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Supplementary Figure 1: Low-dimensional representation of the S1/CA1 dataset. Upper panels provide two-
dimensional representations of the data. Lower panels provide barplots of the absolute correlation between
the first three components and a set of QC measures (see Methods). (a, b) PCA (on TC-normalized counts);
(c, d) ZIFA (on TC-normalized counts); (e, f) ZINB-WaVE (no normalization needed). ZINB-WaVE leads
to a low-dimensional representation that is less influenced by technical variation and to tighter, biologically
meaningful clusters.
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Supplementary Figure 2: Low-dimensional representation of the mESC dataset. Upper panels provide two-
dimensional representations of the data, after selecting the 1,000 most variable genes. Lower panels provide
barplots of the absolute correlation between the first two components and a set of QC measures (see Methods).
(a, b) PCA (on TC-normalized counts); (c, d) ZIFA (on TC-normalized counts); (e, f) ZINB-WaVE (no
normalization needed). ZINB-WaVE leads to a low-dimensional representation that is less influenced by
technical variation and to tighter, biologically meaningful clusters.
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Supplementary Figure 3: Low-dimensional representation of the Glioblastoma dataset. Upper panels provide
two-dimensional representations of the data, after selecting the 1,000 most variable genes. Lower panels
provide barplots of the absolute correlation between the first two components and a set of QC measures
(see Methods). (a, b) PCA (on TC-normalized counts); (c, d) ZIFA (on TC-normalized counts); (e, f)
ZINB-WaVE (no normalization needed). ZINB-WaVE leads to a low-dimensional representation that is less
influenced by technical variation and to tighter, biologically meaningful clusters.
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Supplementary Figure 4: Low-dimensional representation of the V1 dataset. ZINB-WaVE two-dimensional
representation of the data, after selecting the (a) 500, (b) 2,000, (c) 5,000, (d) 10,000 most variable genes.
ZINB-WaVE leads to a stable low-dimensional representation, robust to the number of highly variable genes
selected.
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Supplementary Figure 5: Per-cluster average silhouette widths: Real datasets. (a) V1 dataset; (b) S1/CA1
dataset; (c) Glioblastoma dataset; (d) mESC dataset. For each of the four scRNA-seq datasets of Figure 2
and Supplementary Figures 1 – 3, barplots of the per-cluster average silhouette widths for ZINB-WaVE, ZIFA,
and PCA (the best normalization method was used for ZIFA and PCA). Silhouette widths were computed
in the low-dimensional space, using the groupings provided by the authors of the original publications:
unsupervised clustering procedure (a–b), observed characteristics of the samples, such as patient (c) and
culture condition (d) .
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Supplementary Figure 6: Analysis of the 10x Genomics 68k PBMCs dataset. Two-dimensional t-SNE rep-
resentation of W (K = 10) color-coded by sequential k-means clustering (see Methods for details on the
clustering procedure).
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Supplementary Figure 7: Analysis of the 10x Genomics 68k PBMCs dataset. (a) Two-dimensional signal
inferred using ZINB-WaVE. (b) First two principal components. Cells are color-coded by sequential k-means
clustering (see Methods for details on the clustering procedure).
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Supplementary Figure 8: Principal component analysis for V1 dataset. (a) No normalization; (b) TC
normalization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 9: Zero-inflated factor analysis for V1 dataset. (a) No normalization; (b) TC nor-
malization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 10: Principal component analysis for S1/CA1 dataset. (a) No normalization; (b) TC
normalization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 11: Zero-inflated factor analysis for S1/CA1 dataset. (a) No normalization; (b) TC
normalization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 12: Principal component analysis for mESC dataset. (a) No normalization; (b) TC
normalization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 13: Zero-inflated factor analysis for mESC dataset. (a) No normalization; (b) TC
normalization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 14: Principal component analysis for Glioblastoma dataset. (a) No normalization; (b)
TC normalization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 15: Zero-inflated factor analysis for Glioblastoma dataset. (a) No normalization; (b)
TC normalization; (c) TMM normalization; (d) FQ normalization.
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Supplementary Figure 16: ZINB-Wave and ComBat: mESC dataset. Upper panels provide two-dimensional
representations of the data, with cells color-coded by batch and shape reflecting culture conditions: (a)
PCA on FQ-normalized counts; (b) PCA on ComBat-normalized counts. (c) Average silhouette widths by
biological condition for ZINB-WaVE with and without batch covariate, PCA with and without applying
ComBat on raw counts and TC, TMM, and FQ-normalized counts; (d) Average silhouette widths by batch
for ZINB-WaVE with and without batch covariate, PCA with and without applying ComBat on raw counts
and TC, TMM, and FQ-normalized counts.
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Supplementary Figure 17: ZINB-Wave and ComBat: Glioblastoma dataset. (a) PCA on FQ + ComBat-
normalized counts; (b) ZINB-WaVE with batch as sample covariate; (c) Boxplot of sample detection rate
stratified by batch. Sample detection rate is defined as the total number of genes with at least one read in a
given sample.
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Supplementary Figure 18: Goodness-of-fit of ZINB-WaVE and NB models: Mean-di�erence plots of estimated
vs. observed mean count for V1 dataset. Left panel: ZINB-WaVE. Right panel: Negative binomial model fit
using edgeR package. Observed and estimated mean counts were averaged over n cells. Counts were plotted
on a log scale. See Methods for details.
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Supplementary Figure 19: Goodness-of-fit of ZINB-WaVE and NB models: Mean-di�erence plots of estimated
vs. observed zero probability for V1 dataset. Left panel: ZINB-WaVE. Right panel: Negative binomial model
fit using edgeR package. Observed and estimated zero probabilities were averaged over n cells. See Methods
for details.
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Supplementary Figure 20: Goodness-of-fit of ZINB-WaVE and NB models: Estimated dispersion parameter
vs. observed proportion of zero counts for V1 dataset. Left panel: Genewise dispersion parameters „j esti-
mated using ZINB-WaVE. Right panel: Genewise dispersion parameters „j estimated using edgeR package.
See Methods for details.
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Supplementary Figure 21: Goodness-of-fit of MAST hurdle model for V1 dataset. Left panel: Mean-di�erence
plot of estimated vs. observed mean log2(TPM+1). Middle panel: Mean-di�erence plot of estimated vs.
observed zero probability. Right panel: Estimated Gaussian variance parameter ‡2

j vs. observed proportion
of zero counts. For left and middle panels, observed and estimated mean log2(TPM+1) and zero probabilities
were averaged over n cells. Parameters were estimated using the function zlm from the MAST package, with
an intercept and a covariate for the cellular detection rate (as recommended in the MAST vignette for the
MAIT data analysis) for both the discrete and continuous parts.
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Supplementary Figure 22: Bias, MSE, and variance for ZINB-WaVE estimation procedure: ZINB-WaVE
simulation model. Boxplots of bias, MSE, and variance for ln(µ) and fi as a function of the number of cells
n. For each gene and cell, bias, MSE, and variance were averaged over B = 10 datasets simulated from our
ZINB-WaVE model, based on the S1/CA1 dataset and with n œ {50, 100, 500, 1, 000, 5, 000, 10, 000} cells,
J = 1, 000 genes, scaling of one for the ratio of within to between-cluster sums of squares (b2 = 1), and
zero fraction of about 80%. The following values were used for both simulating the data and fitting the
ZINB-WaVE model to these data: K = 2 unknown factors, X = 1n, cell-level intercept (V = 1J), and
genewise dispersion.
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Supplementary Figure 23: BIC, AIC, and log-likelihood for ZINB-WaVE estimation procedure: ZINB-WaVE
simulation model. Panels show boxplots of (a) BIC, (b) AIC, and (c) log-likelihood for ZINB-WaVE esti-
mation procedure, as a function of the number of unknown covariates K. ZINB-WaVE was fit with X = 1n,
common/genewise dispersion, and with/without sample-level intercept (i.e., column of ones in gene-level co-
variate matrix V ). For each gene and cell, BIC, AIC, and log-likelihood were averaged over B = 10 datasets
simulated from our ZINB-WaVE model, based on the S1/CA1 dataset and with n = 1, 000 cells, J = 1, 000
genes, scaling of one for the ratio of within to between-cluster sums of squares (b2 = 1), K = 2 unknown
factors, zero fraction of about 80%, X = 1n, cell-level intercept (V = 1J), and genewise dispersion.
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Supplementary Figure 24: Bias and MSE for ZINB-WaVE estimation procedure: ZINB-WaVE simulation
model. Same as Figure 6, but with outliers plotted individually (i.e., observations beyond the whiskers).
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Supplementary Figure 25: Variance for ZINB-WaVE estimation procedure: ZINB-WaVE simulation model.
Panels show boxplots of variance (over B = 10 simulated datasets) for estimates of ln(µ) (a, c) and fi (b,
d). Outliers plotted in (a, b) and omitted in (c, d). Simulation scenario as in Figure 6.
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Supplementary Figure 26: Bias for ZINB-WaVE estimation procedure: ZINB-WaVE simulation model. (a)
Mean-di�erence plot of estimated vs. true negative binomial mean (log scale), ln(µ̂) ≠ ln(µ) vs. (ln(µ) +
ln(µ̂))/2. (b) Mean-di�erence plot of estimated vs. true zero inflation probability, fî ≠ fi vs. (fi + fî)/2.
The estimates are based on one of the B = 10 datasets simulated from our ZINB-WaVE model, based on
the S1/CA1 dataset and with n = 1, 000 cells, J = 1, 000 genes, scaling of one for the ratio of within to
between-cluster sums of squares (b2 = 1), and zero fraction of about 80%. The following values were used for
both simulating the data and fitting the ZINB-WaVE model to these data: K = 2 unknown factors, X = 1n,
cell-level intercept (V = 1J), and genewise dispersion (as in Fig. 6 and Supplementary Fig. 24 and 25).
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Supplementary Figure 27: Between-sample distances and silhouette widths for ZINB-WaVE, PCA, and ZIFA:
ZINB-WaVE simulation model. (a) Boxplots of correlations between between-sample distances based on true
and estimated low-dimensional representations of the data for simulations based on the V1 dataset. (b) Same
as (a) for simulations based on the S1/CA1 dataset. (c) Boxplots of silhouette widths for true clusters for
simulations based on the V1 dataset. (d) Same as (c) for simulations based on the S1/CA1 dataset. All
datasets were simulated from our ZINB-WaVE model with n = 10, 000 cells, J = 1, 000 genes, “harder”
clustering (b2 = 5), K = 2 unknown factors, zero fraction of about 80%, X = 1n, cell-level intercept
(V = 1J), and genewise dispersion. Each boxplot is based on n values corresponding to each of the n
samples and defined as averages of correlations (a, b) or silhouette widths (c, d) over B = 10 simulations.
Between-sample distance matrices and silhouette widths were based on W for ZINB-WaVE, the first two
principal components for PCA, and the first two latent variables for ZIFA. ZINB-WaVE was applied with
X = 1n, V = 1J , genewise dispersion, and K œ {1, 2, 3, 4}. For PCA and ZIFA, di�erent normalization
methods were used. Colors correspond to the di�erent methods. See Figure 7a–d for the same scenario but
with n = 1, 000 cells and Supplementary Figure 28 for additional scenarios.
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Supplementary Figure 28: Between-sample distances and silhouette widths for ZINB-WaVE, PCA, and ZIFA:
ZINB-WaVE simulation model. (a) Correlation between between-sample distances based on true and esti-
mated low-dimensional representations of the data for simulations based on the V1 dataset. (b) Same as (a)
for simulations based on the S1/CA1 dataset. (c) Silhouette width for true clusters for simulations based on
the V1 dataset. (d) Same as (c) for simulations based on the S1/CA1 dataset. As in Figure 7, all datasets
were simulated from our ZINB-WaVE model with J = 1, 000 genes, K = 2 unknown factors, X = 1n,
cell-level intercept (V = 1J), and genewise dispersion. Each point corresponds to a simulation scenario (zero
fraction, clustering strength, sample size); correlations between true and estimated between-sample distances
and silhouette widths are averaged over B = 10 simulated datasets and n cells. Column panels show three
di�erent clustering scenarios, where the scaling of the ratio of within to between-cluster sums of squares b2

corresponds to the original clustering (b2 = 1), a harder clustering (b2 = 5), and no clustering (b2 = 10).
Row panels correspond to di�erent numbers of cells (n œ {100, 1, 000}). Between-sample distance matrices
and silhouette widths were based on W for ZINB-WaVE, the first two principal components for PCA, and
the first two latent variables for ZIFA. ZINB-WaVE was applied with X = 1n, V = 1J , genewise dispersion,
and K œ {1, 2, 3, 4}. For PCA and ZIFA, di�erent normalization methods were used. Colors correspond to
the di�erent methods.
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Supplementary Figure 29: Precision and recall for ZINB-WaVE, PCA, and ZIFA: Lun & Marioni42 sim-
ulation model. Average (a) precision coe�cient and (b) recall coe�cient (over n samples and B = 10
simulations) vs. zero fraction, for n œ {100, 1, 000, 10, 000} cells, for datasets simulated from the Lun &
Marioni42 model, with C = 3 clusters and equal number of cells per cluster. Clustering was performed using
k-means on W for ZINB-WaVE, the first two principal components for PCA, and the first two latent vari-
ables for ZIFA. ZINB-WaVE was applied with X = 1n, V = 1J , genewise dispersion, and K = 2. For PCA
and ZIFA, di�erent normalization methods were used. Colors correspond to the di�erent methods. While
ZINB-WaVE has a recall and precision of one for all sample sizes n and zero fractions, the performance of
PCA and ZIFA decreases with larger zero fraction. See Methods for details on clustering procedure and
precision and recall coe�cients.
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Supplementary Figure 30: CPU time for ZINB-WaVE estimation procedure. Log-log scatterplot of mean
CPU time (in seconds) vs. (a) sample size n, (b) number of genes J , and (c) number of latent factors K.
For each panel B = 10 datasets were simulated from the Lun & Marioni42 model with zero fraction of about
60%. The following specific values were used for each panel: (a) n œ {50, 100, 500, 1, 000, 5, 000, 10, 000} cells,
J = 1, 000 genes, K = 2 latent factors; (b) J œ {50, 100, 500, 1, 000, 5, 000, 10, 000} genes, n = 1, 000 cells,
K = 2 latent factors; (c) n = 1, 000 cells, J = 1, 000 genes, and K œ {2, 3, 5, 10, 50, 100} latent factors. The
following values were used to fit the ZINB-WaVE model: X = 1n, cell-level intercept (V = 1J), and common
dispersion. CPU times were averaged over B = 10 simulated datasets and standard deviations are indicated
by the vertical bars. Computations were done with 7 cores on an iMac with eight 4 GHz Intel Core i7 CPUs
and 32 GB of RAM.
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