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Abstract

An unusual number of near term and neonatal bottlenose dolphin (Tursiops truncatus) mortalities occurred in the northern
Gulf of Mexico (nGOM) in 2011, during the first calving season after two well documented environmental perturbations;
sustained cold weather in 2010 and the Deepwater Horizon oil spill (DWHOS). Preceding the stranding event, large volumes
of cold freshwater entered the nGOM due to unusually large snowmelt on the adjacent watershed, providing a third
potential stressor. We consider the possibility that this extreme cold and freshwater event contributed to the pattern of
perinatal dolphin strandings along the nGOM coast. During the 4-month period starting January 2011, 186 bottlenose
dolphins, including 46% perinatal calves (nearly double the percentage for the same time period from 2003–2010) washed
ashore from Louisiana to western Florida. Comparison of the frequency distribution of strandings to flow rates and water
temperature at a monitoring buoy outside Mobile Bay, Alabama (the 4th largest freshwater drainage in the U.S.) and along
the nGOM coast showed that dolphin strandings peaked in Julian weeks 5, 8, and 12 (February and March), following water
temperature minima by 2–3 weeks. If dolphin condition was already poor due to depleted food resources, bacterial
infection, or other factors, it is plausible that the spring freshet contributed to the timing and location of the unique
stranding event in early 2011. These data provide strong observational evidence to assess links between the timing of the
DWHOS, other local environmental stressors, and mortality of a top local predator. Targeted analyses of tissues from
stranded dolphins will be essential to define a cause of death, and our findings highlight the importance of considering
environmental data along with biological samples to interpret stranding patterns during and after an unusual mortality
event.
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Introduction

An unusual number of perinatal (near term to neonatal)

bottlenose dolphin (Tursiops truncatus) mortalities occurred in waters

of the northern Gulf of Mexico (nGOM) from January through

April 2011 (Fig. 1). The occurrence of this event early in the first

peak calving season after the Deepwater Horizon MC252 oil spill

(DWHOS) raised public speculation that the dolphin mortalities

were related to toxicity from exposure to oil or dispersant-derived

contaminants [1–2]. The cause of the unusual mortalities is

undetermined, and the National Marine Fisheries Service (NMFS)

included them in an ongoing Unusual Mortality Event (UME) that

began in February 2010, prior to the DWHOS [3,4]. The UME

was initially prompted by record mortality of primarily adult

dolphins, which occurred coincidental with high mortality of other

coastal species including finfish, sea turtles, shore birds, and

manatees (, 6% of the estimated U.S. population of manatees was

lost) during sustained cold weather in early 2010 [5,6]. Dolphins

and other coastal species, therefore, experienced at least two

potentially stressful events during 2010; the unusually harsh winter

conditions followed by the DWHOS (Fig. 2, I and II).

Days prior to the start of the perinatal dolphin stranding event

in January 2011, there was a third potential environmental

stressor, the rapid entry of large volumes of cold freshwater to near

shore coastal waters associated with the melt water from an

unusually large winter snowfall in the upper reaches of the Mobile

Bay watershed (Fig. 2, III and Fig. 3A). Mobile Bay has the 6th

largest watershed and represents the 4th largest freshwater

drainage in the U.S. [7]. Although nearshore areas in the nGOM

outside Mobile Bay are regularly influenced by this substantial

freshwater drainage [8], the watershed had experienced moderate

to severe drought conditions for several years [9]. Following

a particularly cold winter and the DWHOS in 2010, this

subsequent entry of cold freshwater at the nGOM coastline

imposed additional stress on the already affected local coastal

ecosystem.
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Here we propose the possibility that the cold and freshwater

event (spring freshet) in early 2011 contributed to the timing and

distribution of stranded bottlenose dolphins along the nGOM

coast from Louisiana through the Florida panhandle during

January - April 2011. To assess this possibility, we compared the

frequency distribution of dolphin strandings of different age classes

and the reported condition of carcasses to high-frequency collected

data for surface water temperature, flow rates, and salinity from

monitoring sites at Mobile Bay, Alabama and to water temper-

ature and surface current data for the broader nGOM system from

eastern Louisiana through the Florida panhandle.

Methods

To determine if cold freshwater discharge from the Mobile Bay,

Alabama watershed in early 2011 may have contributed to

perinatal mortality of dolphins along the nGOM coast during

January–April 2011, we compared the frequency distribution of

dolphin strandings of different age classes (Table 1) and the

reported condition of carcasses to high-frequency collected data

for flow rates (15 min intervals), surface water temperature

(30 min intervals), and salinity (30 min intervals) from two

monitoring sites in the nGOM at Mobile Bay, Alabama. Flow

data were collected from the Mt. Vernon (Tensaw River

02471019) U.S. Geological Survey gauge [10], and surface water

temperature and salinity were measured at the Dauphin Island

environmental monitoring Station, referred to as DPHA1 by the

National Data Buoy Center [11]. Environmental data for the

Mobile Bay area were smoothed for clarity when compared to

dolphin stranding data by using a locally weighted polynomial

regression, LOWESS in R v.2.13.0.

Dolphin stranding data were obtained from the Southeast U.S.

Marine Mammal Stranding Network, reported to the NMFS as of

27 April 2012 [12]. Data used for this study were collected as part

of Level A Data (basic stranding data) by the NMFS and included

response date (the date that data were collected from the carcass),

length (the total straight length from upper jaw to fluke notch), and

carcass condition (reported using NMFS standard 5 point code in

which a code 1 is live stranded, 2 is freshly dead, and a code 5 is

most highly decomposed). Dolphin age classes were assigned using

NMFS definitions based on total straight length [13]. Data were

collected by trained responders of the Southeast U.S. Marine

Mammal Stranding Network and entered into the Marine

Mammal Health and Stranding Response Program database

hosted by the NMFS. Data were quality checked at the level of

data entry by each Stranding Network representative. NMFS has

additionally independently validated the Marine Mammal Health

and Stranding Response Program database up to 2008, and data

from February 2010 through August 2011 have been audited by

NMFS. Data are subject to change prior to NMFS validation.

To define patterns in bottlenose dolphin strandings during

January – April 2011 for comparison to environmental data, we

plotted the frequency distribution of dolphin strandings through

time and calculated the statistically best-fit normal distributions of

total weekly strandings. We grouped dolphin data into one-week

intervals because daily comparisons were likely to be less

meaningful given delays between death, beaching, carcass

discovery and response [14], while two-week intervals or greater

could miss variation within the data relative to environmental

attributes. Overlapping distributions were fit iteratively using

maximum likelihood of variable combinations (mean, variance,

Figure 1. Location of dolphin strandings in the northern Gulf of Mexico, January through April 2011. Dolphin strandings are shown
separated by age class (defined in Table 1) for Louisiana (LA), Mississippi (MS), Alabama (AL), and western Florida (FL) [12]. Unknown = data not
reported.
doi:10.1371/journal.pone.0041155.g001
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and proportion of each distribution) in the ‘mixdist’ package 0.5–3

in R 2.13.0.

To determine the applicability of our detailed environmental

data to the broader nGOM system in which dolphins were

stranded, we compared our data to publicly available remotely

sensed water temperature values and surface current data for near

shore waters from eastern Louisiana through the Florida

panhandle. We applied NOAA Weekly Global Sea Surface

Temperature SST Model Outputs from OIV2 Optimum In-

terpolation Analysis (http://www.cpc.ncep.noaa.gov/products/

GIS/GIS_DATA/sst_oiv2/index.php), averaged for a 1u long-

itude62u latitude area. Surface currents in the nGOM were

measured by Coastal Ocean Dynamics Applications Radars

(CODAR) of the Central Gulf of Mexico Ocean Observing

System. Stations in Pascagoula, MS, Orange Beach, AL, and

Destin, FL measure surface currents offshore of the 20 m isobath

on an hourly basis, with currents averaged over an area of ,
36 km2. To determine net surface water movement patterns

through time, trajectories of pseudo-water parcels were computed

by choosing initial points and advecting them with the currents

linearly interpolated to the position of the water parcel at each

hourly time step. Trajectories were run beginning on days 1 and

15 of each month from January through March, and 1 April.

Results

During the 4-month period between 1 January and 30 April

2011, 186 bottlenose dolphins, including 86 (46%) perinatal calves

(defined as ,115 cm), washed ashore from Louisiana to western

Florida (Fig. 3A, Table 1). Perinatal strandings during this event

were almost 6 times higher than the average number of perinatal

strandings in the region since 2003 (1562) and were nearly double

the historical percentage (2765%) of total strandings. While the

majority of carcasses were discovered on the coast of Louisiana

and Mississippi, the greatest number of perinatal dolphins

stranded on the Mississippi-Alabama coast (Fig. 3B, Table 1). In

all, these deaths represent the largest marine mammal mortality

event in the nGOM since 2004, when a red tide killed more than

100 bottlenose dolphins off the Florida panhandle [15](Fig. 2).

Figure 2. Dolphin strandings compared to water temperature through time. Total biweekly bottlenose dolphin strandings reported in
Louisiana (LA), Mississippi (MS), Alabama (AL), and Florida (FL) from January 2003 through April 2011 [12] compared to biweekly mean surface water
temperature at Mobile Bay, AL. Potential stressors: I = Winter 2010, II = DWHOS in the nGOM, III = spring freshet.
doi:10.1371/journal.pone.0041155.g002

Table 1. Total bottlenose dolphin strandings by state
(1 January – 30 April 2011).

State

Age class LA MS AL FL Total

Perinatal (,115 cm) 14 36 28 8 86

Other juvenile (115–227 cm) 36 13 5 7 61

Subadult (.227–247 cm) 12 5 1 0 18

Adult (.247 cm) 16 0 0 3 19

Not reported 1 1 0 0 2

Total 79 55 34 18 186

LA = Louisiana, MS = Mississippi, AL = Alabama, FL = Florida. NMFS
independently validated Marine Mammal Health and Stranding Response
Program data up to 2008, and data from February 2010 through August 2011
have been audited by NMFS. Data are subject to change prior to NMFS
validation.
doi:10.1371/journal.pone.0041155.t001
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Figure 3. Dolphin strandings in 2011. A) Total weekly bottlenose dolphin strandings for each state compared to surface water temperature
(30 min intervals), flow (15 min intervals), and salinity (30 min intervals) measured at Mobile Bay, AL. B) Weekly perinatal dolphin strandings,
separated by state (following the same legend as panel A). C) Total weekly bottlenose dolphin strandings, separated by carcass condition on the day
of response in 2011. Carcass condition is reported using NMFS standard 5-point code in which 1 is live stranded, 2 is freshly dead, and 5 is most highly
decomposed. NR = Not reported.
doi:10.1371/journal.pone.0041155.g003
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The temporal frequency of dolphin strandings in early 2011

produced three normal distributions (Fig. 4), with peaks during

Julian weeks 562, 861 and 1262 (Figs. 3A; x2 = 11.3, df = 10,

p=0.33). These time periods correspond to 29 January –4

February, 19–25 February, and 19–25 March 2011 (Fig. 3A,

Table 2). Perinatal strandings peaked during week 8 (Fig. 3B,

Table 2). Surface water flow peaked during Julian weeks 1, 6, and

10–11, corresponding to temperature drops of 7–10uC in weeks 2,

6, and 10, such that each low temperature event predated carcass

discovery by , 2–3 weeks (Fig. 3A, Table 2). Accordingly, the

condition of recovered carcasses was also slightly poorer during the

later half of the stranding event; the majority of code 4–5 carcasses

were discovered after week 10 (Fig. 3C), indicating an offset of at

least two weeks between potential cold stress events, mortality, and

carcass discovery. This timing is consistent with previous

observations in the region [14].

The weekly mean surface water temperatures measured at

Mobile Bay in the first few weeks of 2011 were lower than average

sea surface temperatures estimated further offshore (Fig. 5). The

periodic low temperature events, however, were mirrored in

nGOM waters as declines in weeks 2 and 5 at northeastern Gulf of

Mexico longitudes and by a decline across all longitudes in week 8

(, 25 February), which corresponded to the peak period for all

dolphin strandings in the region, shown in Fig. 3A. CODAR

current data also showed onshore (north-northwest) movement of

surface water from 1 January 2011 (Fig. 6A) through February

2011 (Fig. 6B, red line), corresponding to peak stranding periods in

weeks 5 and 8. Surface water trajectories changed to the south in

early March (after week 8) and did not return northward until late

March (Fig. 6, blue line), corresponding to the third peak of

strandings in week 12. Assuming that the currents were coherent

from the 20 m isobath to the coastline, these trajectories are

consistent with flows that would keep the freshets close to the coast

at the peaks times of the strandings. These data suggest pulse

temperature depressions were not limited to Mobile Bay,

Alabama, and regional water movement favored animals washing

ashore in areas immediately offshore from the MS-AL coast where

freshwater inputs were most intense.

Discussion

The relationship between pulsed temperature depressions in the

nGOM and local bottlenose dolphin strandings in 2011 is a novel

observation. Coastal bottlenose dolphins are exposed to typical

fluctuations in water temperature from 5–10uC in winter to as

high as 30–35uC in summer. While bottlenose dolphins in good

physiological condition are known to tolerate these seasonal

temperature ranges, avoid cold areas, and metabolically compen-

sate for heat loss [16–18], little is known about dolphin response to

dramatic episodic temperature drops like those observed in the

nGOM in early 2011. During summer 2011, NOAA undertook

a comprehensive health assessment of bottlenose dolphins in

Barataria Bay, LA [19]. Preliminary results of the assessment

indicated that many of the dolphins analyzed were underweight,

anemic, and showed other evidence of poor condition, with almost

half of them exhibiting physiological signs of stress [19]. These

observations raise the possibility that the Mobile Bay freshet and

corresponding regional temperature depressions were contributing

stressors to a bottlenose dolphin population that was already in

relatively poor physiological condition. Furthermore, the cold

freshwater inputs at Mobile Bay occurred during the first of what

are typically two broadly seasonal peaks in calving during the year

(spring and later summer) [20], consistent with the high frequency

of prenatal dolphins among reported strandings.

Based on the timing of events and distribution of strandings,

known factors that could have affected dolphin condition prior to

the 2011 freshet include: 1) direct exposure to oil or 2)

Figure 4. Mixed distribution analysis of 2011 dolphin strand-
ings. The statistically best-fit distribution of total weekly bottlenose
dolphin strandings during January – April 2011 [12]. Red lines show the
individual components of the best-fit mixture distribution (green), and
red triangles indicate the mean of each component distribution.
Overlapping distributions were fit iteratively using maximum likelihood
of variable combinations (mean, variance, and proportion of each
distribution) in the ‘mixdist’ package 0.5–3 in R 2.13.0.
doi:10.1371/journal.pone.0041155.g004

Table 2. Comparison of peak dolphin strandings to peak water flow and temperature declines during January – March 2011.

Julian week of 2011

January February March

Event 1 2 3 4 5 6 7 8 9 10 11 12

Peak strandings (all) X X X

Peak strandings (perinatal) X

Peak water flow X X X X

Temperature decline (AL) X X X

Temperature decline (GOM) X

AL = sites near Mobile Bay, Alabama during January – March 2011 and correspond to data in Fig. 3A. GOM = Gulf-wide (Fig. 5) for the same period.
doi:10.1371/journal.pone.0041155.t002
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compromised food resources (which could be related to extended

colder weather or effects of the DWHOS). Unfortunately, there

are few published data to evaluate these possibilities for the period

of interest. The sublethal effects of direct oil exposure on dolphins

have not been well documented [21,22], and while perinatal and

infant mortality has been associated with exposure to oil and other

organic pollutants in some marine mammals, it has not been

reported among dolphins [23,24]. There is better evidence that

oil-derived carbon entered the base of the nGOM food web

[25,26] and that prey for dolphins may have been low relative to

the number of pregnant females during this time [Smith et al.,

University of Southern Mississippi, unpubl. Data]. Declines in

planktivorous fishes over the shelf in summer and fall 2010 and

evidence of genetic and physiological impairment of nearshore

fishes support the hypothesis that bottlenose dolphins’ forage base

may have been reduced [27, Patterson, University of South

Alabama, unpubl. Data]. These data are suggestive that alterations

to the local food web from the DWHOS or extreme cold could

have moved up the food web to alter body condition of local

bottlenose dolphins. As ongoing assessments of coastal food web

structure post-DWHOS are published, more data should be

available to assess these possibilities.

Previous study provides some corroboration that a combination

of exposure to contaminants or sustained cold could lead to poor

body condition and mortality of top predators such as dolphins.

For example, the combination of high organic contaminant loads

and poor nutritional status was associated with high pup mortality,

stillbirths and abortions in California sea lions [28]. Interactions

between water temperature and prey availability are also thought

to affect coastal dolphin distributions, particularly among neonates

and other young dolphins [18]. An interaction between reduced

food resources and a severe rapid drop in temperature was

implicated in the December 1990 death of 26 bottlenose dolphins

in Matagorda Bay, TX [29]. Although the 1990 event in

Matagorda Bay included only adults, 80% or more of the

recovered carcasses showed signs of emaciation [29].

Known changes in the thermal properties of blubber with

emaciation may mechanistically link body condition to potential

cold-related mortality among dolphins. Lipid content of blubber

relates directly to thermal conductivity [30], and importantly, the

quality (lipid content) of blubber can be depleted and thermal

properties impaired even if the quantity (depth) of blubber appears

relatively unchanged [16,31] and G.W. unpubl. data. Blubber

depths of healthy dolphins in nGOM (Texas) waters can range

Figure 5. Gulf of Mexico coastal SST in 2011. A) Weekly mean sea surface temperature (SST) for near shore areas in the nGOM from 1 January -
30 April 2011. The dashed line is the high-frequency temperature data from Mobile Bay (DPHA1 buoy) shown in Fig. 3A. B) 1u longitude62u latitude
grid boxes in which NOAA Weekly Global Sea Surface Temperature SST Model Outputs from OIV2 Optimum Interpolation Analysis (http://www.cpc.
ncep.noaa.gov/products/GIS/GIS_DATA/sst_oiv2/index.php) were averaged. Inset dots in B indicate sites from which high-frequency local water flow
(1) and surface water temperature and salinity (2) data were collected at Mobile Bay, AL. Site 2 is the DPHA1 buoy.
doi:10.1371/journal.pone.0041155.g005
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from 1661 mm in summer to 2262 mm in winter [32] and G.W.

unpubl. data, with corresponding lipid contents of 6364% and

7765% and thermal conductivities of 0.2060.02 Wm21uC21 and

0.1660.02 Wm21uC21, respectively. These findings are consistent

with values in mid-Atlantic coast bottlenose dolphins and healthy

free-swimming dolphins in Florida [16,17,33]. In emaciated Texas

dolphins, however, lipid content dropped to ,15% (depth 15 mm

– not significantly different from summer depths) with a resultant

thermal conductivity of 0.30 Wm21uC21 (Fig. 7) [32]. An animal

with the latter blubber quality likely would have difficulty

maintaining body temperature under cold conditions. Further-

more, neonate blubber does not appear to show enhanced

insulation; prenatal calves and emaciated adults both show

reduced blubber thickness, lipid mass, and insulation values

compared to healthy juveniles, subadults, and adults [31]. There

are no baseline data for blubber condition of dolphins from

Louisiana through Alabama, the region of peak strandings in early

2011. The observed poor health of live dolphins from Louisiana

examined by NOAA during summer 2011 [19], however, is

consistent with these depleted blubber and poor body condition

scenarios [29,31,32]. Additional data are needed to corroborate

these findings for the ongoing UME, but these comparisons

demonstrate the potential for factors, such as food quantity and

quality, which affect body condition, to interact with cold

temperatures and affect mortality.

In addition to nutritive stress related to cold or the DWHOS,

a number of possible acute causes of the recent dolphin die-off

have been suggested (e.g.; disease, toxic algal bloom, or direct

exposure to contaminants from the DWHOS) and any of these

may have interacted with the spring freshet event. For example,

bottlenose dolphins in colder, low salinity waters may be prone to

severe skin lesions and physiological stress that make them more

susceptible to infection or illness from natural or anthropogenic

factors [34]. Accordingly, dolphins assessed in Barataria Bay, LA

in summer 2011 had depressed immune systems and generally

poor health [19]. Recent analyses indicate that 7 dolphins

stranded between 1 January and 30 April 2011 tested positive

for Brucella spp. (from June 2010 to early May 2012, 25% of

dolphins tested were positive or suspected positive for Brucella spp.),

bacteria commonly found in many marine mammal populations

and associated with depressed immune systems, poor body

condition, and perinatal mortalities [35–38]. It is noteworthy that

Figure 6. Surface current data measured by CODAR in the Mississippi Bight. A) CODAR surface currents measured on 1 January 2011 (blue
vectors) at CODAR stations in MS, AL, and FL (green triangles). The red dot indicates the initial position of the pseudo-particle for trajectory runs. B)
Pseudo-water parcel trajectories initialized on 1 January 2011 (red line), 1 March 2011 (blue line), and 1 April 2011 (green line). For temporal reference,
black crosses are plotted every 7 days on each trajectory.
doi:10.1371/journal.pone.0041155.g006
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freshwater discharge, including untreated fish processing waste

that is common along the nGOM coast, could be a vector for

Brucella spp. [39], but remains untested in the region. Future

analyses could include examination for freshwater skin lesions and

other evidence of freshwater exposure in stranded dolphins relative

to the timing of a freshet to better assess this potential contribution

to dolphin mortality along the nGOM coast, particularly relative

to bacterial infection.

The relative contributions of factors such as a spring freshet,

surface current patterns, and modified food webs that indirectly

contribute to the timing or distribution of strandings, may be

overlooked if not considered alongside potential acute causes of

death. Tissue analyses ultimately conducted on field samples from

stranded dolphins will be invaluable to align with environmental

observations. In these cases, typical measures of acute toxicity or

dolphin body condition (blubber thickness, length-weight relation-

ships, and stomach contents) may not be sufficient. Lipid content

in relatively fresh blubber, for example, will help better define

blubber condition in terms of insulative quality that could link

nutritive deficiency and cold-stress to mortality. Analyses of

organic carbon, nitrogen, and sulfur stable isotope ratios in recent

and archived tissues could help define current and past dietary

sources and determine if the stranded dolphins were primarily

inshore animals [40,41] that would have been more likely to

encounter the near shore freshwater plume. Newer isotope

methods could also help identify or rule out direct oil exposure

as well as consumption of oil-contaminated food sources [42].

Importantly, there is a limited window of opportunity to collect the

data needed to decipher the driving factors behind any UME,

particularly related to an oil spill or ephemeral cold temperatures

that may go unnoticed [23,25].

We propose the possibility that an extreme cold and freshwater

event centered on the Mobile Bay watershed in early 2011

contributed to the location and frequency distribution of perinatal

strandings among bottlenose dolphins along the nGOM coast in

early 2011. Our data suggest cold temperatures were not the sole

cause of death, but raise the possibility that the Mobile Bay freshet

and corresponding regional temperature depressions were a cul-

minating stressor to a bottlenose dolphin population that was

already under stress or in relatively poor body condition (such as

due to compromised food resources and bacterial infection). These

analyses provide insight to define possibilities and thresholds for

understanding this and future UMEs. In particular, we provide

strong observational evidence to assess links between the timing of

the DWHOS, other local environmental stressors, and mortality of

a top local predator. We also highlight the importance of

considering interaction between physical environmental variables

and biological stressors to inform causes of death during and after

an unusual mortality event.

Figure 7. Bottlenose dolphin blubber condition. Conductivity (Wm21uC21) as a function of lipid content (%) of blubber for various species of
cetaceans [30, G. W. unpubl. Data]. While healthy bottlenose dolphins showed normal seasonal changes in thermal conductivity (higher in summer
when dolphin have lower fat insulation and lower in winter when they have more insulation), emaciated dolphins showed depleted lipid content
and, therefore, the highest conductivity values.
doi:10.1371/journal.pone.0041155.g007
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