TITLE

Supplementary Information: Quantifying Trading Behavior in Financial Markets Using Google Trends

AUTHORS AND AFFILIATIONS

Tobias Preis ${ }^{1{ }^{1 * *}}$, Helen Susannah Moat ${ }^{2,3 \#}$, and H. Eugene Stanley ${ }^{2 \#}$
${ }^{1}$ Warwick Business School, University of Warwick, Scarman Road, Coventry, CV4 7AL, UK
${ }^{2}$ Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA ${ }^{3}$ Department of Civil, Environmental and Geomatic Engineering, UCL, Gower Street, London, WC1E 6BT, UK
\# These authors contributed equally to this work.
* To whom correspondence should be addressed; E-mail: Tobias.Preis@wbs.ac.uk

Search Volume Data - The service Google Trends analyses a portion of Google web searches to compute how many searches have been done for specific terms, relative to the total number of searches done on Google over time. This analysis indicates the likelihood of a random user to search for a particular search term from a certain location at a certain time. Note that Google Trends only provides data relating to search terms for which traffic exceeds a certain threshold, so that those with low search volume will not appear. The Google Trends system also eliminates repeated queries from a single user over a short period of time, so that the level of interest is not artificially impacted by such behavior ${ }^{1}$. Google Trends does not provide search volume at a daily granularity, other than for extremely frequent search terms. We therefore conduct our analyses at a weekly granularity, for which data relating to a much larger set of search terms is available.

REFERENCES

1. Google Trends [http://support.google.com/trends] Accessed in Mar 2013.

FIGURES

Figure S1. Empirical evidence of data consistency, based on normalized search volume data for the search term FOMC, which is the commonly used term for the Federal Open Market Committee. The time series is normalized by its maximum. This committee is part of the U.S. Federal Reserve System and makes core decisions during its regular meetings about interest rates and the increase of money supply. The meeting dates, which we retrieved from http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm on 15 May 2011, are represented by vertical lines and coincide with an increase in the volume of the search term FOMC. We see no delay between sharp peaks in search volume data and the sequence of historical FOMC meeting dates.

Relative Keyword Occurence [10 ${ }^{-4}$]

Figure S2. How related are search terms to the topic of finance? We quantify financial relevance by calculating the frequency of each search term in the online edition of the Financial Times (http://www.ft.com) from August 2004 to June 2011, normalized by the number of Google hits (http://www.google.com) for each search term.

Figure S3. Profit and loss for an investment strategy based on the volume of the search term arts with $\Delta t=3$ weeks.

Figure S4. Profit and loss for an investment strategy based on the volume of the search term banking with $\Delta t=3$ weeks.

Figure S5. Profit and loss for an investment strategy based on the volume of the search term bonds with $\Delta t=3$ weeks.

Figure S6. Profit and loss for an investment strategy based on the volume of the search term bubble with $\Delta t=3$ weeks.

Figure S7. Profit and loss for an investment strategy based on the volume of the search term buy with $\Delta t=3$ weeks.

Figure S8. Profit and loss for an investment strategy based on the volume of the search term cancer with $\Delta t=3$ weeks.

Figure S9. Profit and loss for an investment strategy based on the volume of the search term car with $\Delta t=3$ weeks.

Figure S10. Profit and loss for an investment strategy based on the volume of the search term cash with $\Delta t=3$ weeks.

Figure S11. Profit and loss for an investment strategy based on the volume of the search term chance with $\Delta t=3$ weeks.

Figure S12. Profit and loss for an investment strategy based on the volume of the search term color with $\Delta t=3$ weeks.

Figure S13. Profit and loss for an investment strategy based on the volume of the search term conflict with $\Delta t=3$ weeks.

Figure S14. Profit and loss for an investment strategy based on the volume of the search term consume with $\Delta t=3$ weeks.

Figure S15. Profit and loss for an investment strategy based on the volume of the search term consumption with $\Delta t=3$ weeks.

Figure S16. Profit and loss for an investment strategy based on the volume of the search term crash with $\Delta t=3$ weeks.

Figure S17. Profit and loss for an investment strategy based on the volume of the search term credit with $\Delta t=3$ weeks.

Figure S18. Profit and loss for an investment strategy based on the volume of the search term crisis with $\Delta t=3$ weeks.

Figure S19. Profit and loss for an investment strategy based on the volume of the search term culture with $\Delta t=3$ weeks.

Figure S20. Profit and loss for an investment strategy based on the volume of the search term debt with $\Delta t=3$ weeks.

Figure S21. Profit and loss for an investment strategy based on the volume of the search term default with $\Delta t=3$ weeks.

Figure S22. Profit and loss for an investment strategy based on the volume of the search term derivatives with $\Delta t=3$ weeks.

Figure S23. Profit and loss for an investment strategy based on the volume of the search term dividend with $\Delta t=3$ weeks.

Figure S24. Profit and loss for an investment strategy based on the volume of the search term dow jones with $\Delta t=3$ weeks.

Figure S25. Profit and loss for an investment strategy based on the volume of the search term earnings with $\Delta t=3$ weeks.

Figure S26. Profit and loss for an investment strategy based on the volume of the search term economics with $\Delta t=3$ weeks.

Figure S27. Profit and loss for an investment strategy based on the volume of the search term economy with $\Delta t=3$ weeks.

Figure S28. Profit and loss for an investment strategy based on the volume of the search term energy with $\Delta t=3$ weeks.

Figure S29. Profit and loss for an investment strategy based on the volume of the search term environment with $\Delta t=3$ weeks.

Figure S30. Profit and loss for an investment strategy based on the volume of the search term fed with $\Delta t=3$ weeks.

Figure S31. Profit and loss for an investment strategy based on the volume of the search term finance with $\Delta t=3$ weeks.

Figure S32. Profit and loss for an investment strategy based on the volume of the search term financial markets with $\Delta t=3$ weeks.

Figure S33. Profit and loss for an investment strategy based on the volume of the search term fine with $\Delta t=3$ weeks.

Figure S34. Profit and loss for an investment strategy based on the volume of the search term fond with $\Delta t=3$ weeks.

Figure S35. Profit and loss for an investment strategy based on the volume of the search term food with $\Delta t=3$ weeks.

Figure S36. Profit and loss for an investment strategy based on the volume of the search term forex with $\Delta t=3$ weeks.

Figure S37. Profit and loss for an investment strategy based on the volume of the search term freedom with $\Delta t=3$ weeks.

Figure S38. Profit and loss for an investment strategy based on the volume of the search term fun with $\Delta t=3$ weeks.

Figure S39. Profit and loss for an investment strategy based on the volume of the search term gain with $\Delta t=3$ weeks.

Figure S40. Profit and loss for an investment strategy based on the volume of the search term gains with $\Delta t=3$ weeks.

Figure S41. Profit and loss for an investment strategy based on the volume of the search term garden with $\Delta t=3$ weeks.

Figure S42. Profit and loss for an investment strategy based on the volume of the search term gold with $\Delta t=3$ weeks.

Figure S43. Profit and loss for an investment strategy based on the volume of the search term greed with $\Delta t=3$ weeks.

Figure S44. Profit and loss for an investment strategy based on the volume of the search term growth with $\Delta t=3$ weeks.

Figure S45. Profit and loss for an investment strategy based on the volume of the search term happy with $\Delta t=3$ weeks.

Figure S46. Profit and loss for an investment strategy based on the volume of the search term headlines with $\Delta t=3$ weeks.

Figure S47. Profit and loss for an investment strategy based on the volume of the search term health with $\Delta t=3$ weeks.

Figure S48. Profit and loss for an investment strategy based on the volume of the search term hedge with $\Delta t=3$ weeks.

Figure S49. Profit and loss for an investment strategy based on the volume of the search term hedging with $\Delta t=3$ weeks.

Figure S50. Profit and loss for an investment strategy based on the volume of the search term holiday with $\Delta t=3$ weeks.

Figure S51. Profit and loss for an investment strategy based on the volume of the search term home with $\Delta t=3$ weeks.

Figure S52. Profit and loss for an investment strategy based on the volume of the search term house with $\Delta t=3$ weeks.

Figure S53. Profit and loss for an investment strategy based on the volume of the search term housing with $\Delta t=3$ weeks.

Figure S54. Profit and loss for an investment strategy based on the volume of the search term inflation with $\Delta t=3$ weeks.

Figure S55. Profit and loss for an investment strategy based on the volume of the search term invest with $\Delta t=3$ weeks.

Figure S56. Profit and loss for an investment strategy based on the volume of the search term investment with $\Delta t=3$ weeks.

Figure S57. Profit and loss for an investment strategy based on the volume of the search term kitchen with $\Delta t=3$ weeks.

Figure S58. Profit and loss for an investment strategy based on the volume of the search term labor with $\Delta t=3$ weeks.

Figure S59. Profit and loss for an investment strategy based on the volume of the search term leverage with $\Delta t=3$ weeks.

Figure S60. Profit and loss for an investment strategy based on the volume of the search term lifestyle with $\Delta t=3$ weeks.

Figure S61. Profit and loss for an investment strategy based on the volume of the search term loss with $\Delta t=3$ weeks.

Figure S62. Profit and loss for an investment strategy based on the volume of the search term markets with $\Delta t=3$ weeks.

Figure S63. Profit and loss for an investment strategy based on the volume of the search term marriage with $\Delta t=3$ weeks.

Figure S64. Profit and loss for an investment strategy based on the volume of the search term metals with $\Delta t=3$ weeks.

Figure S65. Profit and loss for an investment strategy based on the volume of the search term money with $\Delta t=3$ weeks.

Figure S66. Profit and loss for an investment strategy based on the volume of the search term movie with $\Delta t=3$ weeks.

Figure S67. Profit and loss for an investment strategy based on the volume of the search term nasdaq with $\Delta t=3$ weeks.

Figure S68. Profit and loss for an investment strategy based on the volume of the search term nyse with $\Delta t=3$ weeks.

Figure S69. Profit and loss for an investment strategy based on the volume of the search term office with $\Delta t=3$ weeks.

Figure S70. Profit and loss for an investment strategy based on the volume of the search term oil with $\Delta t=3$ weeks.

Figure S71. Profit and loss for an investment strategy based on the volume of the search term opportunity with $\Delta t=3$ weeks.

Figure S72. Profit and loss for an investment strategy based on the volume of the search term ore with $\Delta t=3$ weeks.

Figure S73. Profit and loss for an investment strategy based on the volume of the search term politics with $\Delta t=3$ weeks.

Figure S74. Profit and loss for an investment strategy based on the volume of the search term portfolio with $\Delta t=3$ weeks.

Figure S75. Profit and loss for an investment strategy based on the volume of the search term present with $\Delta t=3$ weeks.

Figure S76. Profit and loss for an investment strategy based on the volume of the search term profit with $\Delta t=3$ weeks.

Figure S77. Profit and loss for an investment strategy based on the volume of the search term rare earths with $\Delta t=3$ weeks.

Figure S78. Profit and loss for an investment strategy based on the volume of the search term religion with $\Delta t=3$ weeks.

Figure S79. Profit and loss for an investment strategy based on the volume of the search term restaurant with $\Delta t=3$ weeks.

Figure S80. Profit and loss for an investment strategy based on the volume of the search term return with $\Delta t=3$ weeks.

Figure S81. Profit and loss for an investment strategy based on the volume of the search term returns with $\Delta t=3$ weeks.

Figure S82. Profit and loss for an investment strategy based on the volume of the search term revenue with $\Delta t=3$ weeks.

Figure S83. Profit and loss for an investment strategy based on the volume of the search term rich with $\Delta t=3$ weeks.

Figure S84. Profit and loss for an investment strategy based on the volume of the search term ring with $\Delta t=3$ weeks.

Figure S85. Profit and loss for an investment strategy based on the volume of the search term risk with $\Delta t=3$ weeks.

Figure S86. Profit and loss for an investment strategy based on the volume of the search term sell with $\Delta t=3$ weeks.

Figure S87. Profit and loss for an investment strategy based on the volume of the search term short selling with $\Delta t=3$ weeks.

Figure S88. Profit and loss for an investment strategy based on the volume of the search term society with $\Delta t=3$ weeks.

Figure S89. Profit and loss for an investment strategy based on the volume of the search term stock market with $\Delta t=3$ weeks.

Figure S90. Profit and loss for an investment strategy based on the volume of the search term stocks with $\Delta t=3$ weeks.

Figure S91. Profit and loss for an investment strategy based on the volume of the search term success with $\Delta t=3$ weeks.

Figure S92. Profit and loss for an investment strategy based on the volume of the search term tourism with $\Delta t=3$ weeks.

Figure S93. Profit and loss for an investment strategy based on the volume of the search term trader with $\Delta t=3$ weeks.

Figure S94. Profit and loss for an investment strategy based on the volume of the search term train with $\Delta t=3$ weeks.

Figure S95. Profit and loss for an investment strategy based on the volume of the search term transaction with $\Delta t=3$ weeks.

Figure S96. Profit and loss for an investment strategy based on the volume of the search term travel with $\Delta t=3$ weeks.

Figure S97. Profit and loss for an investment strategy based on the volume of the search term unemployment with $\Delta t=3$ weeks.

Figure S98. Profit and loss for an investment strategy based on the volume of the search term war with $\Delta t=3$ weeks.

Figure S99. Profit and loss for an investment strategy based on the volume of the search term water with $\Delta t=3$ weeks.

Figure S100. Profit and loss for an investment strategy based on the volume of the search term world with $\Delta t=3$ weeks.

Figure S101. Profit and loss for the Dow Jones strategy, using changes in $p(t)$ in place of changes in search volume data as the basis of buy and sell decisions, with $\Delta t=3$ weeks.

