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Abstract

Social media have been proposed as a data source for influenza surveillance because they have the potential to offer
real-time access to millions of short, geographically localized messages containing information regarding personal
well-being. However, accuracy of social media surveillance systems declines with media attention because media
attention increases “chatter” – messages that are about influenza but that do not pertain to an actual infection –
masking signs of true influenza prevalence. This paper summarizes our recently developed influenza infection
detection algorithm that automatically distinguishes relevant tweets from other chatter, and we describe our current
influenza surveillance system which was actively deployed during the full 2012-2013 influenza season. Our objective
was to analyze the performance of this system during the most recent 2012–2013 influenza season and to analyze
the performance at multiple levels of geographic granularity, unlike past studies that focused on national or regional
surveillance. Our system’s influenza prevalence estimates were strongly correlated with surveillance data from the
Centers for Disease Control and Prevention for the United States (r = 0.93, p < 0.001) as well as surveillance data
from the Department of Health and Mental Hygiene of New York City (r = 0.88, p < 0.001). Our system detected the
weekly change in direction (increasing or decreasing) of influenza prevalence with 85% accuracy, a nearly twofold
increase over a simpler model, demonstrating the utility of explicitly distinguishing infection tweets from other chatter.
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Introduction

Health organizations require accurate and timely disease
surveillance techniques in order respond to emerging
epidemics. Such information may inform planning for surges in
patient visits, therapeutic supplies, and public health
information dissemination campaigns [1]. Nevertheless,
collecting and aggregating the information required to
accurately report the spread of any disease is time and labor
intensive. For example, the U.S. Centers for Disease Control
and Prevention (CDC) collects and aggregates data from one
of the most effective disease surveillance systems: a network
of 2,700 outpatient providers across the United States that
provides counts of influenza-like illness (ILI) rates, and weekly
reports are issued summarizing data from each previous week
[2].

There has been increasing interest in using social media and
other Internet resources to perform disease surveillance. For
example, news articles, search engine statistics and mobile
phone data have been shown to be informative indicators of
influenza activity, including the novel H7N9 outbreak [3,4]. In
contrast to contemporary data collection methods, social media
have the potential to allow public health officials to respond to
disease outbreaks in real time. Social media is often tagged by
geographic location (geo-located) potentially providing
actionable information to policymakers at municipal, as well as
national, health agencies. To the extent that these systems are
accurate, they have the potential to revolutionize disease
surveillance. Although social media disease surveillance
systems have shown significant promise, to date, their potential
has not been realized.
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Much of the literature on disease surveillance using social
media has focused on tracking influenza with Twitter. Twitter is
a popular social media website, especially appealing as a data
source because it offers nearly instant access to millions of
public short status message per day, known as “tweets.” These
messages often contain information regarding personal well-
being. A number of academic groups and startup companies
have attempted to leverage social media illness reports to
generate forecasts and estimates of disease prevalence. For
example, the senior author has previously demonstrated that
tweets can be correlated with publicly available influenza data
from the CDC [5].

Whereas several researchers have correlated social media
signals with influenza prevalence metrics in a retrospective
fashion (e.g., 6-9), in this paper we demonstrate influenza
surveillance using social media with a system built and
deployed before the influenza season started. In addition, our
approach is the first to have been tested successfully at both
the national and municipal levels. We are the first to have both
reported comprehensive results from this past year’s most
recent influenza epidemic and to have a blind system
evaluation conducted by a municipal health agency.

We have found that the accuracy of most social media
surveillance systems declines with media attention. This is
because media attention increases Twitter “chatter” – tweets
that are about the flu but that do not pertain to an actual
infection. These messages can mask signs of actual infection.
Examples include tweets indicating awareness of flu (e.g. “I
hope I don’t get the flu”) and reports of a celebrity’s flu.
Disproportionate media attention has similarly resulted in
prevalence overestimates in Google Flu Trends, another web-
based flu surveillance system [10]. Commonly used Twitter
techniques, such as keyword matching or linear regression –
which were shown to correlate with CDC data during the 2009
pandemic – have not been strongly correlated with infection
data in more recent seasons [9]. The example above illustrates
how tweets can be misleading: the message is clearly about
the flu but is not about an infection. Previously used techniques
do not explicitly attempt to differentiate between chatter and
actual infection. The technique presented in this paper
successfully filters out tweets that are not reporting influenza
infection.

Methods

We have created a new supervised classification model that
overcomes this barrier by separating tweets indicating
influenza infection from those that indicate influenza awareness
or concern. This model, along with additional classifiers and a
new geolocation system, are used to estimate influenza
prevalence from normalized tweet volume. The various
components of our system are summarized by the diagram in
Figure 1.

Data Collection
Twitter provides tools to access ongoing “streams” of public

data that can be downloaded at no cost. This study uses data
downloaded from two such streams. The first stream, which we

call the “general” stream, represents a one percent uniform
sample of all Twitter messages. The second is a custom
stream, called the “health” stream, which downloads only
tweets containing any of 269 health-related keywords that we
provided. The health stream is also limited to one percent of
total Twitter volume, but this cap is applied to the subset of
tweets matching the health keywords, allowing us to collect a
much larger amount of relevant data from this source. The
sampling is uniformly applied to this entire subset of health
tweets, so relative rises in influenza-related tweets will be
represented in the sample, even though the data size is fixed at
the one percent limit.

Our data set for this study begins September 30, 2012, the
start of the first week of the 2012-2013 influenza season as
defined by the CDC [11], through May 31, 2013. This collection
contains 1.0 billion tweets from the general stream and 0.3
billion tweets identified as health related, using a classifier
described in the next section, from the health stream, which is
of similar volume as the general stream.

Data Filtering
We used a staged-approach to data filtering. We used binary

classification models to identify relevant data for influenza
surveillance at each stage. These models indicated whether
tweets were relevant to health, relevant to influenza, and
indicative of an actual infection. The first filter – distinguishing
tweets that are relevant or irrelevant to health – utilizes a
combination of keyword filtering and a support vector machine
(SVM) trained on 5,128 tweets that were annotated with these
two categories. This classifier was estimated to have 90%
precision and 32% recall through 10-fold cross-validation. A
bias towards precision is justified since we can still obtain large
samples of data. The full details are described in an earlier
technical report [12]. The two influenza filters were developed
recently for the specific purpose of influenza surveillance.
11,990 tweets were labeled with three types of influenza-
related codes: (1) whether the tweet discussed influenza or not,
(2) whether an influenza tweet indicated an infection or is
merely an acknowledgement of the user's awareness of
influenza, and (3) whether an influenza infection tweet was in
reference to the author of the tweet or another person (this
third type of information was not used in our final classifiers).
The labeled data were used to train parameters of separate
logistic regression models for the two classification tasks. The
features (covariates) of the model included the words in the
tweet, all sequential phrases composed of two to three words
(n-grams), and other linguistic information regarding the
message semantics, syntax, and writing style. These linguistic
features are described in detail in our recent paper [9]. The
human-annotated data used to train these models came from
the 2009–2010 and 2011–2012 influenza seasons. The two
classifiers were respectively estimated to have 67% and 74%
precision and 87% and 87% recall through 10-fold cross-
validation, using the classification thresholds with maximal F1
score, favoring a combination of both precision and recall.

Using this pipeline classification system, we identified
570,000 influenza infection tweets during the eight months of
data collection. We then normalized the weekly number of such
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infection tweets by the total number of tweets in the general
stream for that week to produce a Twitter-based influenza
prevalence measure. To evaluate our prevalence estimate, we
compared the resulting measure to the CDC’s US Outpatient

Influenza-Like Illness Surveillance Network, which includes the
number of visits for influenza-like illness (ILI).

Figure 1.  System for estimating influenza prevalence from Twitter.  This figure shows the components of our system for
estimating influenza prevalence from Twitter. A stream of tweets matching hundreds of health-related keywords is passed through
three classification filters to remove irrelevant tweets. The locations of tweets are identified with our geolocation system, Carmen,
and only tweets in the location of interest are saved. The volume of tweets is normalized by the total volume of tweets from a
random sample of Twitter to produce a prevalence measure.
doi: 10.1371/journal.pone.0083672.g001
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Location Filtering
An important aspect of accurate social media surveillance is

identifying the geographic location of each tweet [13]. To
estimate the influenza prevalence in a geographic region, we
only included tweets from that region. We used our recently
developed geolocation system, called Carmen, to identify the
location of 22% of the tweets in our collection [14]. In addition
to the GPS information associated with a small percentage of
the tweets, Carmen utilizes information from the users’ public
biographic profiles. Over half of the user biographies include a
self-reported location, which can contain values such as “New
York, NY” and “NYC,” as well as nonsensical values such as
“Candy Land.” Our system resolves these values to a country,
state, county, and city, while resolving aliases of the same
place and filtering out nonsense locations. In an evaluation set
of 56,000 tweets, the two locations considered in our
experiments – the United States and New York City – were
resolved with respective accuracies of 92% and 61% (to within
50 miles of NYC).

Data Exclusion
Due to system outages, we had incomplete data collection

during the days of 10/11/12—10/17/12. The outages affected
the health stream but not the general stream, which would lead
to an incorrect calculation of the prevalence on those days. We
therefore excluded those days from the calculation of the
weekly rates for the weeks beginning 10/7/12 and 10/14/12.
The rate for the week of 5/26/13 excludes the day of 6/01/13
because that is last day of data collected before beginning this
study.

Results

National Level: United States
Our system identified 104,200 influenza infection tweets from

the United States. The weekly number of tweets indicating
influenza infection is strongly correlated with weekly CDC ILI
outpatient counts from October 2012 - May 2013 (r = 0.93; p <
0.001). In contrast, the weekly number of tweets containing
influenza keywords provided by the US Department of Health
and Human Services is much less strongly correlated with
patient illness data (r = 0.75; p < 0.001). The difference
between these correlations is significant at the p<0.001 level.
The mean absolute error of the keyword-based estimates is
0.0102 after normalizing the weekly rates to sum to 1. The
mean absolute error of our infection estimates is 0.0046, a 45%
reduction in error over the keyword filter. The national
estimates produced by the two Twitter algorithms are shown
alongside the CDC rates in Figure 2.

Municipal Level: New York City
The same technique also successfully captures influenza

trends at the level of a municipality, demonstrated on 4,800
influenza infection tweets identified from New York City. The
New York City Department of Health and Mental Hygiene
carried out a blind evaluation of our algorithm, yielding a strong
correlation between the city’s weekly emergency department

visits for ILI and the number of New York City weekly tweets
indicating influenza infection (r = 0.88; p < 0.001). The simpler
keyword-based system was less strongly correlated (r = 0.72; p
< 0.001). This evaluation was conducted on data spanning the
same period of time as the national evaluation.

Real-Time Response
We performed weekly correlations, from the beginning of

December through the end of February, between the national
ILI data beginning in the first week of October – the start of the
influenza season – with Twitter infection surveillance data. The
Pearson correlation coefficient ranged from 0.91 to 0.97, with a
mean of 0.93 and standard deviation of 0.02. Additionally, in
the thirteen weeks in which the national influenza rate had a
larger-than-average change from the previous week, our
system matched the direction of the change (increasing or
decreasing) with 85% accuracy, in contrast to 46% accuracy by
the baseline keyword-based system.

Time Series Analysis: Differencing and Cross-
Correlation

Previous studies on this topic have focused on the types of
correlations described above. In this regard our system
performs at or above the level of any previous system. In this
section, we go beyond previous work and include an in depth
statistical analysis of the characteristics of the data.

Any correlation analysis of time series data is potentially
subject to bias if the underlying data are not stationary – i.e., if
their distributional properties change over time. For example, if
each week’s influenza infection count is a function of the
previous week’s count, then we would expect a correlation
between any two measures that capture the same overall
trend. There is no reason to believe, a priori, that Twitter data
should be correlated with actual influenza infection, therefore
success at matching the overall shape of the influenza trend
would be a success of our method. Nevertheless, one might
argue that any curve that increases to some peak and then
decreases would have some degree of correlation with CDC
data. To test this hypothesis, we perform a more in-depth time
series analysis in order to examine whether we can also detect
deviations from this larger seasonal trend.

An examination of the autocorrelation functions for the
national CDC, Twitter infection, and Twitter keywords data
sources indicated a gradual reduction with lag, consistent with
a nonstationary process. Our subsequent analysis therefore
followed the Box-Jenkins procedure [15]. We examined the
partial autocorrelation function and found significant effects at
the p<0.05 level for a lag of one week. Lags of two weeks or
greater were not significant at the p<0.05 level. Therefore, first-
order differencing was applied to each of these data sets – i.e.,
we examined the difference between each week's and the
previous week's numbers. An examination of the partial
autocorrelation function for the first-order-differenced CDC data
still yielded a correlation at a lag of 1 week that was significant
at the p<0.05 level. Therefore, second order differencing was
applied to each data set – i.e., the same differencing technique
was applied to the first-order-differenced data. Examination of
the associated autocorrelation and partial autocorrelation
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functions indicated that all lags greater than zero were not
significant at the p=0.05 level, consistent with a stationary
process.

We next examined the correlation between the second-
order-differenced versions of the CDC, Twitter infection, and
Twitter keywords data. The infection classifier data were more
strongly correlated (r=0.82; p<0.001) with the CDC data than
were the keywords classifier data (r=0.78; p<0.001), although
this difference is not significant at the p=0.05 level. Normal
probability plots of the associated residuals for each of these
two correlations were found to be indicative of normality. In
addition, the autocorrelation functions of both sets of residuals
were examined, and lags greater than zero were found not to
be significant at the p=0.05 level.

Finally, we examined the cross-correlation functions for the
original and differenced data sources. Cross-correlation results
for the non-differenced data sources were dominated by the

seasonal influenza trend and were therefore not informative
beyond indicating a peak is at zero, indicating that the Twitter
data neither lags nor leads the CDC data. A similar evaluation
with the New York City data found that the Twitter data neither
lags nor leads the city’s ILI data. The cross-correlation function
for the residuals of the second-order-differenced national CDC
and infection data is shown in Figure 3.

This additional time series analysis shows that even if we
were to put in a curve that peaked during the peak of flu
season (i.e., had no lag), and whose derivative matched the
slope of the CDC data, we would still be contributing useful
information by showing how deviations from this overall trend
occur. In other words, the additional analysis shows that we
can capture the detail beyond the overall trend; however, we
often do not know when flu season will peak in general and the
seasonality in influenza infection is not so well understood [16].
For example, the 2011-2012 flu season was quite mild and

Figure 2.  2012-2013 national influenza rates from Twitter and CDC surveillance.  This figure shows national influenza rates of
the United States as predicted by two Twitter-based algorithms alongside the influenza-like illness surveillance network data from
the US Centers for Disease Control and Prevention (CDC). The dashed blue line is the measure estimated by a simple model of
keyword matching, while the solid blue line is the measure estimated by our new infection detection model. Our new algorithm more
closely matches the CDC data (solid black line), while the simpler keyword model infers spurious spikes due to other Twitter chatter,
e.g. in early December and early April.
doi: 10.1371/journal.pone.0083672.g002
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lacked a strong peak, whereas the 2009 H1N1 epidemic had
unusual patterns outside the seasonal norm. Our method has
therefore demonstrated the ability to match both the seasonal
trend as well as residual deviations from that trend.

Discussion

Our new algorithm demonstrates significant improvements
and is less sensitive to Twitter chatter by focusing on reports of
actual influenza infection. For example, on December 3, 2012,
the CDC issued a press release [17] concerning influenza,
leading to a spike in the number of influenza tweets (see Figure
2) that was not correlated with actual influenza infection.
Similarly, around January 1, many news outlets ran flu
epidemic stories.

Finally, on April 5, the CDC held a press conference [18]
about the H7N9 “bird flu” virus in China, which garnered
significant media attention. In each of these cases, we
observed a large increase in the number of tweets with
influenza keywords (dashed blue line) concurrent with the
media coverage. In contrast, our “infection only” system (solid
blue line) increases only slightly or not at all, demonstrating our
ability to ignore increases due to news coverage and other
sources of chatter.

Our ability to filter tweets indicating influenza infection from
other tweets at the level of a municipality represents an
additional novel technical advance by providing accurate
localized Twitter-based influenza tracking.

As this influenza season progressed, the Twitter infection
surveillance system consistently predicted the CDC data
through the most recent week. Our Twitter system strongly

Figure 3.  Cross-correlation between Twitter infection rates and CDC ILI rates.  This figure shows the cross-correlation function
for the residuals of the second-order-differenced CDC and Twitter infection data, as described in the “Time Series Analysis” section.
These results show that the Twitter estimates neither lead nor lag the CDC ILI rates, although the Twitter data are publicly available
up to two weeks earlier than CDC data.
doi: 10.1371/journal.pone.0083672.g003
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correlates with government data throughout all weeks of the
season, and can thus be used for real-time analysis in addition
to retrospective analysis.

There are inherent limitations in using social media to make
inferences about the real world. One of these is coverage.
While we were able to produce reliable metrics for New York
City, smaller municipalities may not have enough Twitter users
to produce robust prevalence estimates. Additionally, much of
the world is currently excluded from the current version our
system, which can only process English-language tweets.
However, these limitations do not prohibit the creation of similar
systems for other languages. One may question the
representativeness of our approach since the groups most
susceptible to influenza infection – the elderly and young
children – tend to be underrepresented on Twitter; however, for
the purpose of identifying general population-level trends, this
sample bias may not have a large effect. Furthermore, our
experimental results demonstrated that we can accurately infer
trends despite these drawbacks. We expect these types of
limitations to diminish over time as social media becomes more
widely adopted.

Conclusion

Using Twitter data from October 2012 - May 2013, we have
been able to differentiate between reports of actual infection
and Twitter chatter. Our infection curve correlates strongly with
CDC ILI data. In addition, we have demonstrated the ability to
use the same technique on the municipal level by correlating
with ILI data in New York City. Our infection detection algorithm
is consistently able to predict the direction of CDC data in
weekly increments. Finally, the in-depth statistical analysis of

our results demonstrates that our estimates are significant over
general seasonal trends. These findings are significant
advances over available algorithms in terms of accuracy, level
of geographic granularity, and decision-based evaluations.

We anticipate that our technique will inform clinical practice
and health policy, especially as regards influenza surveillance
techniques. Real-time tools such as our system have the
potential to enable clinicians to anticipate the need for surges
in influenza-like illness up to two weeks in advance of existing
data collection strategies [19]. Early knowledge of an upward
trend in disease prevalence can inform patient capacity
preparations [1] and increased efforts to distribute the
appropriate vaccine or other treatment, whereas knowledge of
a downward trend can signal the effectiveness of these efforts.
In addition, policymakers may use such data sources to track
the spread of influenza at national and municipal levels. Our
analysis demonstrates that these techniques can be applied
adaptively in real time.
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