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ABSTRACT

Objective: To regulate food intake, our brain constantly integrates external cues, such as the incentive value of a potential food reward, with
internal state signals, such as hunger feelings. Incentive motivation refers to the processes that translate an expected reward into the effort spent
to obtain the reward; the magnitude and probability of a reward involved in prompting motivated behaviour are encoded by the dopaminergic (DA)
midbrain and its mesoaccumbens DA projections. This type of reward circuity is particularly sensitive to the metabolic state signalled by pe-
ripheral mediators, such as insulin or glucagon-like peptide 1 (GLP-1). While in rodents the modulatory effect of metabolic state signals on
motivated behaviour is well documented, evidence of state-dependent modulation and the role of incentive motivation underlying overeating in
humans is lacking.
Methods: In a randomised, placebo-controlled, crossover design, 21 lean (body mass index [BMI] < 25 kg/m2) and 16 obese (BMI3 30 kg/m2)
volunteer participants received either liraglutide as a GLP-1 analogue or placebo on two separate testing days. Incentive motivation was measured
using a behavioural task in which participants were required to exert physical effort using a handgrip to win different amounts of food and
monetary rewards. Hunger levels were measured using visual analogue scales; insulin, glucose, and systemic insulin resistance as assessed by
the homeostasis model assessment of insulin resistance (HOMA-IR) were quantified at baseline.
Results: In this report, we demonstrate that incentive motivation increases with hunger in lean humans (F(1,42) ¼ 5.31, p ¼ 0.026, b ¼ 0.19)
independently of incentive type (food and non-food reward). This effect of hunger is not evident in obese humans (F(1,62) ¼ 1.93, p ¼ 0.17,
b ¼ �0.12). Motivational drive related to hunger is affected by peripheral insulin sensitivity (two-way interaction, F(1, 35) ¼ 6.23, p ¼ 0.017,
b ¼ �0.281). In humans with higher insulin sensitivity, hunger increases motivation, while poorer insulin sensitivity dampens the motivational
effect of hunger. The GLP-1 analogue application blunts the interaction effect of hunger on motivation depending on insulin sensitivity (three-way
interaction, F(1, 127) ¼ 5.11, p ¼ 0.026); no difference in motivated behaviour could be found between humans with normal or impaired insulin
sensitivity under GLP-1 administration.
Conclusion: We report a differential effect of hunger on motivation depending on insulin sensitivity. We further revealed the modulatory role of
GLP-1 in adaptive, motivated behaviour in humans and its interaction with peripheral insulin sensitivity and hunger. Our results suggest that GLP-
1 might restore dysregulated processes of midbrain DA function and hence motivational behaviour in insulin-resistant humans.

� 2021 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

The growing obesity epidemic represents one of the greatest health
challenges of the 21st century, leading to increased risk of severe
comorbidities such as cardiovascular disease or cancer [1,2]. While
continuous excessive food intake has long been identified as one of the
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leading causes promoting obesity, the physiological mechanisms
driving food intake behaviour and overeating remain poorly under-
stood, especially in humans.
Our daily behaviours are driven by basic needs often without us
noticing. Hunger is one of these basic behavioural drivers, as food
serves as the energetic foundation for all biological processes. To
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regulate the body’s need for food and the subsequent internal
sensation of hunger, the brain has developed precise physiological and
behavioural mechanisms to keep the body operating at optimal levels;
to ensure this physiological homeostasis and adapt behavioural re-
sponses, our brain constantly integrates information about the meta-
bolic state with external environmental cues [3e5]. Although there has
been much investigation on the basic homeostatic mechanisms of
hunger and the behavioural consequences thereof [6,7], significant
gaps remain in understanding how metabolic signals prompt and
external cues incentivise the behavioural aspect of the hunger
response.
External cues comprise strong motivational signals, such as the
incentive value of an expected reward, but also the effort required to
obtain the reward [8e10]. Hence, everyday decisions in favour of or
against food intake are based on cost-benefit analyses weighing the
potential food reward against the cost of spending effort to obtain it.
The incentive theory of motivation [11,12] suggests that behaviour is
primarily motivated by anticipated rewards and reinforcement. Thus,
behavioural drive and hence incentivised motivation refers to the
processes that translate expected reward into effort spent [13]. These
processes include forming a subjective representation of the potential
reward magnitude, which determines effort exertion [14] and is critical
for initiating motivated behaviour [9,15]. Notably, the subjective reward
magnitude depends markedly on the internal state of the organism
[10]; a food reward is regarded as more valuable in a hungry than in a
sated state [16].
The magnitude and probability of a reward [9,17] is encoded by
dopamine (DA) neurons in the ventral tegmental area (VTA) and its
mesoaccumbens DA projections. By promoting the formation of cuee
reward associations, VTA DA neurons play a central role in mediating
motivated behaviours [18]. DA terminals in the nucleus accumbens
(NAc) specifically respond to reward-predictive cues [19,20]. In fact,
the activity of VTA DA neurons and NAc DA levels have the capacity to
prompt reward-directed action initiation and effort exertion [21,22]. In
human pharmacological intervention studies, a lower dopaminergic
tone was shown to result in lower effort spending and motivation
[8,23,24].
Related to overeating, alterations in the mesoaccumbens DA pathway
have been consistently linked to obesity in animal studies [25e27]. In
obese humans, alterations in the fronto-mesostriatal DA circuitry have
been generally related to an impaired reward system [28,29]. Reduced
binding potential of striatal dopamine receptors has been hypothesised
to be associated with a heightened striatal dopaminergic tone, leading
to an imbalance between anticipation and consumption of food reward
[30e35]. While it was reproducibly shown that obese vs lean humans
show greater neural activation in reward-related regions anticipating
rewarding stimuli, neural activation in response to obtained food re-
wards decreases [36e39]; however, findings of the reinforcing ca-
pacity and its link to incentive motivation and effort spending
underlying obesity portray a heterogeneous picture [40,41].
These studies, however, may rest on an incomplete assumption about
modulatory aspects of midbrain DA function and body mass index
(BMI) as decisive variables to nuanced facets of motivated behaviour.
While being strongly implicated in incentive motivation, VTA DA neuron
firing and mesoaccumbens DA pathways are also particularly sensitive
to nutritional value [16,27], post-ingestive effects of food [42,43], and
metabolic state signalled by neuropeptides and peripheral peptidergic
mediators [44e47]. These bodily signals may bias our food intake
behaviour more than just external cues per se; in fact, they may also
shape the incentive cue value, mediating its reinforcement efficiency
depending on the metabolic state.
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Notably, VTA DA neurons express many receptors that respond to
peripheral peptides that signal metabolic status [48]; the glucagon-like
peptide 1 (GLP-1) receptor is a particularly prominent example [49,50]
that has also been used as target for the development of drug therapies
aimed at curbing overeating [51,52]. While GLP-1 acts primarily on
pancreatic islets to enhance glucose-induced insulin secretion, it can
induce metabolic actions to maintain glucose homeostasis by inter-
acting with its receptors expressed on neurons and cells in the enteric
and central nervous system [53,54].
Related to the mesoaccumbens DA pathway, rodent studies demon-
strated that activation of GLP-1 receptors in the VTA by endogenous
GLP-1 specifically reduces the excitatory synaptic strength of DA
neurons that project to the NAc [55], decreasing the reinforcing effi-
ciency of appetitive cues and adapting motivated behaviour [51,56e
58].
In line with the work in rodents, GLP-1 analogues were reliably shown
to lead to reduced food intake and to induce weight loss in obese
humans [59e61]. However, while in rodents the modulatory effect of
GLP-1 on DA neurocircuitry and motivational behaviour is well docu-
mented [56,62], evidence of a modulatory role of GLP-1 affecting
motivational behaviour in humans is lacking.
To this end, the present randomised, placebo-controlled, and
crossover study assessed the modulatory role of GLP-1 in motivated
behaviour of lean (BMI < 25 kg/m2) in comparison to obese (BMI3

30 kg/m2) humans. To account for the hunger state, subjective
hunger ratings were assessed. To consider the metabolic state and
particularly the physiological role of GLP-1 in maintenance of glucose
homeostasis, fasted insulin and glucose levels were acquired. As a
readout for incentivised motivated behaviour, we adapted a classic
behavioural paradigm of effort spending that was first suggested by
Pessiglione et al. [63] and further refined by Le Bouc et al. [23]. In this
task, different amounts of possible reward are used as incentives.
Volunteer participants were required to exert physical effort (force) on
a handgrip to win different amounts of food and non-food rewards
(money).
Interestingly, although we detected a differential effect of hunger on
incentive motivation between lean and obese humans (F(1, 137) ¼ 3.98,
p ¼ 0.048), we could not find a GLP-1-interaction with BMI. Based on
the physiological role of GLP-1 in the regulation of insulin secretion and
prior evidence that insulin sensitivity modulates excitatory input of VTA
DA neurons [64] as well as mesostriatal functional connectivity [65],
we predicted that GLP-1 interactions with motivational functions of DA
might change with BMI depending on peripheral insulin sensitivity.
Hence, we analysed the effect of insulin sensitivity on incentive
motivation with peripheral insulin sensitivity being assessed by the
homeostasis model assessment of insulin resistance (HOMA-IR)
[66,67]. It is important to note that none of the studies’ participants
suffered from diabetes.

2. MATERIALS AND METHODS

2.1. Participants
Twenty-five subjects with normal weight (BMI: 22.42 � 0.22 kg/m2)
and 25 obese subjects (BMI: 35.61� 0.87 kg/m2) were recruited from
the pre-existing database of volunteers maintained at the Max Planck
Institute of Metabolism Research based on a power analysis assuming
an a error¼ 0.05, power¼ 0.95, and a small-to medium-effect size of
Cohen’s d ¼ 0.35 (equivalent to f ¼ 0.175). This power analysis was
performed for a mixed-effects model targeting the three-way inter-
action of group (lean vs obese), intervention (GLP-1 vs placebo), and
hunger level, yielding a total sample size of N ¼ 46.
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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All the participants were non-smokers between the ages of 20e40
years with no history of neurological, psychiatric, metabolic, or eating
disorders. In the course of the analysis, 13 subjects had to be excluded
due to low engagement in the task: 7 subjects were excluded as they
reported wanting of the monetary or food reward lower than 3 (of 10)
points, 3 participants had not invested sufficient effort in the calibration
so they engaged constantly to press with >75% of their maximum
force for every single trial, and for 3 participants their preferred amount
of food reward was not clearly identifiable. Hence, 21 lean (BMI:
22.56� 0.38 kg/m2, age: 26.87� 1.4 years, 9 female) and 16 obese
(BMI: 35.32� 1.36 kg/m2, age: 27.20� 1.3 years, 9 female) subjects
were included for further data analysis (Table 1).
After analysing the effects of groups stratified by BMI (normal vs obese),
we examined how incentive motivation may change with systemic in-
sulin resistance as assessed by the homeostatic model of insulin
resistance (HOMA-IR) [ 66; 67]. For this purpose, the HOMA-IR of each
participant was calculated as (fasting serum glucose in mg/dl� fasting
serum insulin in mU/l)/405, with lower values indicating a higher degree
of insulin sensitivity. Only the HOMA-IR of the placebo day was calcu-
lated, as GLP-1 analogues may increase insulin secretion and alter the
HOMA-IR. The HOMA-IR was used as a continuous variable later in the
analysis. The final subject selection (N¼ 37) allowed for a power of 0.91
for the three-way interaction of the HOMA-IR, hunger, and intervention
within the used mixed-effects model, with an effect size of partial
h2 ¼ 0.03 (equivalent to f ¼ 0.176) and an a error ¼ 0.05.
All the subjects provided written informed consent to participate in the
experiment, which was approved by the local ethics committee of the
Medical Faculty of the University of Cologne (Cologne, Germany; No.
16e251).

2.2. Study design
The study was conducted in a single blinded, placebo-controlled,
randomised, cross-over design. Each volunteer participated on two
testing days lasting a maximum of 2 h each. Both testing days were
separated by at least one week to allow for a sufficient wash-out
period [68]. The order of the intervention (GLP-1 vs placebo) was
counter-balanced (Figure 1A).
The evening prior to each testing day, the participants received an
agonistic GLP-1 analogue (see as follows) or an equal volume of saline
solution and a standardised dinner with equal kcal amounts per in-
dividual (see Supplemental Material). The next morning, the partici-
pants arrived fasted at the institute at 8 a.m. and their BMI was
measured using a Seca mBCA 515 (medical Body Composition Ana-
lyser). As this study was part of a larger experiment, all the participants
not only underwent the behavioural task detailed as follows but also an
fMRI task that was related to a different study question (sensory
learning) and that is reported elsewhere. The order of the behavioural
task and fMRI task was counterbalanced.
Table 1 e Participants’ characteristics.

Parameter Mean � SEM

N (lean) 37 (21)
Age (years) 26.49 � 0.9
lean 26.87 � 1.4
obese 27.20 � 1.3

BMI (kg/m2) 27.68 � 1.22
lean 22.56 � 0.19
obese 35.32 � 0.66

Note: BMI ¼ body mass index, SEM ¼ standard error of the mean.
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Before each task, hunger levels were assessed via visual analogue
scales and blood drawn to measure insulin and glucose. After the
behavioural task, individual liking and wanting of the reward types
(money and food) and the participants’ compliance were evaluated in a
short debriefing.

2.3. GLP-1 analogue
A subcutaneous injection of 0.6 mg of liraglutide (Novo Nordisk) was
used as an agonistic GLP-1 analogue. As the maximum plasma con-
centration of liraglutide is reached approximately 11e13 h after in-
jection [68], liraglutide was administered the evening prior to the
testing day between 7 and 8 p.m. to ensure sufficient blood plasma
levels at the start of the testing day. As a placebo condition, an equal
volume of saline solution was injected subcutaneously.

2.4. Incentive motivation task
Incentive motivation was assessed by measuring effort spending for
external cues in a behavioural paradigm (Figure 1B). Two incentive
types (food and money) could be earned by squeezing a handgrip
device (hand dynamometer HD-BTA, Vernier). The task was pro-
grammed in MATLAB (version 2014b, MathWorks) using the Psycho-
physics Toolbox (version 3.0.11) [69,70] and a toolbox dedicated to
enabling communication between MATLAB and the device (https://
github.com/lionel-rigoux/vernier-toolbox).
Prior to the task, the participants performed a calibration in which they
were instructed to squeeze the handgrip three times in a sequence as
hard as possible. For each participant, the highest force reached,
Fmax ¼ maxðF Þ, was scaled to define the subject’s individual
maximum voluntary contraction Cmax :

Cmax ¼ 1:05*Fmax:

Each participant’s individual maximum contraction Cmax was used
as a reference point related to the force of each trial in the task. Note,
Fmax was scaled up to ensure that Cmax was always higher than the
maximum force in each trial during the task. However, if the subjects’
maximum force in one trial during the incentive motivation task
exceeded the initially calibrated Cmax, the maximum force exerted
during this trial was used to recalculate the maximum voluntary
contraction in subsequent analyses.
Following the calibration, printed instructions were provided to each
participant. The subjects were informed that the percentage of exerted
maximum force related to how much of the presented stimulus they
could win (e.g. if a subject squeezed with 80% of their maximum
voluntary contraction, they could win 80% of the displayed food or
monetary stimulus). Before starting the task, a short training session of
4 test trials (2 food and 2 money trials) with randomly assigned
stimulus amounts was provided.
In total, the task comprised 128 trials with a total duration of 25 min.
The trials were divided into 4 blocks displaying monetary stimuli and 4
blocks with food stimuli. Hence, any block consisted of 16 trials in
which varying stimulus amounts were presented. Food and monetary
blocks alternated. Each trial consisted of two phases: a response
phase and feedback phase.
During the response phase, one of four monetary amounts (0.6 V, 1.2
V, 1.8 V, or 2.4 V) or one of four food amounts (1/4, 2/4, 3/4, or 4/4
of a bread roll with cheese) was displayed as an incentive on the left-
hand side of the screen. While the food or monetary stimulus was
displayed, the participants exerted force on the handgrip. Feedback of
the performance was directly provided by an orange bar ascending in
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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Figure 1: Study design and behavioural task. A. In this within-subject design, the subjects received either placebo or liraglutide and a standardised dinner the evening prior to each
testing day. After fasting overnight, BMI, hunger rating, and a blood draw (glucose and insulin levels) were assessed the next morning followed by the behavioural task with a short
debriefing. B. After a fixation cross, the subjects were shown either a monetary cue (0.6 V, 1.2 V, 1.8 V, or 2.4 V) or a food cue (1/4, 2/4, 3/4, or 4/4 of a bread roll with cheese)
presented on a white plate, for which the participants exerted force to win the presented cues. Online feedback on the force produced was provided by an orange bar ascending
with increasing force exertion. During the following feedback phase, the participants could relax their arm, and direct feedback about the amount of the presented reward that the
subjects would have won was displayed by a colour change in the cue image. The different levels of incentives (food and money) are also depicted in detail. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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height in proportion to the exerted force. Each stimulus amount was
displayed 4 times per block. The response phase lasted for 3 s.
During the following feedback phase, the participants could relax their
arm, and direct feedback on the amount of the presented reward the
participant would have won was displayed (for example, if the
participant exerted 80% of his/her maximum voluntary contraction,
80% of the displayed stimulus changed in colour representing the
amount won). The feedback phase lasted for 3.5 s.
The subjects were informed that one food trial and one monetary trial
were chosen at random at the end of the experiment and that they
were granted the reward won in this trial. To provide a supplementary
stimulus to motivate the subjects for greater effort exertion, one plate
with the food stimulus and one with the monetary stimulus were
placed within viewing range of each subject during the task.

2.5. Hunger and liking ratings
To control for differences in hunger states between testing days, we
instructed the participants to rate their hunger prior to the task on each
testing day using a visual analogue scale as previously described [71].
In brief, on a 100 mm visual analogue scale (0 mm ¼ “sehr hungrig
(very hungry)” and 100 mm ¼ “gar nicht hungrig (not hungry at all)”),
the subjects were asked to mark the point that most accurately rep-
resented their perception of their current hunger state.
Likewise, to explore the individual incentive value of cues, liking of the
items (separately for money and food) was rated on a 100 mm vertical
scale with “Mag ich gar nicht (not liking the item at all)” at the lower
anchor point and “Mag ich sehr (liking the item a lot)” at the upper
anchor point [72].

2.6. Insulin levels
As GLP-1 analogues are reported to increase insulin secretion [73], we
monitored insulin levels to control for insulin effects at the onset of the
behavioural task. This monitoring was achieved by a blood draw
directly before starting the task and measuring the insulin level within.
Glucose levels were assessed from the same blood draw.

2.7. Statistical analysis
Statistical analysis was performed in MATLAB (version 2014b, Math-
Works) and R (version 4.0.0) [74] using the ImerTest package (version
3.1e2) [75]. GraphPad Prism (version 8.0) was used to visualise the
results. Statistical significance was reported at a level of p < .05.
The analysis of the acquired data followed a two-level approach. On a
first (subject) level, a general linear model was used to assess the
interaction of incentive and force exerted for food or monetary reward
separately. Note, as not all the participants experienced the same
amount of food as rewarding, incentive levels were recalibrated based
on the amount the subjects individually preferred (for details, see
Supplemental Material). Both incentive types were analysed separately
to include the type of incentive for the subsequent second-level analysis.
Hence, the following statistical models were applied to the data:

forcew bm0 þ bm1 : level of incentive

for money as an incentive type and

forcew bf0 þ bf1: level of incentive

for food as an incentive type, where the coefficients indexed with
m related to monetary and those indexed with f related to food in-
centives. The regression coefficients b1 represent the individual
motivation to spend physical effort for incentives. That is, a low b1
MOLECULAR METABOLISM 45 (2021) 101163 � 2021 The Author(s). Published by Elsevier GmbH. This is an open
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indicates that a participant did not increase their effort spending much
with increasing incentive and thus revealed a low incentive motivation.
A further analysis was performed to test for differences in force
exertion between the two types of incentives. In this study, a mixed-
effects model was established including “type of incentive” (money/
food), “level of incentive,” and their interaction as independent vari-
ables (fixed effects) and subject as the random effect. Post hoc
comparisons were calculated using Tukey’s procedure facilitated by
the lsmeans package (version 2.30-0; [76]) in R.
On the second (group) level, we assessed the effect of the intervention
(GLP-1 vs placebo) on incentive motivation (bm1 and bf1) with a mixed-
effects model considering the independent variables “type of incen-
tive” (money vs food), intervention (GLP-1 vs placebo), hunger, and
group (lean vs obese) as fixed effects with the subject as a random
effect. This design lent structure to examining the effects of the
intervention and hunger while considering the BMI as a group-
differentiating criterion. Thus, hunger was used as a continuous var-
iable while group, intervention, and “type of incentive” were used as
factorial variables. We also controlled for the individual baseline insulin
level, liking of the respective incentive, and order of the testing days.
To consider an effect of peripheral insulin sensitivity on motivation, we
established a further mixed-effects model with the independent vari-
able HOMA-IR instead of group (lean vs obese). Thus, HOMA-IR and
hunger were used as continuous variables and intervention (GLP-1 vs
placebo) as well as “type of incentive” (money vs food) as factorial
variables:

bm1 and bf1 w hunger * HOMA� IR * int ervention * incentive type

þ insulin þ liking þ day þ ð1jsubject IDÞ
Given the complexity of our three-way interaction of intervention,

hunger, and HOMA-IR (F(1, 127) ¼ 5.11, p ¼ 0.026), we also analysed
the effect of the intervention (GLP-1 or placebo) separately with mixed-
effects models testing the effect of incentive, hunger, and HOMA-IR
while controlling for insulin levels, liking of incentive, and measuring
day.

3. RESULTS

To evaluate the modulatory role of GLP-1 in motivated behaviour, we
conducted a placebo-controlled behavioural study employing an
established effort spending task in lean and obese human participants.
In this task, individuals were required to exert physical effort using a
handgrip to win different amounts of reward and adapt their behaviour
to changing external cues with different reward types. To examine
implications of reinforcement, we incentivised the task with either a
food or non-food reward; to consider the impact of internal state
modulation, we assessed hunger levels; and we tested for the
modulatory role of GLP-1 and its interaction with peripheral insulin
sensitivity, hunger, and incentive on task outcome.

3.1. Effort exertion increased with increasing incentive value and
liking
In addition to the suggestion that behaviour is motivated by internal
drives (hunger), incentive theory suggests that external cues leverage
reinforcement (incentives). Thus, in comparing behavioural perfor-
mance on the task between different types of incentives (food vs
money), we examined force exertion for the varying levels of food and
monetary amounts (1/4 up to 4/4 of a bread roll with cheese or 0.60V
up to 2.4 V). In congruence with Pessiglione et al. (2007) revealing
that individuals spend higher effort for higher reward value per se (the
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 5
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main effect of level of incentive on force: F(3,9435) ¼ 1886.73,
p < 0.0001; see Supplemental Material), we also found a significant
two-way interaction revealing that force exertion increased more for
increasing monetary rewards than for increasing food rewards
(F(3,9435) ¼ 65.42, p < 0.0001, Figure 2A; for further details, see
Supplemental Material).
Furthermore, as liking of a reward is essential for its incentive value,
we controlled for the effect of liking on effort exertion, revealing that
higher liking of the incentive linked to stronger motivational drive
(b ¼ 0.016, t ¼ 2.35, p ¼ 0.02; for further details, see Supplemental
Material).
Figure 2: A. Force exertion for different levels of incentive. The force exerted by all of the p
increased with higher amounts of incentives. B. GLP-1 modulated incentive motivation depe
three-way interaction of hunger HOMA-IR intervention (F(1, 120) ¼ 5.11, p ¼ 0.026). In t
promoted incentive motivation; in turn, in those with a high HOMA-IR, higher hunger le
b ¼ �0.281). Under the GLP-1 intervention, no significant difference between the particip

34) ¼ 0.13, p ¼ 0.72). In the analysis, hunger and HOMA-IR were used as continuous v
tinguishing between the participants with a low HOMA-IR and high HOMA-IR using a me
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3.2. In lean humans, incentive motivation increased with
increasing hunger levels
We assessed the modulation of effort exertion under GLP-1 depending
on hunger level in lean and obese humans (lean BMI < 25 kg/m2,
obese BMI 3 30 kg/m2). While the three-way interaction of intervention,
hunger, and group was borderline to significant (F(1, 116) ¼ 3.68,
p¼ 0.057; Supplemental Table 4), a significant two-way interaction of
group and hunger (F(1, 137)¼ 3.98, p¼ 0.048) was detected. Given the
complexity of such an interaction, however, and to ascertain how
hunger affects incentive motivation differently in lean and obese
humans, we analysed both groups separately showing that in the lean
articipants for monetary and food rewards is shown as mean � SEM. The exerted force
nding on insulin sensitivity and hunger. The modulatory effect of GLP-1 was tested in a
he placebo condition, in the individuals with a low HOMA-IR, increasing hunger levels
vels did not lead to an increase in incentive motivation (F(1, 35) ¼ 6.23, p ¼ 0.017,
ants with low HOMA-IR and high HOMA-IR could be detected (two-way interaction, F(1,
ariables. For illustration purposes, HOMA-IR is depicted as a categorical variable dis-
dian split (median ¼ 1.68) shown as mean with SEM.
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subjects, incentive motivation increased with increasing hunger levels
(F(1, 42) ¼ 5.31, p ¼ 0.026, b ¼ 0.19; Supplemental Table 5). In the
obese group, however, no significant effect of hunger on incentive
motivation was detectable (F(1, 62) ¼ 1.93, p ¼ 0.17, b ¼ �0.12;
Supplemental Table 6).

3.3. Modulation of incentive motivation by GLP-1 differed
depending on insulin sensitivity and hunger level
Based on the physiological role of GLP-1 in regulating insulin secretion
[53] and evidence linking insulin signalling to motivational behaviour
(see Introduction), we hypothesised that GLP-1 interactions with
motivational functions might change depending on peripheral insulin
sensitivity. Hence, we tested the three-way interaction of GLP-1,
HOMA-IR, and hunger level (F(1, 127) ¼ 5.11, p ¼ 0.026;
Supplemental Table 7), which clearly indicated a modulation of
incentive motivation by GLP-1 differing between the participants
depending on their peripheral insulin sensitivity and hunger level. To
ascertain this complex interaction, we analysed the GLP-1 and placebo
condition separately (Figure 2B).
For the placebo condition, we found a significant interaction between
hunger and insulin resistance (F(1, 35) ¼ 6.23, p ¼ 0.017,
b ¼ �0.281), revealing that with increasing HOMA-IR, the positive
effect of hunger on incentive motivation was reduced. Hence, in the
subjects with a high peripheral insulin sensitivity, increasing hunger
levels promoted incentive motivation; in turn, in those with poorer
insulin sensitivity, higher hunger levels did not lead to an increase in
incentive motivation (see Supplemental Table 8). In the GLP-1 inter-
vention, no significant difference between the participants with good
insulin sensitivity and poor insulin sensitivity could be detected (two-
way interaction hunger: insulin sensitivity, F(1, 34) ¼ 0.13, p ¼ 0.72;
see Supplemental Table 9).

4. DISCUSSION

To regulate food intake, our brain constantly integrates internal state
signals such as hunger with external cues, such as the incentive value
of a potential food reward. To adapt behavioural responses, metabolic
modulators from the periphery impact on brain circuitry to ensure
physiological homeostasis. This study provides an analysis of the
modulatory effect of hunger on motivated behaviour in humans by
considering GLP-1 and insulin sensitivity as metabolic modulators as
well as the role of the incentive value reflected by different external
cues (money and food).
Regarding the role of external cues, we demonstrated that the level of
liking of the presented cues determined their incentive value as higher
liking rendered higher motivation. To this end, it is important to note
that our findings suggest a role of metabolic modulation of motivated
behaviour independent of incentive type (food or money). This finding
underscores evidence from psychological literature suggesting that
biologically based motivation can affect behaviours in unrelated do-
mains that are irrelevant to the biological motive [77]. From a more
neurobiologically centred perspective, modulation of motivational drive
independent of incentive type might indicate neural encoding by basal
subcortical circuits, as “cognitive” cortical representations of motiva-
tionally relevant cues would influence action selection by weighing the
current physiological needs against the predicted consequences of
responding to certain cues [78].
Addressing the role of the internal state and metabolic signals as
modulators of motivation, we demonstrated that incentive motivation
depends on the internal state in lean humans, as it increases with
increasing hunger. In obese humans, however, hunger does not affect
MOLECULAR METABOLISM 45 (2021) 101163 � 2021 The Author(s). Published by Elsevier GmbH. This is an open
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incentive motivation. This effect of hunger on motivational drive is
modulated by the insulin sensitivity of the individual, as the degree of
insulin resistance determines the magnitude of the effect of hunger on
incentive motivation under placebo conditions. The higher the HOMA-
IR index, the lower is the positive effect of hunger on incentive moti-
vation (see Figure 2B). This effect of hunger revealed in our work was
also observed in animal (rodent) studies showing that neurons in the
lateral hypothalamus (LH) sense fasting (or sated) states and regulate
motivation [45,79,80]; low glucose levels that occur in the fasting state
activate glutamate and orexin co-expressing neurons in the LH, which
project to and excite VTA DA neurons [81]. GABAergic LH-neurons
project to the VTA [82], and their activation increases motivation for
food [79]. As previously mentioned, our findings significantly extend
the effect of hunger on incentive motivation and non-food rewards in
humans, as the influence of hunger and insulin sensitivity applied for
both types of incentives (food and money). This is in line with animal
studies deciphering GABAergic LH inputs in the VTA that contribute to
motivational salience in multiple contexts [83].
Our results also reveal that the effect of hunger on incentive motivation
is modulated by the peripheral insulin sensitivity of the individual. In
previous studies, we showed that systemic insulin sensitivity may have
an impact on DA projections of the midbrain [65], which is in line with
other recent human studies emphasising that peripheral insulin
sensitivity is a better predictor of altered DA signalling than BMI [84e
86]. Animal studies revealed altered DA clearance and synthesis in the
VTA and DA terminals in the NAc due to insulin resistance [87,88], and
insulin resistance has been associated with maladaptive eating and
motivational behaviour [87,89,90]. However, the detailed neuronal
mechanisms on how insulin sensitivity affects DA signalling within the
midbrain and hence incentive motivation remain to be elucidated.
We further show that upon GLP-1 receptor agonist (liraglutide) treat-
ment, the effects of hunger and insulin resistance on incentive moti-
vation are blunted as no differential effect of hunger on motivation
depending on insulin sensitivity could be detected. Thus, no difference
between insulin-resistant and insulin-sensitive humans could be
identified under GLP-1 treatment, indicating that GLP-1 normalises the
effect of hunger and insulin sensitivity on motivation. While Figure 2B
suggests that GLP-1 restores motivational drive in insulin-resistant
humans to a non-insulin-resistant levels, it cannot be statistically
differentiated if GLP-1 reinstated the effect of hunger on motivation in
the insulin-resistant participants or blunted the effect of hunger on
motivation in the insulin-sensitive subjects (or both; see Supplemental
Tables 10 and 11). Considering that GLP-1 application has a stronger
effect on peripheral insulin secretion in insulin-resistant humans than
insulin-sensitive individuals [91], it seems reasonable to assume that
the central effect of GLP-1 is equally stronger in insulin-resistant
humans than insulin-sensitive individuals, indicating that improve-
ment of insulin-resistant humans is likely.
Related to treatment with GLP-1 receptor agonists, while the periph-
erally administered agonist exendin-4 was revealed to bind to both
astrocytes and neurons in the VTA in rodents [50], peripherally
administered liraglutide has not yet been shown to enter the VTA or
NAc but could be detected in the circumventricular organs, hypothal-
amus (the paraventricular nucleus, supraoptic nucleus, and supraoptic
decussation but not the lateral hypothalamus) [92,93], and solitary
nucleus [NTS, 93]. Hence, although not demonstrated, it can be
hypothesised that peripheral liraglutide may also bind directly to GLP-1
receptors within the VTA and thus affects motivational behaviour. In
rodent studies with normal-weight animals, GLP-1 receptor activation
in the VTA was reported to reduce motivational behaviour [56,57]. In
detail, phasic DA responses in the VTA to food-predictive cues could be
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 7

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Brief Communication
suppressed by the central administration of the GLP-1 receptor agonist
exendin-4 [62]. However, it needs to be considered that these murine
results are not fully comparable to our human results as hunger/fasting
times were not included in the analysis.
An alternative and more likely access route might be via vagal afferents
in the NTS, as peripheral liraglutide was shown to enter the NTS [93].
Peripherally administered liraglutide might bind to GLP-1 receptor-
expressing glutamatergic and GABAergic neurons [93] as well as as-
trocytes [94,95] within the NTS, which regulate the GLP-1 producing
neurons in the NTS. These GLP-1 producing neurons project to the
VTA, suppressing activity of DA neurons in the mesoaccumbens
pathway [55]. Comparing the influence of GLP-1 on incentive moti-
vation in our human study with animal reports, similar behavioural
results were found in normal-weight rodents with activation of GLP-1
receptors in the NTS reducing food and drug reward behaviour by
targeting VTA DA neurons [96,97]. However, data on the effect of GLP-
1 on motivational behaviour in insulin-resistant/obese rodents and the
effect of hunger/fasting time are lacking.
Collectively, one reasonable mechanism underlying our behavioural
findings is that GLP-1 receptor activation possibly in the NTS modu-
lates incentive motivation through its action on midbrain DA neurons,
which are regulated by hunger and insulin sensitivity.
Methodological caveats worth pointing out are first, that although it
was controlled for peripheral insulin levels in our analyses, it needs to
be considered that the effect attributed to GLP-1 on motivation could
also be an overlapping effect of GLP-1 and insulin, as insulin is
secreted in a GLP-1 and insulin sensitivity-dependent manner [91].
Second, although our behavioural results are greatly compatible with
the aforementioned animal data on the underlying neuronal processes,
the proposed molecular mechanisms explaining the observed behav-
iour remain speculative. Our approach will thus require further vali-
dation on a neural level.
In sum, we provide an assessment of the regulation of incentive
motivation in humans by internal and metabolic state parameters as
reflected by hunger, GLP-1, and insulin sensitivity, respectively. We
propose an explanatory approach addressing the underlying neural
mechanisms of the observed behaviour. Moreover, our results suggest
a role of GLP-1 to restore dysregulated processes underlying moti-
vational behaviour in obesity.
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