Table S1 Summary of assembled sequences from the tepal parts of the Asiatic hybrid lily Lollypop

	Run score	
	Upper tepals	Tepal bases
Total reads	$25,287,406$	$24,601,874$
Total fragments	$12,243,532$	$11,911,846$
Clean reads	$24,793,322$	$24,104,276$
$\%$	98%	98%

	Assembly score	
	Contigs	Unigenes
Number	49,239	39,426
Total length (bp)	$39,694,236$	$29,260,585$
Minimum length (bp)	201	201
Maximum length (bp)	10,772	10,772
Average length (bp)	806	742
Median length (bp)	496	427
N50 length (bp)	1,302	1,228
GC content (\%)	47	47

Table S3 Primers used for quantitative RT-PCR (qRT-PCR) analysis

Unigene		Gene	Forward primer (5'-3')

Figure S1. Phenylpropanoid, anthocyanin, and cinnamic acid derivative biosynthesis pathways in lily tepals. Enzymes whose genes are up-regulated in upper tepals (estimated by qRT-PCR) are shown in blue. 3GT, anthocyanidin 3-Oglucosyltransferase; 3RT, anthocyanidin-3-glucoside rhamnosyltransferase; 4CL, 4coumaroyl: CoA-ligase; 7GT, anthocyanidin-3-rutinoside 7-glucosyltransferase; ANS, anthocyanidin synthase; CHI , chalcone isomerase; CHS , chalcone synthase; C 3 H , p-coumarate 3-hydroxylase; C4H, cinnamate 4-hydroxylase; DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; F3'H, flavonoid 3'-hydroxylase; FLS, flavonol synthase; GST, glutathione S-transferase; HCT, shikimate O hydroxycinnamoyl transferase; MATE, multidrug and toxic compound extrusion transporter; PAL, phenylalanine ammonia-lyase.

(Fig. S2)

Figure S2. HPLC analysis of anthocyanins and CADs in upper tepals (upper) and tepal bases (basal) of lily cultivars. A: Absorbance at 525 nm (anthocyanins) of the tepal extracts in Lollypop, and cyanidin 3-Oglycoside (Cy3G) and cyanidin 3-O-rutinoside (Cy3R) standards. B: Absorbance at 340 nm (CADs) of the tepal extracts in six cultivars.
(A) PAL C29955_91_i4 c29955_91_i3 LhPAL2 c29955_91_i1
LhPAL1
c29955_91_i7
c29955_-91_i5
c29955_-
c36922_91_11
c29955_g1_i4 c29955_-11_i6 c29955_91_i3 LhPAL2 c29955_91_i1 LhPAL1 c29955_91_i7 c29955_-11_i2 c29955_91_i5 LhPAL3
c36922_91_i1
c29955_g1_i4 c29955_91_i6 c29955_g1_i3 LhPAL2
C29955_91
LhPAL1
c29955_91_i7
c29955_g1_i2
c29955 21 i 5
c29955_-91
c36922
c29955_g1_i4
c29955_g1_i6
LhPAL2
c29955_g1_i1
LhPAL1
c29955_g1_i7
c29955_91_ ${ }^{2} 2$
c29955-g1 i
LhPAL3
c36922_91_i1
c29955_g1_i4
c29955_-11_i6
c29955_-91_i3
LhPAL2
c29955_g1_i1
LhPAL1
c29955_91_i7
c29955_91_i2
c29955 11 i5
c29955_-g1_i5
LhPAL3
c29955_91_i4
c29955_91_i6
L29955_91_i3
LhPAL2
c29955_g1_i1
LhPAL1
LhPAL1
c29955_-91_i2
c29955_-91_i5
c36922_91
c29955_g1_i4
c29955_-11_i6
c29955_-91_i3
LhPAL2
c29955_g1_i1
LhPAL1
c29955_g1_i7
c29955_g1_i2
c29955_91_i5 LhPAL3
c29955_g1_i4
c29955_91_i6
c29955_g1_i3
LhPAL2
C29955_91_i1
c29955
c29955_g1_i7
c29955_-91_i2
c29955_91_i5
C29955_-91
c36922
c29955_g1_i4
c299955_-91_i_
LhPAL2 2
c29955_g1_i1
LhPAL1
c29955_-91_i7
c29955_91-i2
L29955L_9
c36922_g1_i1
c29955_91_i4
c29955_-91_i6
C29955_-91_i3
LhPAL2
C29955_g1_i1
LhPAL1
c29955_g1_i7
c29955_g1_i2
c29955
g1 i 5
c29955_-91_i5
LhPAL2

PLIDVSRNKAIHGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQISELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAS
PLIDVSRNKAIHGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQISELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAS PLIDVSRNKAI HGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAS PLIDVSRNKAIHGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAS PLIDVSRNKAIHGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQISELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAS PLIDVSRNKAIHGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAS PLIDVARNKALHGGNFQGTPIGVSMDNTRLAIAAIGKLMFAQFSELVNDFYNNGLPSNLSGGRNPSLDYGFKGAEIAMAA
PLI
YCSELQFLANPVTNHVQSAEQHNQDVNSLGLISSRKTAEAVEILKLMSSTYLVALCQAIDLRHLEENLKSAVANTVKQVV
$Y C S E L Q F L A N P V T N H V Q S A E Q H N Q D V N S L G L I S S R K T A E A V E I L K L M S S T F L V A L C Q A V D L R H L E E N L K A A V K N T V S Q V A ~$
$Y C S E L Q F L G N P V T H V$
KRVLTTGTSGELHPARFCEKDLMKVIDREYVFAYVDDPCSSTYPLMQKLRGVLVEHAMANGEKEKDAGSSIFQK
KRVLTMGVNGELHPSRFCEKDLIKVIDREYIFAYADDPGSATYPLMQKLRGVLVEHALVNGEKEKEVGTSIFQK
KRVLTTGTSGELHPARFCEKDLMKVIDREYVFAYVDDPCSSAYPLMQKLRGVLVEHAMANGEKEKDAGSSIFQKIGVFEA KRVLTMGVNGELHPSRFCEKDLIKVIDREYVFAYADDPCSATYPLMQKLRGVLVEHALVNGEKEKEVGTSIFQKITAFEE
KRVLTTGTSGELHPARFCEKDLMKVIDREYVFAYVDDPCSSTYPLMQKLRGVLVEHAMANGEKEKDAGSSIFQKIGVFEA

ELKAVLPKEVEAARAAVESGSPAIGNRIEECRSYPLYKFVREELVAGFLSGEKVRSPGEEFDKVFNAICKGRVIDPMLEC
ELKATLPKEVEGVRMAFDNGTNVIANRISECRSYPLYKFVREELGAGYL SGEKVRSPGEEFDKVFNAICKGRVIDPMLEC
TGEKVRSPGEEFNKVFIAMSQWKVIDPLLEC
TGEKVRSPGEEFNKVFIAMSQWKVIDPLLEC
SGEKVRSPGEEFDKVFNAICKGRVIDPMLEC ELKAALPKEVEAVRMAFEKGSSNVENRIKECRSYPLYRFVREELGTRFLTGEEVRSAGEEFDKVFVAICEGKLIDPLLEC
ELKAALPKEVEAVRVTFEKGSSTVENRIKECRSYPLYRFVREELGTRFLTGEEVRSPGEEFDKVFVAIGEGKLIDPLLEG LKEWNGAPLPIS*

LREWDGAPLPIC*
LREWDGAPLPIC*

Figure S3. Alignment of predicted amino acid sequences of isoforms annotated as LhPAL1, LhPAL2, and LhPAL3 (A), and LhCHSa and LhCHSb (B). Letters on black and grey backgrounds indicate identical and similar amino acids, respectively. Asterisks indicate stop codons.
(A) Three PALs (LhPAL1, LhPAL2, and LhPAL3) have been identified in Montreux [10]. Of the seven isoforms of c29955_g1, two, three, and two exhibited high similarities to LhPAL1, LhPAL2, and LhPAL3, respectively. Since the sequences of the three PALs are similar to each other [10], the seven isoforms of c29955_g1 should be classified into a single unigene (i.e., the three PAL gene sequences were not distinguished during de novo assembly). A unigene c36922_g1, which only consisted of 114 amino acid residues, also exhibited a high similarity to the LhPAL3 of Montreux (Table 1).
(B) Each of the 10 isoforms of c30110_g1 was similar to either LhCHSa or LhCHSb from Montreux. Among three CHSs that have been isolated in Montreux tepals, the sequences of LhCHSa and LhCHSb are highly similar [31].

Flower bud development stage
\square : upper tepal \square : tepal base

Figure S4. Relative expression levels of c30288_g1 (HCT), c10735_g1 (MYB3), c25442_g1 (MYB8), c25442_g2, c24227_g1 (R3-MYB), c24227_g2 (R3-MYB), c18278_g2 (R3-MYB), c36339_g1 (SPL9), and c16635-g1 (RCP1) in upper tepals and tepal bases of Lollypop during floral development (St 1-5). ACTIN was used to normalize the expression of target genes. Values and vertical bars indicate the mean \pm standard error $(\mathrm{n}=3$). The same letters above the columns indicate that the values are not statistically significant ($p<0.05$) by Tukey's HSD.

Figure S5. Relative expression levels of LhMYB12 in Sugar Love and WD40 in Sugar Love and Montreux in upper tepals and tepal bases during floral development (St 1-5, A) and flowers of the cultivars Montreux and Sugar Love (B). ACTIN was used to normalize the expression of target genes. Values and vertical bars indicate the means \pm standard error ($n=3$). The same letters above the columns indicate that the values are not statistically significant ($p<0.05$) by Tukey's HSD.

A

> putative miR828 target site in c22900_g1 (MYB12)
> $5^{\prime}-\ldots$ CCCGGUCGGACAGCUAAUGAUAUUAAGAACUAQUGGAAUUCUCACUUGAGCAAGAGAAAAGUGAAUGUCGA...-3' $3^{\prime}-$-ACCUUAUGAGUAAACUCGUCU-5' putative miR828 $(22 \mathrm{nt})$

B

MdPri-miR828b MdPri-miR828a GmPri-miR828b GmPri-miR828a VvPri-miR828b VvPri-miR828A c13793_g1

MdPri-miR828b MdPri-miR828a GmPri-miR828b GmPri-miR828a VvPri-miR828b VvPri-miR828A c13793_g1

putative miR828
CUUGCUCAAAUGAGUA
-CCUCUUUGUAAUGUUUCUUGCUCAAAUGAGUAUUCCAACAACAGUA---GCCUUUUGAACAAGAACAUAUGUU
UAUAAAGUUUCUUGCUCAAAUGAGLALUCCAA-ACAACA- -GCUUGUGAAGCAAUGAUU UUUUCCUCCCACAUGGGAAAGCCUCUUGCUCAAAUGAGUAUUCCAUCUAUGGUGCAGAAGCUUUGGGUCCU-

AACAUGUAUGUGUAUAUAUAUAUAGCACUGGUGCUUCUGCAAUCCUGAGAUGCUCAUUUGGGCAAGCAACGUUACAAGAGGA

_-__-_-_-_UGUGGUGCCACUG--_-_UCUCAAAGGAUGAGAUGCUCAUUUGACCAAGCAAUGUUAAAA UUUGCCU--UGUAUGGUUAUGAUGUUGCUGGUA-UUUACUGUUUCUGAGAUGCUCAUUCGAGCAAGAAAUAUUAGAAGAGG
 \ldots _ _ _ _ _ _ _ CUCGGAGCUUCAUGCAUUGCAGAAGUG-GAUGCUCAUUAGGGUAAGAUGCAUUCUGUGGGA

```
                                    ** ** *********** * **** **
```

c13793_g1 GGAAGAAGAGAUAUUCAAAUGGAUGGCCAACAGGUUCUCAGCAGCAUAACUCUCUGAUUUCUCCGCUUAUUUUGGUAGCC UAUGCUUGCCUGAGUGCCCCUCUGGUACGAGUGAGCCCCCAUCCCCUCCAUGCAAAAUCCCUCCCCGACUUAUCAUAUACC UUCAUCUUGUUAAUUGUUUCUGUGUCUCCUCCUCCAGCUCCAUAUCGAGACAAUCACACAGCCCACACCUGCGCCGACAC UGAGGCAAGCAGUGCCGCCCUCCAGCUACUCAGCAUCUCCUU

Figure S6. Putative miR828 and pri-miR828 sequences in Lollypop. A: Putative miR828 and its target site appeared in c22900_g1 (MYB12). B: Sequence alignment of c13793_g1 and pri-miR828 in Glycine max [GmPri-miR828a (NR_126648) and GmPri-miR828b (NR_126651)], Vitis vinifera [VvPri-miR828a (NR_127861) and VvPri-miR828b (LM611741)], and Malus domestica [MdPri-miR828b (NR_120979) and MdPri-miR828a (NR_120978)].

