based network models, it is only possible to build
time dependent stimuli since there is not a spatial extent for a region node.
However, node-specific weightings can be set to modulate the intensity of
the stimulus applied to each node. For surface-based models, equations with
finite spatial support are evaluated as a function of distance from one or more
focal points (vertices of the surface), where the equation defines the spatial
profile of the stimuli. The neural source activity from both region or
surface-based approaches can be projected into EEG, MEG and BOLD
(Buxton and Frank, 1997; Friston et al., 2000) space using a forward model
(Breakspear and Jirsa, 2007).

configuration methods to interface them. The Simulator
class coordinates the collection of objects from all the modules
in the scientific library needed to build the network model and
yield the simulated data. To perform a simulation a Simulator
object needs to be: (1) configured, initializing all the individual
components and calculating attributes based on the combination
of objects passed to the Simulator instance; and (2) called in
a loop to obtain simulated data, i.e., to run the simulation (see
Code 2). The next paragraphs list the main operations of the
simulation algorithm.

Initializing a Simulator

1. Check if the transmission speed was provided.
2. Configure the Connectivity matrix (connectome). The

delays matrix is computed using the distance matrix and
the transmission speed. Get the number of regions.

3. Check if a Surface is provided.
4. Check if a stimulus pattern is provided.
5. Configure individual components: Model, Integrator,

Monitors. From here we obtain integration time

step size, number of statevariables, number
of modes.

6. Set the number of nodes (region-based or surface-based
simulation). If a Surface was given the number of nodes
will correspond to the number of vertices plus the num-
ber of non-cortical regions, otherwise it will be equal to the
number of regions in the Connectivity matrix.

7. Spatialise model parameters if required. Internally, TVB uses
arrays for model parameters, if the size of the array for a
particular parameter is 1, then the same numerical value is
applied to all nodes. If the size of the parameter array is N,
where N is the number of nodes, the parameter value for each
node is taken from the corresponding element of the array of
parameter values.

8. If applicable, configure spatial component of stimulation
Patterns (requires number of nodes).

9. Compute delays matrix in integration time steps.
10. Compute the horizon of the delayed state, that is the

maximum delay in integration time steps.
11. Set the history shape. The history state contains the activ-

ity that propagates from the delayed state to the next.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

12. Determine if the Integrator is deterministic or stochas-
tic. If the latter, then configure the Noise and the integration
method accordingly.

13. Set initial conditions. This is the state from
which the simulation will begin. If none is provided, then
random initial conditions are set based on the ranges of the
model’s state variables. Random initial conditions are fed to
the initial history array providing the minimal state of the
network with time-delays before t = 0. If initial conditions
are user-defined but the length along the time dimension
is shorter than the required horizon, then the history
array will be padded using the same method of described for
random initial conditions.

14. Configure the monitors for the simulation. Get variables
of interest.

Calling a Simulator

1. Get simulation length.
2. Compute estimates of run-time, memory usage and storage.
3. Check if a particular random state was provided (random

seed). This feature is useful for reproducibility of results, for
instance, getting the same stream of random numbers for the
Noise.

4. Compute the number of integration steps.
5. If the simulation is surface-based, then get attributes required

to compute Local Connectivity kernel.
6. Update state loop:

a. Get the corresponding coupled delayed activity. That is,
compute the dot product between the weights matrix
(connectome) and the delayed state of the coupling
variables, transformed by a (long-range) Coupling
function.

b. Update the state array. This is the numerical integration,
i.e., advancing an integration time step, of the differential
equations defining the neuron model. Distal delayed activ-
ity, local instantaneous activity and stimulation are fed to
the integration scheme.

c. Update the history.
d. Push state data onto the Monitors. Yield any processed

time-series data point if available.

As a working example, in Code 2, we show a code snippet which
uses TVB’s scripting interface and some of the classes and mod-
ules we have just described to generate one second of brain
activity. The for loop in the example code allows scripting users to
receive time-series data as available and separately for each of the
monitors processing simulated raw data. In this implementation,
at each time step or certain number of steps, data can be directly
stored to disk, reducing the memory footprint of the simula-
tion. Such a feature is particularly useful when dealing with larger
simulations. Likewise, data can be accessed while the simulation
is still running, which proves to be advantageous for modeling
paradigms where one of the output signals is fed back to the net-
work model as stimulation for instance (see the paragraph about
Dynamic modeling in section 3).

Code 2 | Script example to simulate 1 second of brain activity. Output

is recorded with two different monitors.

from tvb.simulator.lab import *

#Initialise a Model, Connectivity and Global Coupling
oscilator = models.Generic2dOscillator()
white_matter = connectivity.Connectivity()
white_matter.speed = numpy.array([4.0]) # [mm/ms]
white_matter_coupling = coupling.Linear(a=0.0042)

#Initialise an Integrator
heunint = integrators.HeunDeterministic(dt=2**-4)

#Initialise some Monitors with period in physical time
mon_raw = monitors.Raw()
mon_tav = monitors.TemporalAverage(period=2**-2)
what_to_watch = (mon_raw, mon_tav)

#Initialise a Simulator object
sim = simulator.Simulator(model = oscilator,

connectivity = white_matter,
coupling = white_matter_coupling,
integrator = heunint,
monitors = what_to_watch)

Configure the Simulator object
sim.configure()
LOG.info("Starting simulation...")

raw_data, raw_time = [], []
tavg_data, tavg_time = [], []

Call the Simulator object -- Run simulation
for raw, tavg in sim(simulation_length=2**10):

if not raw is None:
raw_time.append(raw[0])
raw_data.append(raw[1])

if not tavg is None:
tavg_time.append(tavg[0])
tavg_data.append(tavg[1])

LOG.info("Finished simulation.")

2.4. ANALYZERS AND VISUALIZERS
For the analysis and visualisation of simulated neuronal dynamics
as well as imported data, such as anatomical structure and exper-
imentally recorded time-series, several algorithms and techniques
are currently available in TVB. Here we list some of the algo-
rithms and methods that are provided to perform analysis and
visualization of data through the GUI.

Analyzers are mostly standard algorithms for time-series and
network analysis. The analyzers comprise techniques wrapping
functions from Numpy (Fast Fourier Transform (FFT), auto-
correlation, variance metrics), Scipy (cross-correlation), scikit-
learn (ICA) (Pedregosa et al., 2011) and matplotlib-mlab (PCA)
(Hunter, 2007). In addition, there are specific implementations
of the wavelet transform, complex coherence (Nolte et al., 2004;
Freyer et al., 2012) and multiscale entropy (MSE) (Costa et al.,
2002, 2005; Lake and Moorman, 2011).

Visualizers are tools designed to correctly handle specific
datatypes and display their content. Representations currently
available in the GUI include: histogram plots (Figure 6A);
interactive time-series plots, EEG (Figure 6C); 2D head topo-
graphic maps (Figure 6B); 3D displays of surfaces and animations
(Figure 6D) and network plots. Additionally, for shell users there
is a collection of plotting tools available based on matplotlib and
mayavi (Ramachandran and Varoquaux, 2011).

3. PERFORMANCE, REPRODUCIBILITY, AND FLEXIBILITY
3.1. TESTING FOR SPEED
In the context of full brain models there is no other platform
against which we could compare the performance results for TVB

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 6 | Continued

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 6 | Visualizers. (A) Histogram of a graph metric as a function
of nodes in the connectivity matrix. (B) A 2D projection of the head.
The color map represents a graph metric computed on the connectivity
matrix. (C) EEG visualizer combines a rendered head surface, an overlay

with the sensors positions and an interactive time-series display. (D) An
animated display of the spatiotemporal pattern applied to the cortical
surface. Red spots represent the focal points of the spatial component
of the stimulus.

and define a good ratio run-time/real-time. As a first approxima-
tion a simple network of 74 nodes, whose node dynamics were
governed by the equations of the Generic2dOscillator
model (see Code 3) was implemented in the Brian spik-
ing neural network simulator. The integration step size was
0.125 ms (dt = 2−3 ms) and the simulation length was 2048 ms.
This network was evaluated without time delays and using
a random sparse connectivity matrix. Execution times were
about 4.5 s in Brian and 15 s in TVB. In contrast, when
heterogeneous time delays were included, running times of
the simulations implemented in Brian increased considerably
(approximately 6.5x) whereas in TVB they hardly changed
(approximately 1.2x). Simulations were run on a CPU Intel®
Xeon® W3520 @ 2.67 GHz. These results, although informa-
tive, expose the fact that the architectures of TVB and the Brian
simulator are different and therefore they have been optimized
accordingly to serve distinct purposes from a modeling point
of view.

To assess the performance of TVB in terms of simulation
timings, we also ran simulations for all possible combinations
of two parameters: simulation length and integration time step
(Figure 7A). We made the following estimates: it takes on aver-
age 16 s to compute 1 s of brain network dynamics [at the region
level, with an integration time step of 0.0625 ms (dt = 2−4 ms)
and including time delays of the order of 20 ms which amounts to
store about 320 past states per time step] on CPUs Intel ®Xeon
®X5672 @ 3.20 GHz, CPU cache of 12 MB and Linux kernel
3.1.0-1-amd64 as operating system. In Figure 7B we quantify how
running times increase as a function of the integration time step
in 64 s long (region-based) simulations for two different sizes of
the connectivity matrix.

Code 3 | State equations of the generic plane oscillator as scripted to

run the simulation in the Brian simulator. The description of the

parameters are explained in the API documentation and will be

discussed in the context of dynamical systems elsewhere.

model equations
eqs = ’’’
dV/dt = d * tau * (alpha * W - f * V**3 + e * V**2 + I)
dW/dt = d * (a + b * V + c * V**2 - beta * W) / tau
’’’

In general, human cortical connectomes are derived from
anatomical parcellations with a variable number of nodes, from
less than 100 to over a few thousands nodes (Zalesky et al., 2010).
Preliminary results of simulations (data not shown) using con-
nectivity matrices of different sizes (16, 32, 64, 128, 256, 512,
1024, 2048, and 4096 nodes) and a supplementary parameter
(transmission speed that has an effect on the size of the history
array keeping the delayed states of the network) indicate that there
is a quadratic growth of the running times for networks with more
than 512 nodes. Since performance depends on a large num-
ber of parameters which have an effect on both memory (CPU
cache and RAM) and CPU usage, and therefore resulting run-
ning times arise from the interaction between them, we see the
need to develop more tests to stress in particular memory capacity
and bandwidth in order to fully understand the aforementioned
behavior.

In Future Work we talk about the approaches to bench-
mark and improve the execution times of simulations. For the
present work we have restricted ourselves to present performance
results looking at the parameters that have the strongest effect on
simulations timings.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 14

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 7 | (A) As expected for fixed time-step schemes, execution
times scale linearly with the number of integration steps. We used
seven values of simulation lengths (1, 2, 4, 8, 16, 32, and 64 s) and
five values of integration time step (dt = 2−2 = 0.25, dt = 2−3 = 0.125,
dt = 0.0625 = 2−4, dt = 0.03125 = 2−5, and dt = 0.015625 = 2−6 ms). For
each possible combination 100 simulations were performed. The network
model consisted of 74 nodes (with two state variables and one mode
per node). Numerical integration was based on Heun’s stochastic
method. We plot the average execution time with the error bars
representing the standard deviation over simulations. The inset shows a
narrower range for simulation lengths between 1 and 4 s. Axes units

and color code are the same as those displayed in the main plot.
(B) Here, execution times are shown as a function of the integration
time step size, dt, for two different number of nodes (solid and dashed
lines correspond to connectivity matrices of 64 and 128 nodes,
respectively) for a specific conduction speed (4 mm/ms) and simulation
length (64 s). Both axes are in logarithmic scale with base 2. In this
case, halving dt or doubling the number of nodes in the connectivity
matrix, N, doubles the running time. However, as mentioned in the text,
for larger networks execution times seem to grow quadratically as a
function of the number of nodes in the network. Further tests need to
be developed to understand this behavior.

3.2. REPRODUCIBILITY OF RESULTS FROM THE LITERATURE
Ghosh et al. (2008) and Deco et al. (2009) demonstrated the
important role of three large-scale parameters in the emergence
of different cluster synchronization regimes: the global coupling
strength factor, time-delays (introduced via the long-range con-
nectivity fiber tract lengths and a unique transmission speed)
and noise variance. They built parameter space maps using the
Kuramoto synchronization index. Here, using TVB’s scripting
interface, we show it is easily possible to build a similar scheme
and perform a parameter space exploration in the coupling
strength (gcs) and transmission speed (s) space. The Connectivity
upon which the large-scale network is built was the demonstra-
tion dataset. It is bi-hemispheric and consists of 74 nodes, i.e.,
37 regions per hemisphere. It includes all the cortical regions but
without any sub-cortical structure such as the thalamic nuclei.
Its weights are quantified by integer values in the range 0–3. The
evolution of the local dynamics were represented by the model
Generic2dOscillator, configured in such a way that a single iso-
lated node exhibited 40 Hz oscillations (Figure 8). The variance
of the output time-series was chosen as a simple, yet informa-
tive measure to represent the collective dynamics (Figure 9A) as
a function of the parameters under study. Results are shown in
Figure 9B. Parameter sweeps can also be launched from TVB
web-interface (see Figure 10 for an illustration).

Currently TVB provides two scalar metrics based on the vari-
ance of the output time-series to perform data reduction when
exploring a certain parameter space. These are Variance of the
nodes Variances and Global Variance. The former zero-centers
the output time-series and computes the variance over time of
the concatenated time-series of each state variable and mode for
each node and subsequently the variance of the nodes variances

is computed. This metric describes the variability of the tem-
poral variance of each node. In the latter all the time-series are
zero-centered and the variance is computed over all data points
contained in the output array.

With this example we intended to expose the possibility to
reproduce workflows, i.e., modeling schemes, found in the liter-
ature. TVB is a modeling platform providing a means of cross-
validating scientific work by encouraging reproducibility of the
results.

3.3. HIGHER-LEVEL SIMULATION SCENARIOS USING STIMULATION
PROTOCOLS

As one possible use case, we have set up an example based on the
scheme used in McIntosh et al. (2010). The goal is to demonstrate
how to build stimulation patterns in TVB, use them in a simu-
lation, obtain EEG recordings of both the activity similar to the
resting state (RS) and to evoked responses (ER), and finally make
a differential analysis of the complexity of the resulting time-series
by computing MSE.

In vision neuroscience, the two-stream hypothesis (Schneider,
1969) suggests the existence of two streams of information pro-
cessing, the ventral and the dorsal stream. In one of these path-
ways, the ventral stream, the activity from subcortical regions
project to V1 and the activity propagates to the temporal cortices
through V2 and V4 (Goodale and Milner, 1992). We systemat-
ically stimulated the area corresponding to the primary visual
cortex (V1) to demonstrate the functioning of TVB stimulation
Patterns and observed how the activity elicited by a periodic rect-
angular pulse propagates to neighboring regions, especially V2.

Benefiting from TVB’s flexibility we show in Figure 11 that
it is possible to systematically stimulate a specific brain region

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 15

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 8 | Phase portrait using TVB’s interactive phase plane

tool (accessible from both shell and graphical interfaces): the

blue line corresponds to a trajectory of a single oscillator

node isolated and without noise, 4th order Runge-Kutta

integration scheme. In the bottom panel, the corresponding
trajectories of both the v(t) and w(t) state variables of the
model are shown. The activity exhibits oscillations at
approximately 40 Hz.

FIGURE 9 | (A) The activity of individual regions are illustrated in colored
lines. The black line represents the average activity over the network nodes.
Here brain regions are weakly coupled changing both the collective and local
dynamics of the network. (B) Using TVB scientific library as a python module
we can conveniently run thousands of simulations in parallel on a cluster.
Note that TVB parallelizes different tasks e.g., simulations and analyses,
taking advantage of multi-core systems, however, it does not parallelize the
processes themselves. Simultaneous simulations allow for a systematic

parameter space exploration to rapidly gain insights of the whole brain
dynamics repertoire. In this plot, the magnitude and color scale correspond to
one the variance computed over all the elements of the N-dimensional output
array (Global Variance). Simulations were performed on a cluster based on
the Python demo scripts available in the release packages. On of the major
strengths of The Virtual Brain is that G-Users are enabled to launch parameter
sweeps through the UI without the need to know how to submit parallel jobs
(see Figure 10).

(e.g., V1) and to highlight the anatomical connection to its target
region (e.g., V2) by observing the arrival of the delayed activity;
analyze the responses of the model; handle multi-modal simu-
lated data; and extract metrics from computationally expensive

algorithms to characterize both the “resting” and “evoked”
states.

Currently, TVB permits the stimulation and read-out of activ-
ity from any brain area defined in the anatomical parcellation

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 16

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 10 | One of TVB’s major strengths is the capability to launch

parallel simulations through the UI. We show a screenshot of the
resulting display when sweeping across two different parameters of the
Generic2dOscillator model. Here each data point represents two metrics:
size is mapping the Global Variance and color corresponds to the Variance
of the nodes Variance. These results provide a topography of the stability
space allowing users to distinguish, and thus select, combinations of
critical parameters values.

used to derive the connectome. This modeling example was
built imposing a strong restriction on the number of regions
to stimulate, since global dynamics can quickly become com-
plex. Additionally, to demonstrate the many scenarios that can
be set up in TVB, we simulated the same brain network model
under the influence of a stimulus, first without noise (Figure 11A:
using Heun deterministic method) and then with white noise
(Figure 11B: using Heun stochastic method). The first approach
makes it easier to see the perturbations induced by the stimulus
and the propagation of activity from one region to the other. The
second approach is a more realistic representation of the neural
activity.

Results of the proposed modeling protocol are presented in
Figure 12 where the EEG traces from channel Oz for the resting
and evoked states are shown together with the MSE estimates.

Scripts to reproduce results from Figures 11, 12 are available
in the distribution packages of TVB.

With the availability of surface-based simulations the challenge
of replicating topographic maps of different sensory systems, such
as those found in the primary visual cortex (Hinds et al., 2009),
could be addressed.

3.4. DYNAMIC MODELING
From both the shell and web interface it is possible to exploit
another feature of TVB: namely, simulation continuation, i.e.,
a simulation can be stopped allowing users to modify model

parameters, scaling factors, apply or remove stimulation or spatial
constraints (e.g., local connectivity), or make any other change
that does not alter the spatiotemporal domain of the system or
its output (integration step, transmission speed and spatial sup-
port) and then resumed without the need of creating a new
Simulator instance. Furthermore, this capability opens the
possibility to dynamically update the simulation at runtime. Such
a dynamic approach leads toward an adaptive modeling scheme
where stimuli and other factors may be regulated by the ongoing
activity (this last feature can be handled only from the scripting
interface for the moment).

4. DISCUSSION
We have presented the architecture and usage of TVB, a neu-
roinformatics platform developed for simulations of network
models of the full brain. Its scientific core has been developed
by integrating concepts from theoretical, computational, cogni-
tive and clinical neuroscience, with the aim to integrate neu-
roimage modalities along with the interacting mesoscopic and
macroscopic scales of a biophysical model of the brain. From a
computational modeling perspective TVB constitutes an alterna-
tive to approaches such as the work of Riera et al. (2005) and
more recently that of Valdes-Sosa et al. (2009), as well as other
relevant studies mentioned in the main text of this article. From
a neuroinformatics perspective, TVB lays the groundwork for
the integration of existing paradigms in the theory of large-scale
models of the brain, by providing a general and flexible frame-
work where the advantages and limitations of each approach may
be determined. It also provides the community with a technol-
ogy, that until now had not been publicly available, accessible
by researchers with different levels and backgrounds, enabling
systematic implementation and comparison of neural mass and
neural field models, incorporating biologically realistic connec-
tivity and cortical geometry and with the potential to become
a novel tool for clinical interventions. While many other envi-
ronments simulate neural activity at the level of neurons (Brian
simulator, MOOSE, PCSIM, NEURON, NEST, GENESIS) (Hines
and Carnevale, 2001; Gewaltig and Diesmann, 2007; Goodman
and Brette, 2008; Ray and Bhalla, 2008; Pecevski et al., 2009;
Brette and Goodman, 2011), even mimicking a number of spe-
cific brain functions (Eliasmith et al., 2012), they, most impor-
tantly, do not consider the space-time structure of full brain
connectivity constraining whole brain neurodynamics, as a cru-
cial component in their modeling paradigm. Other approaches to
multi-modal integration such as Statistical Parametric Mapping
(SPM) perform statistical fitting to experimental data at the level
of a small set of nodes (Friston et al., 1995, 2003; David et al.,
2006; Pinotsis and Friston, 2011) [i.e., they are data-driven as in
Freestone et al. (2011)], thus diverging from our approach that
could be categorized as a purely “computational neural modeling”
paradigm as described in Bojak et al. (2011). From this perspec-
tive, the goal is to capture and reproduce whole brain dynamics by
building a network constrained by its structural large-scale con-
nectivity and mesoscopic models governing the nodes intrinsic
dynamics.

Also, the extension of neuronal level modeling to large brain
structures requires vast supercomputers to emulate the large

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 17

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 11 | (A) The upper left blue panel shows the raw traces of nodes V2
and V1; the latter stimulated with a rectangular pulse of width equal to 5 ms
and repetition frequency of 1 Hz. Signals are normalized by their
corresponding maximum value. The right blue panel show the signals for a
shorter period of time. Amplitudes are not normalized to emphasize the
relative difference between the two regions. Middle panels illustrate the
stimulus pattern. Lower red panels display the activity as projected onto EEG

space and recorded from channels Oz and O1. The default EEG cap in TVB
consists of 62 scalp electrodes distributed according to the 10–20
international system (Klem et al., 1999). In this simulation a deterministic
integration scheme was employed to obtain the time-series of neural activity,
since noise was not applied to the model’s equations. (B) The same
description as in (A) applies. The main difference with the previous
simulation is that here white noise was added to the system.

number of complex functional units. Focusing on the brain’s
large-scale architecture, in addition to the dimension reduction
accomplished through the mean field methods applied on the
mesoscopic scale, TVB allows for computer simulations on the

full brain scale on workstations and small computing clusters,
with no need to use supercomputing resources.

The simulator component of TVB has the goal of simulat-
ing mesoscopic neural dynamics on large-scale brain networks.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 18

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

FIGURE 12 | The green and blue panels show EEG recordings from

electrode Oz during the resting state , i.e., in the absence of stimulation

and in the stimulated condition, respectively, notice the slow damped

oscillations after stimulus onset at a approximately 10 Hz; the light gray

trace depicts the stimulation pattern. The bottom panel displays multiscale
entropy estimates computed on the Oz time-series at different temporal
scales using the dataset obtained by means of a stochastic integration
scheme.

It does not intend to build brain models at the level of neu-
rons (Goodman and Brette, 2009; Cornelis et al., 2012), how-
ever, it does leverage information from microscopic models to
add detail and enhance the performance of the neural popula-
tion models, which act as building blocks and functional units
of the network. TVB thus represents a unique tool to system-
atically investigate the dynamics of the brain, emphasizing its
large-scale network nature and moving away from the study
of isolated regional responses, thereby considering the function
of each region in terms of the interplay among brain regions.
The primary spatial support (neuroanatomical data) on top of
which the large-scale network model is built has a number of
implications:

1. It constraints the type of network dynamics; dynamics that
could be further related to physiology and behavior (Senden
et al., 2012).

2. It permits a systematic investigation of the consequences of
the particular restrictions imposed by that large-scale structure
and the effect of changes to it.

3. It provides a reliable and geometrically accurate
model of sources of neural activity, enabling realistic
forward solutions to EEG/MEG based on implemen-
tations of boundary element methods (BEM) or other
approaches such as finite difference time domain methods
(FDTD).

On the basis of the literature, theoretical and clinical studies
seeking to better understand and describe certain brain functions
and structure use stimulation as an essential part of their proto-
cols. Stimulation is a way to probe how the system respond under
external perturbations adapting itself to the new environmental
conditions or to categorize responses when stimulation repre-
sents real-life (visual, auditory, motor) sensory inputs. Among
the current features of TVB, the easy generation of a variety of
stimulation patterns is to be recognized as one of its great advan-
tages and contributions to experimental protocol design. TVB
permits the development of simple stimulation routines, allowing
evaluation of the viability and usefulness of certain stimulation
procedures.

TVB represents a powerful research platform, combining
experimental design and numerical simulations into a collabo-
rative framework that allows sharing of results and the integra-
tion of data from other applications. Naturally, this leads to the
potential for an increased level of interaction among researchers
of the broad neuroscience community. In the same direction,
TVB is also an extensible validation platform since it supports
the creation of basic modeling refinement loops, making model
exploration and validation a relatively automated procedure. For
instance, after generating a brain network model, exploring the
system’s parameter space by adjusting parameters of both the
local dynamics and the large scale structure can be achieved with
ease. Further, effects of local dynamics and network structure

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 19

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

can be disentangled by evaluating distinct local dynamic models
on the same structure or the same local dynamic model coupled
through distinct structures. This constrained flexibility makes it
easy for modelers to test new approaches, directly compare them
with existing approaches and reproduce their own and other
researchers’ results. Reproducibility is indeed a required feature to
validate and consequently increase the reliability of scientific work
(Donoho, 2010) and the extensibility of TVB’s scientific compo-
nents, granted by its modular design, provides a mechanism to
help researchers achieve this.

The brain network models of TVB, being built on explicit
anatomical structure, enable modeling investigations of practical
clinical interest. Specifically, whenever a dysfunction or disease
expresses itself as a change to the large scale network structure,
for instance, in the case of lesions in white-matter pathways, the
direct replication of this structural change in TVB’s brain network
models is straight forward.

FUTURE WORK
Regarding performance, of special importance will be to evalu-
ate all the parameters that have an effect on both memory usage
and execution time for surface-based simulations. The reason is
that realistic brain network models are built on top of surface
meshes constructed by thousands of vertices per hemisphere (213

for the TVB demonstration cortical surface) but can easily have
more than 40,000.

Equally important is to develop more tests to generally evalu-
ate the simulation engine, paying close attention to keep the con-
sistency and stability of the algorithms currently implemented.

Another aspect that deserves careful attention is the descrip-
tion of our modeling approach that was largely beyond the scope
of this text. Therefore, the theory underlying the different meth-
ods involved in the development of a generalized framework

for brain network models is to be presented in future scientific
publications.

To allow a most optimal dissemination of knowledge in TVB
we are currently developing a web-based educational platform
that will allow training on the usage of TVB, as well as serve as
a key reference.

As simulations in TVB are built on the large-scale anatomical
structure of the human brain, continued work to integrate new,
reliable, sources of structural data is essential to the progress of
the platform. An obvious future resource in this regard will be
the newly developed database of the Human Connectome Project
(Essen and Ugurbil, 2012; Essen et al., 2012).

INFORMATION SHARING STATEMENT (LICENSE)
The data and software in this study belong to an ongoing project;
it is free software and licensed under the GNU General Public
License version 2 as published by the Free Software Foundation.
The latest releases of The Virtual Brain including the source
code and demo data are free to download from http://www.

thevirtualbrain.org. The source code available in the public repos-
itory includes the latest experimental features regarding GPU
implementation.

ACKNOWLEDGMENTS
Funding: The research reported herein was supported by the
Brain Network Recovery Group through the James S. McDonnell
Foundation and the FP7-ICT BrainScales. Paula Sanz Leon is sup-
ported by a doctoral fellowship from Ministere de la Recherche.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.
2013.00010/abstract

REFERENCES
Amari, S. (1975). Homogeneous nets

of neuron-like elements. Biol.
Cybern. 17, 211–220. doi: 10.1007/
bf00339367

Amari, S. (1977). Dynamics of pat-
tern formation in lateral-inhibition
type neural fields. Biol. Cybern. 22,
77–87. doi: 10.1007/BF00337259

Assisi, C., Jirsa, V., and Kelso, J. (2005).
Synchrony and clustering in het-
erogeneous networks with global
coupling and parameter dispersion.
Phys. Rev. Lett. 94:018106. doi:
10.1103/PhysRevLett.94.018106

Atay, F., and Hutt, A. (2006). Neural
fields with distributed transmis-
sion speeds and long range feed-
back delays. SIAD 5, 670–698. doi:
10.1137/050629367

Babajani-Feremi, A., and Soltanian-
Zadeh, H. (2010). Multi-area
neural mass modeling of eeg
and meg signals. Neuroimage
52, 793–811. doi: 10.1016/
j.neuroimage.2010.01.034

Bakker, R., Wachtler, T., and Diesmann,
M. (2012). Cocomac 2.0 and the
future of tract-tracing databases.
Front. Neuroinform. 6:30. doi:
10.3389/fninf.2012.00030

Bastiani, M., Shah, N. J., Goebel, R.,
and Roebroeck, A. (2012). Human
cortical connectome reconstruction
from diffusion weighted mri: the
effect of tractography algorithm.
Neuroimage 62, 1732–1749. doi:
10.1016/j.neuroimage.2012.06.002

Beurle, R. L. (1956). Properties of a
mass of cells capable of regener-
ating pulses. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 240, 55–94. doi:
10.1098/rstb.1956.0012

Bojak, I., and Liley, D. T. J. (2010).
Axonal velocity distributions
in neural field equations. PLoS
Comput. Biol. 6:e1000653. doi:
10.1371/journal.pcbi.1000653

Bojak, I., Oostendorp, T., Reid, A., and
Kötter, R. (2011). Towards a model-
based integration of co-registered
electroencephalography/functional

magnetic resonance imaging data
with realistic neural population
meshes. Philos. Trans. R Soc.
Lond. A. 369, 3785–3801. doi:
10.1098/rsta.2011.0080

Bojak, I., Oostendorp, T., Reid, A.,
and R, K. (2010). Connecting mean
field models of neural activity to
eeg and fmri data. Brain Topogr. 23,
139–149. doi: 10.1007/s10548-010-
0140-3

Bostock, M., Ogievetsky, V., and
Heer, J. (2011). D3 data-driven
documents. IEEE Trans. Visual.
Comput. Graphics 17, 2301–2309.
doi: 10.1109/TVCG.2011.185

Breakspear, M., and Jirsa, V. (2007).
Handbook of Brain Connectivity
(Understanding Complex Systems) –
Neuronal Dynamics and Brain
Connectivity. Berlin; Heidelberg:
Springer.

Breakspear, M., Roberts, J. A., Terry,
J. R., Rodrigues, S., Mahant, N., and
Robinson, P. A. (2006). A unifying
explanation of primary generalized

seizures through nonlinear
brain modeling and bifurca-
tion analysis. Cereb. Cortex 16,
1296–1313. doi: 10.1093/cercor/
bhj072

Breakspear, M., Terry, J. R., and
Friston, K. J. (2003). Modulation
of excitatory synaptic coupling
facilitates synchronization and
complex dynamics in a biophysical
model of neuronal dynam-
ics. Network 14, 703–732. doi:
10.1088/0954-898X/14/4/305

Bressloff, P. C. (2012). From invasion to
extinction in heterogeneous neural
fields. JMN 2:6. doi: 10.1186/2190-
8567-2-6

Brette, R., and Goodman, D. F. M.
(2011). Vectorized algorithms for
spiking neural network simulation.
Neural Comput. 23, 1503–1535. doi:
10.1162/NECO_a_00123

Brunel, N., and Wang, X.-J. (2001).
Effects of neuromodulation in a
cortical network model of object
working memory dominated by

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 20

http://www.thevirtualbrain.org
http://www.thevirtualbrain.org
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00010/abstract
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00010/abstract
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

recurrent inhibition. J. Comput.
Neurosci. 11, 63–85.

Brunel, N., and Wang, X.-J. (2003).
What determines the frequency of
fast network oscillations with irreg-
ular neural discharges? i. synaptic
dynamics and excitation-inhibition
balance. J. Neurophysiol. 90,
415–430. doi: 10.1152/jn.01095.
2002

Bullmore, E., and Sporns, O. (2009).
Complex brain networks: graph
theoretical analysis of structural
and functional systems. Nat. Rev.
Neurosci. 10, 186–198. doi: 10.1038/
nrn2575

Burrage, K., Burrage, P. M., and Tian,
T. (2004). Numerical methods for
strong solutions of stochastic differ-
ential equations: an overview. Proc.
R. Soc. Lond. A 460, 373–402. doi:
10.1098/rspa.2003.1247

Buxton, R., and Frank, L. (1997). A
model for the coupling between
cerebral blood flow and oxygen
metabolism during neural stimula-
tion. J. Cereb. Blood Flow Metab.
17, 64–72. doi: 10.1097/00004647-
199701000-00009

Buzsaki, G. (2006). Rhythms of the
Brain. Oxford: Oxford University
Press.

Chacon, S. (2009). Pro Git. Berkeley,
CA: Apress.

Coombes, S. (2010). Large-scale neu-
ral dynamics: simple and com-
plex. Neuroimage 52, 731–739. doi:
10.1016/j.neuroimage.2010.01.045

Cornelis, H., Rodriguez, A. L., Coop,
A. D., and Bower, J. M. (2012).
Python as a federation tool for gen-
esis 3.0. PLoS ONE 7:e29018. doi:
10.1371/journal.pone.0029018

Costa, M., Goldberger, A. L., and
Peng, C.-K. (2002). Multiscale
entropy analysis of com-
plex physiologic time series.
Phys. Rev. Lett. 89:068102. doi:
10.1103/PhysRevLett.89.068102

Costa, M., Goldberger, A. L., and Peng,
C.-K. (2005). Multiscale entropy
analysis of biological signals. Phys.
Rev. E Stat. Nonlin. Soft Matter Phys.
71(2 Pt 1):021906. doi: 10.1103/
PhysRevE.71.021906

David, O., Kilner, J. M., and Friston,
K. J. (2006). Mechanisms of
evoked and induced responses
in MEG/EEG. Neuroimage
31, 1580–1591. doi: 10.1016/
j.neuroimage.2006.02.034

Deco, G., and Jirsa, V. (2012). Ongoing
cortical activity at rest: criticality,
multistability, and ghost attractors.
J. Neurosci. 32, 3366–3375. doi:
10.1523/JNEUROSCI.2523-11.2012

Deco, G., Jirsa, V., and McIntosh, A.
(2011). Emerging concepts for
the dynamical organization of

resting-state activity in the brain.
Nat. Rev. Neurosci. 12, 43–56. doi:
10.1038/nrn2961

Deco, G., Jirsa, V., McIntosh, A.,
Sporns, O., and Kötter, R. (2009).
Key role of coupling, delay, and
noise in resting brain fluctua-
tions. Proc. Natl. Acad. Sci. U.S.A.
106, 10302–10307. doi: 10.1073/
pnas.0901831106

Deco, G., Jirsa, V., Robinson, P. A.,
Breakspear, M., and Friston, K.
(2008). The dynamic brain: from
spiking neurons to neural masses
and cortical fields. PLoS Comput.
Biol. 4:e1000092. doi: 10.1371/
journal.pcbi.1000092

Donoho, D. L. (2010). An invita-
tion to reproducible computational
research. Biostatistics 11, 385–388.
doi: 10.1093/biostatistics/kxq028

Eliasmith, C., Stewart, T. C., Choo, X.,
Bekolay, T., DeWolf, T., Tang, Y.,
et al. (2012). A large-scale model
of the functioning brain. Science
338, 1202–1205. doi: 10.1126/
science.1225266

Enthought, I. (2001). The traits
framework for validation and
event-driven programming in
python. Available online at:
http://code.enthought.com/projects/
traits/

Essen, D. C. V., and Ugurbil,
K. (2012). The future of the
human connectome. Neuroimage
62, 1299–1310. doi: 10.1016/
j.neuroimage.2012.01.032

Essen, D. C. V., Ugurbil, K., Auerbach,
E., Barch, D., Behrens, T. E. J.,
Bucholz, R., et al. (2012). The
human connectome project: a data
acquisition perspective. Neuroimage
62, 2222–2231. doi: 10.1016/
j.neuroimage.2012.02.018

FitzHugh, R. (1961). Impulses and
physiological states in theoreti-
cal models of nerve membrane.
Biophys. J. 1, 445–466. doi: 10.1016/
S0006-3495(61)86902-6

Fox, R., Gatland, I., Rot, R., and
Vemuri, G. (1988). Fast, accu-
rate algorithm for numerical sim-
ulation of exponentially correlated
colored noise. Phys. Rev. A 38,
5938–5940. doi: 10.1103/PhysRevA.
38.5938

Freeman, W. J. (1975). Mass Action in
the Nervous System. New York; San
Francisco; London: Academic press.

Freeman, W. J. (1992). Tutorial on
neurobiology: from single neu-
rons to brain chaos. Int. J. Bif.
Chaos 2, 451–482. doi: 10.1142/
S0218127492000653

Freestone, D. R., Aram, P., Dewar,
M., Scerri, K., Grayden, D. B.,
and Kadirkamanathan, V. (2011).
A data-driven framework for

neural field modeling. Neuroimage
56, 1043–1058. doi: 10.1016/
j.neuroimage.2011.02.027

Freyer, F., Reinacher, M., Nolte, G.,
Dinse, H. R., and Ritter, P. (2012).
Repetitive tactile stimulation
changes resting-state functional
connectivity-implications for treat-
ment of sensorimotor decline.
Front. Hum. Neurosci. 6:144. doi:
10.3389/fnhum.2012.00144

Freyer, F., Roberts, J. A., Becker, R.,
Robinson, P. A., Ritter, P., and
Breakspear, M. (2011). Biophysical
mechanisms of multistability in
resting-state cortical rhythms.
J. Neurosci. 31, 6353–6361. doi:
10.1523/JNEUROSCI.6693-10.2011

Friston, K., Harrison, L., and
Penny, W. (2003). Dynamic
causal modelling. Neuroimage
19, 1273–1302. doi: 10.1016/
S1053-8119(03)00202-7

Friston, K., Holmes, A., Worsley, K.,
Poline, J., Frith, C., and Frackowiak,
R. (1995). Statistical parametric
maps in functional imaging: a gen-
eral linear approach. Hum. Brain
Mapp. 2, 189–210. doi: 10.1002/
hbm.460020402

Friston, K. J., Mechelli, A., Turner,
R., and Price, C. J. (2000).
Nonlinear responses in fMRI:
the balloon model, volterra ker-
nels, and other hemodynamics.
Neuroimage 12, 466–477. doi:
10.1006/nimg.2000.0630

Gerhard, S., Daducci, A., Lemkaddem,
A., Meuli, R., Thiran, J.-P., and
Hagmann, P. (2011). The connec-
tome viewer toolkit: an open source
framework to manage, analyze,
and visualize connectomes. Front.
Neuroinform. 5:3. doi: 10.3389/
fninf.2011.00003

Gewaltig, M., and Diesmann, M.
(2007). NEST (neural simulation
tool). Scholarpedia 2:1430. doi:
10.4249/scholarpedia.1430

Ghosh, A., Rho, Y., McIntosh, A.,
Kötter, R., and Jirsa, V. (2008). Noise
during rest enables the exploration
of the brain’s dynamic repertoire.
PLoS Comput. Biol. 4:e1000196. doi:
10.1371/journal.pcbi.1000196

Goodale, M. A., and Milner, A. D.
(1992). Separate visual path-
ways for perception and action.
Trends Neurosci. 15, 20–25. doi:
10.1016/0166-2236(92)90344-8

Goodman, D. F. M., and Brette, R.
(2008). Brian: a simulator for
spiking neural networks in python.
Front. Neuroinform. 2:5. doi:
10.3389/neuro.11.005.2008

Goodman, D. F. M., and Brette,
R. (2009). The brian simulator.
Front. Neurosc. 3, 192–197. doi:
10.3389/neuro.01.026.2009

Gramfort, A., Papadopoulo, T.,
Olivi, E., and Clerc, M. (2010).
Openmeeg: opensource software
for quasistatic bioelectromagnetics.
Biomed. Eng. Online 9:45. doi:
10.1186/1475-925X-9-45

Hagmann, P., Cammoun, L., Gigandet,
X., Meuli, R., Honey, C. J.,
Wedeen, V. J., et al. (2008).
Mapping the structural core of
human cerebral cortex. PLoS Biol.
6:e159. doi: 10.1371/journal.
pbio.0060159

Haken, H. (1983). Synergetics, an
Introduction: Nonequilibrium Phase
Transitions and Self-Organization
in Physics, Chemistry, and Biology.
3rd Edn. New York, NY: Springer
Verlag.

Haken, H. (2001). Delay, noise and
phase locking in pulse coupled
neural networks. Biosystems 63,
15–20. doi: 10.1016/S0303-2647
(01)00143-5

Hindmarsh, J., and Rose, R. (1984).
A model of neuronal bursting
using three coupled first order
differential equations. Proc. R.
Soc. Lond. Ser. B 221, 87–122. doi:
10.1098/rspb.1984.0024

Hinds, O., Polimeni, J. R., Rajendran,
N., Balasubramanian, M., Amunts,
K., Zilles, K., et al. (2009). Locating
the functional and anatomical
boundaries of human pri-
mary visual cortex. Neuroimage
46, 915–922. doi: 10.1016/
j.neuroimage.2009.03.036

Hines, M. L., and Carnevale, N. T.
(2001). Neuron: a tool for neurosci-
entists. Neuroscientist 7, 123–135.

Hämäläinen, M. S. (1992).
Magnetoencephalography: a tool
for functional brain imaging. Brain
Topogr. 5, 95–102.

Hämäläinen, M. S., Hari, R.,
Ilmoniemi, R. J., Knuutila, J.,
and Lounasmaa, O. V. (1993).
Magnetoencephalography-theory,
instrumentation, and applications
to noninvasive studies of the work-
ing human brain. Rev. Modern
Phys. 65, 413–497. doi: 10.1103/
revmodphys.65.413

Honey, C. J., Sporns, O., Cammoun,
L., Gigandet, X., Thiran, J. P.,
Meuli, R., et al. (2009). Predicting
human resting-state functional
connectivity from structural
connectivity. Proc. Natl. Acad.
Sci. U.S.A. 106, 2035–2040. doi:
10.1073/pnas.0811168106

Hunter, J. D. (2007). Matplotlib: a
2d graphics environment. Comput.
Sci. Eng. 9, 90–95. doi: 10.1109/
mcse.2007.55

Jansen, B., and Rit, V. (1995).
Electroencephalogram and visual
evoked potential generation in a

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 21

http://code.enthought.com/projects/traits/
http://code.enthought.com/projects/traits/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

mathematical model of coupled
cortical columns. Biol. Cybern. 73,
357–366. doi: 10.1007/BF00199471

Jansen, B., Zouridakis, G., and Brandt,
M. (1993). A neurophysiologically-
based mathematical model of
flash visual evoked potentials. Biol.
Cybern. 68, 275–283. doi: 10.1007/
BF00224863

Jirsa, V. (2004). Connectivity and
dynamics of neural information
processing. Neuroinformatics 2,
183–204. doi: 10.1385/NI:2:2:183

Jirsa, V., and Haken, H. (1996). Field
theory of electromagnetic brain
activity. Phys. Rev. Lett. 77, 960–963.
doi: 10.1103/PhysRevLett.77.960

Jirsa, V., and Haken, H. (1997). A
derivation of a macroscopic field
theory of the brain from the quasi-
microscopic neural dynamics. Phys.
D 99, 503–526. doi: 10.1016/S0167-
2789(96)00166-2

Jirsa, V., and Kelso, J. A. (2000).
Spatiotemporal pattern formation
in neural systems with heteroge-
neous connection topologies. Phys.
Rev. E Stat. Phys. Plasmas Fluids
Relat. Interdisciplin. Topics 62(6
Pt B), 8462–8465. doi: 10.1103/
PhysRevE.62.8462

Jirsa, V., Jantzen, K., Fuchs, A., and
Kelso, J. (2002). Spatiotemporal
forward solution of the eeg and
meg using network modeling. IEEE
Trans. Med. Imag. 21, 493–504. doi:
10.1109/TMI.2002.1009385

Jirsa, V., and Stefanescu, R. (2010).
Neural population modes capture
biologically realistic large scale net-
work dynamics. Bull. Math. Biol. 73,
325–343. doi: 10.1007/s11538-010-
9573-9

Jirsa, V., Sporns, O., Breakspear, M.,
Deco, G., and McIntosh, A. R.
(2010). Towards the virtual brain:
network modeling of the intact and
the damaged brain. Arch. Ital. Biol.
148, 189–205.

Kelso, S. (1995). Dynamic Patterns:
The Self-Organization of Brain
and Behavior (Complex Adaptive
Systems). Cambridge, MA: MIT
Press.

Klöden and Platen (1995). Numerical
Solution of Stochastic Differential
Equations. Berlin: Springer.

Klem, G. H., Lüders, H. O.,
Jasper, H. H., and Elger, C.
(1999). The ten-twenty elec-
trode system of the international
federation. the international
federation of clinical neurophys-
iology. Electroencephalogr. Clin.
Neurophysiol. Suppl. 52, 3–6.

Knock, S., McIntosh, A., Sporns,
O., Kötter, R., Hagmann, P., and
Jirsa, V. (2009). The effects of

physiologically plausible con-
nectivity structure on local and
global dynamics in large scale brain
models. J. Neurosci. Methods 183,
86–94. doi: 10.1016/j.jneumeth.
2009.07.007

Kötter, R. (2004). Online retrieval, pro-
cessing, and visualization of primate
connectivity data from the coco-
mac database. Neuroinformatics 2,
127–144. doi: 10.1385/NI:2:2:127

Kötter, R., and Wanke, E. (2005).
Mapping brains without coordi-
nates. Philos. Trans. R. Soc. Lond.
B Biol. Sci. 360, 751–766. doi:
10.1098/rstb.2005.1625

Lake, D. E., and Moorman, J. R. (2011).
Accurate estimation of entropy in
very short physiological time series:
the problem of atrial fibrillation
detection in implanted ventricu-
lar devices. Am. J. Physiol. Heart
Circ. Physiol. 300, H319–H325. doi:
10.1152/ajpheart.00561.2010

Liley, D. T. J., and Bojak, I. (2005).
Understanding the transition to
seizure by modeling the epilepti-
form activity of general anesthetic
agents. J. Clin. Neurophysiol. 22,
300–313.

Logothetis, N. K., Pauls, J., Augath,
M., Trinath, T., and Oeltermann, A.
(2001). Neurophysiological investi-
gation of the basis of the fmri
signal. Nature 412, 150–157. doi:
10.1038/35084005

Lopes da Silva, F. H., Hoeks, A., Smits,
H., and Zetterberg, L. H. (1974).
Model of brain rhythmic activ-
ity. Biol. Cybern. 15, 27–37. doi:
10.1007/BF00270757

McIntosh, A., Kovacevic, N., Lippe, S.,
Garrett, D., Grady, C., and Jirsa,
V. (2010). The development of a
noisy brain. Arch. Ital. Biol. 148,
323–337.

Mosher, J., Leahy, R., and Lewis,
P. (1999). EEG and MEG: for-
ward solutions for inverse meth-
ods. IEEE Trans. Biomed. Eng. 46,
245–259.

Nagumo, J. (1962). An active pulse
transmission line simulating nerve
axon. Proc. IRE. 50, 2061–2070. doi:
10.1109/jrproc.1962.288235

Niedermeyer, E., and Lopes
Da Silva, F., H., (eds.). (2005).
Electroencephalography: Basic
Principles, Clinical Applications, and
Related Fields. Philadelphia, PA:
Lippincott Williams & Wilkins.

Nolte, G., Bai, O., Wheaton, L., Mari,
Z., Vorbach, S., and Hallett, M.
(2004). Identifying true brain inter-
action from eeg data using the
imaginary part of coherency. Clin.
Neurophysiol. 115, 2292–2307. doi:
10.1016/j.clinph.2004.04.029

Nunez, P. (1974). The brain wave
equation: a model for the EEG.
Math. Biosci. 21, 279–297. doi:
10.1016/0025-5564(74)90020-0

Nunez, P., L., (ed.). (1995). Neocortical
Dynamics and Human EEG
Rhythms. New York, NY: Oxford
University Press.

Nunez, P., L., and Srinivasan, R., (eds.).
(1981). Electric Fields of the Brain:
The Neurophysics of EEG. New York,
NY: Oxford University Press.

Ogawa, S., Menon, R. S., Kim, S. G.,
and Ugurbil, K. (1998). On
the characteristics of functional
magnetic resonance imaging of
the brain. Annu. Rev. Biophys.
Biomol. Struct. 27, 447–474. doi:
10.1146/annurev.biophys.27.1.447

Ogawa, S., Menon, R. S., Tank, D. W.,
Kim, S. G., Merkle, H., Ellermann,
J. M., et al. (1993). Functional
brain mapping by blood oxygena-
tion level-dependent contrast mag-
netic resonance imaging. a compar-
ison of signal characteristics with a
biophysical model. Biophys. J. 64,
803–812. doi: 10.1016/S0006-3495
(93)81441-3

Oliphant, T. E. (2006). Guide to NumPy.
Trelgol Publishing.

Pecevski, D., Natschläger, T., and
Schuch, K. (2009). Pcsim: a par-
allel simulation environment for
neural circuits fully integrated with
python. Front. Neuroinform. 3:11.
doi: 10.3389/neuro.11.011.2009

Pedregosa, F., Varoquaux, G.,
Gramfort, A., Michel, V., Thirion,
B., Grisel, O., et al. (2011). Scikit-
learn: machine learning in Python.
JMLR 12, 2825–2830.

Pinotsis, D. A., and Friston, K. J.
(2011). Neural fields, spectral
responses and lateral connec-
tions. Neuroimage 55, 39–48. doi:
10.1016/j.neuroimage.2010.11.081

Pinotsis, D. A., Moran, R. J., and
Friston, K. J. (2012). Dynamic
causal modeling with neu-
ral fields. Neuroimage 59,
1261–1274. doi: 10.1016/j.neuro
image.2011.08.020

Ramachandran, P., and Varoquaux, G.
(2011). Mayavi: 3D visualization of
scientific data. Comput. Sci. Eng. 13,
40–51. doi: 10.1109/mcse.2011.35

Ray, S., and Bhalla, U. S. (2008).
Pymoose: interoperable script-
ing in python for moose. Front.
Neuroinform. 2:6. doi: 10.3389/
neuro.11.006.2008

Rennie, C. J., Robinson, P. A., and
Wright, J. J. (1999). Effects of local
feedback on dispersion of electri-
cal waves in the cerebral cortex.
Phys. Rev. E 59, 3320–3329. doi:
10.1103/PhysRevE.59.3320

Rennie, C. J., Robinson, P. A., and
Wright, J. J. (2002). Unified neuro-
physical model of eeg spectra and
evoked potentials. Biol. Cybern. 86,
457–471. doi: 10.1007/s00422-002-
0310-9

Riera, J., Aubert, E., Iwata, K.,
Kawashima, R., Wan, X., and
Ozaki, T. (2005). Fusing eeg and
fmri based on a bottom-up model:
inferring activation and effective
connectivity in neural masses.
Philos. Trans. R. Soc. Lond. B. Biol.
Sci. 360, 1025–1041. doi: 10.1098/
rstb.2005.1646

Ritter, P., Schirner, M., McIntosh, A.,
and VK, J. (2013). The virtual brain
integrates computational modelling
and multimodal neuroimaging.
Brain Connect. 3, 121–145. doi:
10.1089/brain.2012.0120

Robinson, P., Rennie, C., and Wright,
J. (1997). Propagation and sta-
bility of waves of electrical
activity in the cerebral cortex.
Phys. Rev. E 56, 826–840. doi:
10.1103/PhysRevE.56.826

Robinson, P. A. (2011). Neural field
theory of synaptic plasticity. J.
Theor. Biol. 285, 156–163. doi:
10.1016/j.jtbi.2011.06.023

Robinson, P. A., Rennie,
C. J., Rowe, D. L., O’Connor,
S. C., Wright, J. J., Gordon,
E., et al. (2003). Neurophysical
modeling of brain dynam-
ics. Neuropsychopharmacology 28
(Suppl. 1), S74–S79. doi: 10.1038/
sj.npp.1300143

Robinson, P. A., Rennie, C. J., Wright,
J. J., Bahramali, H., Gordon, E.,
and Rowe, D. L. (2001). Prediction
of electroencephalographic spectra
from neurophysiology. Phys. Rev.
E 63(2 Pt 1):021903. doi: 10.1103/
PhysRevE.63.021903

Rowe, D. L., Robinson, P. A., and
Rennie, C. J. (2004). Estimation
of neurophysiological parameters
from the waking EEG using a bio-
physical model of brain dynamics.
J. Theor. Biol. 231, 413–433. doi:
10.1016/j.jtbi.2004.07.004

Rubinov, M., and Sporns, O. (2010).
Complex network measures of
brain connectivity: uses and
interpretations. Neuroimage 52,
1059–1069. doi: 10.1016/j.neuro
image.2009.10.003

Sarvas, J. (1987). Basic mathe-
matical and electromagnetic
concepts of the biomagnetic
inverse problems. Phys. Med. Biol.
32, 11–22. doi: 10.1088/0031-9155/
32/1/004

Schneider, G. E. (1969). Two visual
systems. Science 163, 895–902. doi:
10.1126/science.163.3870.895

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 22

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Sanz Leon et al. The Virtual Brain: a brain dynamics simulator

Senden, M., Goebel, R., and Deco,
G. (2012). Structural connec-
tivity allows for multi-threading
during rest: the structure of the
cortex leads to efficient alter-
nation between resting state
exploratory behavior and default
mode processing. Neuroimage
60, 2274–2284. doi: 10.1016/
j.neuroimage.2012.02.061

Shreiner, D., Woo, M., Neider, J.,
and Davis, T. (2005). OpenGL(R)
Programming Guide: The Official
Guide to Learning OpenGL(R).
Version 2, 5th Edn. Addison-Wesley
Professional. Available online
at: http://www.glprogramming.com/
red/about.html

Sotero, R. C., and Trujillo-Barreto,
N. J. (2008). Biophysical model
for integrating neuronal activ-
ity, EEG, fMRI and metabolism.
Neuroimage 39, 290–309. doi:
10.1016/j.neuroimage.2007.08.001

Sotero, R. C., Trujillo-Barreto, N. J.,
Iturria-Medina, Y., Carbonell,
F., and Jimenez, J. C. (2007).
Realistically coupled neural mass
models can generate eeg rhythms.
Neural Comput. 19, 478–512. doi:
10.1162/neco.2007.19.2.478

Spacek, M., Blanche, T., and
Swindale, N. (2008). Python

for large-scale electrophysiol-
ogy. Front. Neuroinform. 2:9. doi:
10.3389/neuro.11.009.2008

Spiegler, A., Kiebel, S. J., Atay, F. M.,
and Knösche, T. R. (2010).
Bifurcation analysis of neu-
ral mass models: impact of
extrinsic inputs and dendritic
time constants. Neuroimage
52, 1041–1058. doi: 10.1016/
j.neuroimage.2009.12.081

Stefanescu, R., and Jirsa, V. (2008).
A low dimensional description of
globally coupled heterogeneous
neural networks of excitatory and
inhibitory. PLoS Comput. Biol.
4, 26–36. doi: 10.1371/
journal.pcbi.1000219

Stefanescu, R., and Jirsa, V. (2011).
Reduced representations of
heterogeneous mixed neural
networks with synaptic coupling.
Phys. Rev. E 83:026204. doi:
10.1103/PhysRevE.83.026204

The HDF Group. (2000-2010).
Hierarchical data format version
5. Available online at: http://www.

hdfgroup.org/
Valdes-Sosa, P. A., Sanchez-Bornot,

J. M., Sotero, R. C., Iturria-
Medina, Y., Aleman-Gomez, Y.,
Bosch-Bayard, J., et al. (2009).
Model driven EEG/fMRI fusion

of brain oscillations. Hum.
Brain Mapp. 30, 2701–2721.
doi: 10.1002/hbm.20704

von Ellenrieder, N., Beltrachini, L., and
Muravchik, C. H. (2012). Electrode
and brain modeling in stereo-EEG.
Clin. Neurophysiol. 123, 1745–1754.
doi: 10.1016/j.clinph.2012.01.019

Wilson, H., and Cowan, J. (1972).
Excitatory and inhibitory
interactions in localized popu-
lations of model neurons. Biophys.
J. 12, 1–24. doi: 10.1016/S0006-
3495(72)86068-5

Wilson, H., and Cowan, J. (1973). A
mathematical theory of the func-
tional dynamics of cortical and tha-
lamic nervous tissue. Kybernetik 13,
55–80. doi: 10.1007/bf00288786

Wong, K.-F., and Wang, X.-J. (2006).
A recurrent network mechanism of
time integration in perceptual deci-
sions. J. Neurosci. 26, 1314–1328.
doi: 10.1523/JNEUROSCI.3733-05.
2006

Wright, J. J., and Liley, D. T. J.
(1995). Simulation of electrocorti-
cal waves. Biol. Cybern. 72, 347–356.
doi: 10.1007/BF00202790

Zalesky, A., Fornito, A., Harding,
I. H., Cocchi, L., Yücel, M.,
Pantelis, C., et al. (2010). Whole-
brain anatomical networks: does

the choice of nodes matter?
Neuroimage 50, 970–983. doi:
10.1016/j.neuroimage.2009.12.027

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 01 March 2013; accepted: 22
May 2013; published online: 11 June
2013.
Citation: Sanz Leon P, Knock SA,
Woodman MM, Domide L, Mersmann J,
McIntosh AR and Jirsa V (2013) The Vir-
tual Brain: a simulator of primate brain
network dynamics. Front. Neuroinform.
7:10. doi: 10.3389/fninf.2013.00010
Copyright © 2013 Sanz Leon, Knock,
Woodman, Domide, Mersmann,
McIntosh and Jirsa. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits
use, distribution and reproduc-
tion in other forums, provided the
original authors and source are cred-
ited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Neuroinformatics www.frontiersin.org June 2013 | Volume 7 | Article 10 | 23

http://www.glprogramming.com/red/about.html
http://www.glprogramming.com/red/about.html
http://www.hdfgroup.org/
http://www.hdfgroup.org/
http://dx.doi.org/10.3389/fninf.2013.00010
http://dx.doi.org/10.3389/fninf.2013.00010
http://dx.doi.org/10.3389/fninf.2013.00010
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	The Virtual Brain: a simulator of primate brain network dynamics
	Introduction
	Modeling
	Informatics

	TVB Architecture
	TVB Framework
	Web-based GUI
	Data management and exchange
	File storage
	Database management system

	TVB Datatypes
	TVB Simulator
	Coupling
	Population models
	Integrators
	Noise
	Monitors
	Outline of the simulation algorithm

	Analyzers and Visualizers

	Performance, Reproducibility, and Flexibility
	Testing for Speed
	Reproducibility of Results from the Literature
	Higher-Level Simulation Scenarios Using Stimulation Protocols
	Dynamic Modeling

	Discussion
	Future Work
	Information Sharing Statement (License)
	Acknowledgments
	Supplementary Material
	References

