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Automated generation of node-
splitting models for assessment of

inconsistency in network meta-analysis
Gert van Valkenhoef,a* Sofia Dias,b A. E. Adesb

and Nicky J. Weltonb
Network meta-analysis enables the simultaneous synthesis of a network of clinical trials comparing any
number of treatments. Potential inconsistencies between estimates of relative treatment effects are an
important concern, and several methods to detect inconsistency have been proposed. This paper is
concerned with the node-splitting approach, which is particularly attractive because of its straightforward
interpretation, contrasting estimates from both direct and indirect evidence. However, node-splitting
analyses are labour-intensive because each comparison of interest requires a separate model. It would
be advantageous if node-splitting models could be estimated automatically for all comparisons of interest.

We present an unambiguous decision rule to choose which comparisons to split, and prove that it selects
only comparisons in potentially inconsistent loops in the network, and that all potentially inconsistent loops
in the network are investigated. Moreover, the decision rule circumvents problemswith the parameterisation
of multi-arm trials, ensuring that model generation is trivial in all cases. Thus, our methods eliminate most of
the manual work involved in using the node-splitting approach, enabling the analyst to focus on interpreting
the results. © 2015 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.

Keywords: network meta-analysis; mixed treatment comparisons; meta-analysis; node splitting; model generation;
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1. Introduction

Network meta-analysis (Caldwell et al., 2005; Lumley, 2002; Lu and Ades, 2004) is a general framework for the synthesis
of evidence from clinical trials comparing any number of treatments. It includes pair-wise meta-analysis (Hedges and
Olkin, 1985) and indirect-comparison meta-analysis (Bucher et al., 1997; Song et al., 2003) as special cases (Jansen
et al., 2011; Dias et al., 2013a). The key assumption underlying anymeta-analysis is exchangeability of the included trials
(Lu and Ades, 2009). Violations of the exchangeability assumption can manifest as heterogeneity (within-comparison
variability) or inconsistency (between-comparison variability). Although the most important defense against such
violations is the a priori evaluation of trial design and population characteristics, the (statistical) evaluation of both
heterogeneity and inconsistency is also important to ensure valid results from a network meta-analysis.

A number of methods have been proposed to detect inconsistency (Lu and Ades, 2006; Dias et al., 2010; Lu
et al., 2011; Higgins et al., 2012; Dias et al., 2013b), and they can be subdivided into three classes according to their
approach to inconsistency. The ‘null’ approach, consisting only of the unrelated mean effects model, does not
attempt to model inconsistency at all; it simply estimates each pair-wise comparison separately. Inconsistency is
then assessed by comparing the model fit and between-study variance (heterogeneity) estimate of the pair-wise
comparisons against the results of the consistency model (Dias et al., 2013b). The ‘loop inconsistency’ approach
proposes that inconsistency can only occur in closed loops in the evidence network and is exemplified by the
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inconsistency factors (Lu and Ades, 2006) and node splitting (Dias et al., 2010) models. The potential for loop
inconsistency was first recognised in relation to indirect treatment comparisons (Bucher et al., 1997). These models
increase the power with which inconsistency can be detected by limiting the degrees of freedom in the model.
However, the presence of multi-arm trials introduces ambiguities in how thesemodels should be specified, especially
for the inconsistency factors model. The ‘design inconsistency’ approach addresses this concern by introducing the
concept of design inconsistency, in which ABC trials can be inconsistent with AB trials (Higgins et al., 2012). Essentially,
the design inconsistency approach allocates additional degrees of freedom to resolve the ambiguity of loop
inconsistency models. We view both the design-by-treatment-interaction model (Higgins et al., 2012) and the two-
stage linear inference model (Lu et al., 2011) as belonging to this approach. The design inconsistency models also
enable a global test for inconsistency across the network (Higgins et al., 2012), but the loop inconsistency models
do not. On the other hand, the interpretation of individual parameters of the design-by-treatment-interaction model
is not straightforward because, in anymultiparameter model, themeaning of each parameter depends onwhat other
parameters are in the model. Conceptually, design inconsistencies are also hard to grasp: why would three-arm trials
result in systematically different results from two-arm or four-arm trials? Why would the included treatments be a
better predictor of inconsistency than any other design or population characteristic?

Therefore, although the design inconsistency approach offers advantages, specifically unambiguous model
specification and the global test for inconsistency, there are also reasons to favour the loop inconsistency
approach. These are the clearer conception of inconsistency occurring in loops and the easier interpretation of
local inconsistencies. The node-splitting approach is especially attractive because inconsistency is evaluated
one comparison at a time by separating the direct evidence on that comparison from the network of indirect
evidence. The discrepancy between the estimates of relative treatment effects from these two sets of trials
indicates the level of (in)consistency. However, node-splitting analyses can be labour-intensive, because each
comparison of interest requires a separate model. Moreover, the analyst must decide which comparisons should
be investigated, which is not trivial in the presence of multi-arm trials. Finally, there may be several possible node-
splitting models for one comparison when it has been included in multi-arm trials. In this paper, we present a
decision rule to determine which comparisons to split that also ensures that each of the alternative node-splitting
models is valid. We build upon previous work on automated model generation for network meta-analysis (van
Valkenhoef et al., 2012a) to automatically generate the node-splitting models.

Automation is not a substitute for proper understanding of the implemented statistical methods and their
limitations. Rather, it reduces the effort that well-versed users of the methods must expend, enabling them to
focus on other issues. In addition, the statistical analysis of inconsistency is not a substitute for a thoughtful
selection of trials prior to applying evidence synthesis. It is also unwise to investigate inconsistency alone while
ignoring heterogeneity, as the two are closely related, and in one model, the heterogeneity parameter may absorb
some of the variance that another model would classify as inconsistency. Finally, when significant inconsistency or
excess heterogeneity is detected, the analyst faces the difficult question of how to address it. A careful analysis of
the included trials and (local) discrepancies between their effect estimates is required to identify potential
confounding factors. If a satisfactory explanation is found, the synthesis may be repaired, either by excluding
the offending subset of trials or by correcting for the confounder through a meta-regression analysis. Unexplained
inconsistency or heterogeneity may mean that the meta-analysis must be abandoned altogether, or at the very
least must be interpreted with extreme caution.
8
1

2. Background

In this paper, we consider network meta-analysis in a Bayesian framework (Dias et al., 2013a) and limit the discussion
to homogeneous-variance random-effects models (Lu and Ades, 2004). First, we briefly review the consistency
model, which is a simple extension of the Bayesian formulation of pair-wise meta-analysis. Then, we introduce
node-splittingmodels and, finally, review previous work on automatedmodel generation for network meta-analysis.

2.1. Consistency models

A network of evidence consists of a set of studies S numbered 1,…, n, where each study Si has a number of arms
that evaluate a set of treatments T(Si), where we assume that each arm evaluates a unique treatment (thus we may
identify an arm by its treatment). Moreover, we assume that the studies form a connected network, that is, that
there is a path between any two treatments included in the network.

Because the specific type of data and likelihood function are not important for the discussion that follows, we
simply assume that for each treatment x2 T(Si), there is a parameter θi,x that expresses the effect of treatment x in
study Si on a linear additive scale. Thus, there is a likelihood of the form:

datai ∼ f i θi;…ð Þ;
where θi is the vector of treatment effects θi,x. Then, for each study, we choose a reference treatment b(i) and
express the treatment effects as:
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 80–93
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θi;b ið Þ ¼ μi

θi;x ¼ μi þ δi;b ið Þ;x x 6¼ b ið Þ
Here, μi is the study-specific effect of the reference treatment b(i) and δi,b(i),x is the random effect of x when

compared with b(i) in study Si. Now

δi;b ið Þ;x ∼N db ið Þ;x ; σ2b ið Þ;x
� �

;

where db(i),x is the relative effect of x compared with b(i), the quantity of interest, and σ2b ið Þ;x is the random-effects
variance, a measure of the heterogeneity between trials. In a homogeneous-variance model, these variances are
identical, σ2w;x ¼ σ2y;z ¼ σ2 , for all comparisons in the treatment network (w, x, y, z are treatments, and w 6¼ x,
y 6¼ z). In such a model, the covariances between comparisons in multiarm trials work out to σ2/2 (Higgins and
Whitehead, 1996):
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To complete the model, the exchangeability assumption renders the comparisons consistent (Lu and Ades,
2009): if we compare x and y indirectly through z, the result will be consistent with the direct comparison,

dx;y ¼ dz;y � dz;x : (2)

The right-hand-side parameters are the basic parameters, for which we estimate probability distributions.
Although a network containing m treatments can have up to m(m� 1)/2 comparisons, it will have only m�1 basic
parameters. Any other relative effect can be calculated from the consistency relations. Hence dx,y, a functional
parameter, is completely defined in terms of the basic parameters on the right-hand side. Although the basic
parameters are usually expressed relative to a common reference treatment (e.g. z in the aforementioned
example), that is not a requirement (van Valkenhoef et al., 2012a).

2.2. Node-splitting models

A node-splitting analysis (Dias et al., 2010) splits one of the treatment comparisons, say dx,y, into a parameter for

direct evidence ddirx;y and a parameter for indirect evidence dindx;y , in order to assess whether they are in

agreement (i.e. the hypothesis is that ddirx;y ¼ dindx;y ). The term node-splitting may be confusing for some, because

the treatment network represents a comparison as an edge rather than a node (or vertex). However, in the
Bayesian hierarchical model, each parameter is represented by a node in a directed acyclic graph. When
one of these parameters is split into two to evaluate conflict, the term node-splitting is used. A node-splitting
analysis is thus performed separately for each of the comparisons in the treatment network on which both
direct and indirect evidence are available, to assess evidence consistency.

Node-splitting models are very similar to consistency models, except that the direct evidence for dx,y is used

alone to estimate ddirx;y , and a network meta-analysis of the remaining evidence is used to estimate dindx;y . The

heterogeneity parameter σ2 is shared between direct and indirect evidence to enable estimation even when
the direct evidence consists of few trials. However, node-splitting models for various comparisons and the
consistency model will result in different estimates for σ2, and comparing these estimates may also shed some
light on potential inconsistencies (Dias et al., 2010). A two-arm trial comparing x and y could thus be
parameterised relative to the reference treatment x as:

δi;x;y ∼N ddirx;y ; σ
2

� �
:

A four-arm trial of w, x, y and z, with x as the reference treatment, would be parameterised as follows:
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which generalises in a straightforward manner to any multi-arm trials. Importantly, we do not want ddirx;y to
interact with any of the other d*,*, and thus, δi,x,y is given a distribution independent from the other relative
effects in the study. If dx,y has been investigated in multi-arm trials, the node-split model can be parameterised
in multiple ways. In the aforementioned parameterisation of the wxyz trial, x has been chosen as the reference
treatment, thus leaving the y arm of this trial out of the network of indirect evidence. We could alternatively
have chosen y as the reference treatment, giving another (non-equivalent) node-splitting model, where the x
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 80–93
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arm is omitted from the indirect evidence. Figure 1 illustrates this for a three-arm trial xyz: because there is no
other evidence on the yz comparison, choosing x as the reference treatment for the multi-arm trial results in a
model in which there is no indirect estimate for yz (Figure 1(b)). This can be rectified by choosing y as the
reference treatment instead (Figure 1(c)). Even if the model results in an indirect estimate with either choice
of reference treatment, the choice of reference treatment may affect the results. These issues are discussed
further in Section 3.3.

Only those comparisons where an indirect estimate can be made should be split, so if a comparison is not part
of any loop in the evidence graph, it should not be considered. Multi-arm trials complicate this situation
somewhat, because evidence within a multi-arm trial is consistent by definition. Thus, if we consider a situation
where the evidence structure consists of only multi-arm trials including x, y and z, then even though the
comparison dx,y is part of a loop, it cannot be inconsistent, and hence, no comparisons should be split. In complex
networks that contain both two-arm and multi-arm trials, it may not be obvious whether there is potential
inconsistency.
2.3. Note on relative-effect data

In the earlier discussion, we assumed that the study data are available as absolute effects for each arm. However,
data are often reported as contrasts, such as odds ratios or mean differences. Then, if the scale on which the
relative effects were reported is compatible with the model, the likelihood becomes:

datai ∼N δ′i ;Σ
� �

:

where δ′i is the vector of contrasts reported for study i, typically expressed against a specific chosen reference
treatment, which may differ from the desired reference treatment. The variance–covariance matrix Σ is fully
determined by the marginal variances of each contrast and the variance of the absolute effect in the reference
arm (Franchini et al., 2012). If δi is the vector of relative effects against the desired reference treatment, then there
is a matrix A such that δi’ = Aδi. The likelihood then becomes:

datai ∼N Aδi;Σð Þ:

2.4. Automated model generation

Automated model generation for network meta-analysis consists of generating the model structure (choosing the
basic parameters and study reference treatments) and choosing appropriate priors and starting values (van
Valkenhoef et al., 2012a). It was previously shown that for consistency models, the choice of basic parameters
and study reference treatments is arbitrary, so long as the basic parameters form a spanning tree of the evidence
network (van Valkenhoef et al., 2012a), but for inconsistency models that does not hold (Lu and Ades, 2006; van
Valkenhoef et al., 2012b). A spanning tree is a sub-network that connects all vertices of the original network, but
contains no loops. To the best of our knowledge, no work has been published on model generation for node-
splitting models. General strategies for choosing vague priors and for generating starting values for the Markov
chains are given in van Valkenhoef et al. (2012a).

The choice of prior for the heterogeneity parameter can have a large impact on its estimation, especially when
few studies are available (Lambert et al., 2005). Because heterogeneity and inconsistency are closely linked, this
choice will also affect the estimated degree of inconsistency. A similar phenomenon occurs in the frequentist
framework, where the choice of estimators was shown to affect the detection of inconsistency (Veroniki et al.,
2013). A sensitivity analysis may be necessary in some cases. An alternative or complementary approach is the
use of prior data rather than heuristics or expert judgement to define the priors. A recent review of meta-analyses
published in the Cochrane library investigated the random-effects variance commonly encountered in practice
and stratified by outcome type, intervention type and medical specialty (Turner et al., 2012). The predictive
distributions derived in that paper can be used as informative priors for the variance parameter σ2 (Turner
et al., 2012). A similar study provides informative priors for the variance in meta-analyses on the standardised
mean-difference scale (Rhodes et al., 2015) and gives some guidance on how they may be applied on the
Figure 1. Evidence structure that requires a specific choice of reference treatments if we split dx,y. In (a), the evidence network is shown with lines
to represent two-arm trials and triangles to represent three-arm trials. In (b) and (c), two possible parameterisations of the indirect evidence when
the xy comparison is split are shown as solid lines: in (b), x is the reference treatment for the multi-arm trial, and in (c), y is. The direct evidence is

shown as dotted lines.

© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 80–93
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mean-difference scale as well. In principle, the same approach applies to other scales, and future research may
produce the necessary data and methods.
3. Model generation

In a node-splitting analysis of inconsistency, the first problem is deciding which comparisons can and should be
assessed using a node-splitting model. Then, given a comparison to be split, the usual model-generation
problems have to be solved. Priors and starting values for node-splitting models can be chosen in the way
described for consistency models (van Valkenhoef et al., 2012a), but generating the model structure may have
some problems. If the comparison being split has only been assessed in two-arm trials, the network of evidence

for dindx;y can be analysed using a standard consistency model, and because the xy comparison must occur in a loop,

the network is connected. Thus, as for consistency models, the choice of basic parameters and study reference
treatments is arbitrary (van Valkenhoef et al., 2012a). However, in the presence of multi-arm trials, more than just
the comparison of interest may be removed from the network. As an example, the evidence network in Figure 1(a)

has trials xy, xz and xyz. If we split dx,y and choose x as the reference treatment for the xyz trial, dindx;y cannot be

estimated (Figure 1(b)). This happens because the estimation of dindx;y requires an estimate of dy,z, but the xyz trial
has been parameterised using xy and xz, so there is no remaining evidence on yz. If we choose y as the reference
treatment, the problem disappears (Figure 1(c)). This problem was pointed out earlier for loop inconsistency
models (Lu and Ades, 2006). Our strategy carefully chooses the comparisons to split so that such problems do
not occur and that the choice of basic parameters and study reference treatments is again arbitrary.

3.1. Defining potential inconsistency

To arrive at a rule on whether to split specific comparisons, we require a definition of when a loop in the evidence
network is (potentially) inconsistent. Because there is no clear-cut distinction between inconsistency and
heterogeneity (Higgins et al., 2012; Jansen and Naci, 2013), finding the right definitions is difficult. For example,
in a network where three treatments (x, y, z) have been investigated in a three-arm trial xyz, but only two out
of three comparisons have been investigated in two-arm trials (Figure 1(a)), it is unclear whether loop
inconsistency could occur. Clearly, the two-arm trials on xy and xz could disagree with the three-arm trial; but if
they do, this would manifest not only as a loop inconsistency, but also as heterogeneity on xy and xz. On the other
hand, if the x arm had been omitted from the xyz trial, loop inconsistency could clearly be present. Our position is
that investigating inconsistency of this loop could yield additional insight beyond looking at heterogeneity alone
and thus that this should be carried out. The network in Figure 2(a) is similar, in that we could view the differences
between the four-arm trial wxyz and the two-arm trials wz and xy as heterogeneity on those comparisons, or as
loop inconsistency on the wxyzw loop or the wyxzw loop. However, unlike in the previous example, if we remove
any of the arms of the four-arm trial, no potentially inconsistent loops remain. Therefore, we consider any
discrepancies between the two-arm trials and the four-arm trial in this network to be heterogeneity. To reiterate,
because heterogeneity and inconsistency cannot always be distinguished, many of these distinctions are
somewhat arbitrary and could have been made differently. For example, in the design-by-treatment-interaction
model, differences between two-arm and three-arm trials are considered to be ‘design inconsistencies’ (Higgins
et al., 2012). Our definitions focus on loop inconsistency alone, as the node-splitting model does not evaluate
design inconsistency.

To determine whether a given loop is potentially inconsistent, we use the definition of Lu and Ades (2006):
there must be at least three independent sources of evidence supporting the (three or more) comparisons in
Figure 2. These evidence structures illustrate networks in which defining potential inconsistency is not straightforward. Two-arm trials are shown
as lines that stop short of vertices, three-arm trials as triangles and four-arm trials as tetrahedrons. (a) A network with one four-arm and two two-
arm trials, where it is unclear whether loop inconsistency can occur. (b) A more complex network with one four-arm, two three-arm, and two two-

arm trials where the dependencies between potential loop inconsistencies are difficult to work out.

© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 80–93
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the loop. We define trials (i.e. sources of evidence) as independent if their treatment sets, T(Si), differ on
treatments in the loop under consideration. For example, when judging whether the loop xyzx can be
inconsistent, wxy and xy trials are considered the same because w does not occur in the loop. This is so because
different estimates from studies that include the same set of treatments are more appropriately viewed as
heterogeneity (Jansen and Naci, 2013). We adopt a stronger condition for longer loops: loops where two or
more comparisons are included in exactly the same set of multi-arm trials are not considered potentially
inconsistent, because inconsistency occurring in such a loop can more parsimoniously be viewed as
inconsistency in simpler loops, or as heterogeneity. By this definition, the network in Figure 1(a) contains a
potentially inconsistent loop xyzx, because the comparison xy is supported by the xy and xyz studies, the xz
comparison by the xz and xyz studies and the yz by the xyz study, and hence, no two comparisons are
supported by exactly the same set of studies. Conversely, the network in Figure 2(a) does not contain a
potentially inconsistent loop, because no matter how we construct the loop, at least two comparisons will be
supported only by the four-arm trial.

Our definition is in part motivated by the difficulties encountered by earlier work on loop inconsistency models.
For example, in Figure 2(b), the wxyzw loop could be considered potentially inconsistent as it contains three
independent sources of evidence, but it takes a longer path wxy through the three-arm trial, which could be
shortened to just wy, reducing the loop to wyzw. Doing so, however, would involve the two-arm trial wy, which
was not part of the original wxyzw loop. Not doing so, on the other hand, and considering the loops wxyzw
and wyzw to be distinct inconsistencies, has the problem that these inconsistencies can only differ by
heterogeneity on wy (van Valkenhoef et al., 2012b). Thus, although these (potential) inconsistencies are not strictly
equal, treating them as different does not appear to be useful. It is difficult (and perhaps impossible) to precisely
characterise these dependencies (van Valkenhoef et al., 2012b) because of the difficulty of distinguishing
inconsistency from heterogeneity in the presence of multi-arm trials. Fortunately, because node-splitting models
are relatively simple, we do not need to work out these dependencies explicitly. The stronger rule proposed earlier
handles this gracefully: the loop wxyzw would not be considered potentially inconsistent because wx and xy are
both contained in exactly the same set of studies, but the wyzw loop would be. Our definition of potential
inconsistency of a loop can thus be summarised as the following two requirements:

• Among the comparisons in the loop, no two comparisons share the same set of supporting studies
• The loop has at least three comparisons, and no comparison or treatment occurs more than once

The formal graph-theoretic definition is given in Appendix A.
3.2. Choosing the comparisons to split

We give a simple decision rule to determine whether to split a specific comparison, based on properties of the
evidence structure that are easily verified:

For a given set of studies S, split dx,y if and only if the modified network consisting of the studies S′ that do not
include both x and y contains a path between x and y.

Intuitively, S′ is the set of studies that could generate inconsistency on the xy comparison. An advantage of this
approach is that we do not need to assess the global inconsistency degrees of freedom, which currently have
no completely satisfactory definition and no efficient algorithm (Lu and Ades, 2006; van Valkenhoef et al.,
2012b). Figure 3 shows a number of examples to demonstrate how the rule works. Figure 3(a) shows a structure
in which no inconsistency can occur: disagreement between the two-arm and three-arm trials would be modelled
as heterogeneity on xy. When we evaluate the rule for the xy comparison, the modified network is empty (contains
no studies), and thus, we do not split xy. For the xz comparison, the modified network contains only the xy studies,
so x is not connected to z, and we do not split xz. The yz comparison is similar to the xy comparison. By contrast,
Figure 3(b) has three independent sources of evidence and thus is potentially inconsistent. Here, the rule selects
only the yz comparison to split, as the reduced network consists of xy and xz studies, and thus, y and z are
connected in the modified network. In theory, we could split all three comparisons, but yz is the only comparison
in which the choice between including either of the other comparisons from the three-arm trial in the indirect
Figure 3. Some evidence structures and the nodes that will be split according to the proposed decision rule. Comparisons that will be split are
shown as solid lines, and those that will not as dashed lines. Three-arm trials are shown as triangles. In (a) no comparisons will be split, in (b) only

the yz comparison will be split, and in (c) all three comparisons will be split.

© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 80–93
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evidence network is arbitrary (also see Figure 1). In Figure 3(c), all comparisons have pair-wise evidence, and thus,
all comparisons are selected to be split. From the loop inconsistency perspective, splitting all three comparisons is
redundant, yet using a node-splitting model, each of the three will have different results. This is due to the way
multi-arm trials are handled, and, for each comparison, a different choice of reference treatment for the multi-
arm trial may also result in different results. However, because heterogeneity and inconsistency are so closely
related, if inconsistency is less present in one of these models, heterogeneity would be greater. Therefore, it is
important to consider both together.

In Appendix A, we prove that the decision rule corresponds to the definitions of potential inconsistency set out
in Section 3.1. In particular, we show that in any potentially inconsistent loop, we split at least one comparison,
and conversely, that any comparison selected to be split is part of a potentially inconsistent loop.
3.3. Implications for model generation

In Section 2.4, we remarked that when the network consists only of two-arm trials, the model generation problem
for a node-splitting model can be decomposed into generating a model for a pair-wise meta-analysis of the direct
evidence and generating a consistency model for the indirect evidence. However, in general, this does not hold
for networks with multi-arm trials (Figure 1). Fortunately, we show in this section that the model generation does
decompose in this way if the comparisons to be split are chosen according to the decision rule proposed in the
previous section.

First, if we split xy, the two usual parameterisations of a multi-arm trial Si can be summarised as follows:

(1) Include the arms T(Si)� {x} in the model for dindx;y .

(2) Include the arms T(Si)� {y} in the model for dindx;y .

A third parameterisation is also possible:

(3) Include the arms T(Si)� {x, y} in the model for dindx;y .

However, removing an additional arm from multi-arm trials potentially decreases the precision of the indirect

estimate dindx;y . If we decide to include either the x arm or the y arm of multi-arm trials, we can either consistently

include the same arm for all trials – pure option (1) or (2), or make this decision individually for each trial – a
mixture of options (1) and (2). In the pure case, there are two alternative models with potentially different results,
whereas in the mixture case, there are 2k alternative models, where k is the number of multi-arm trials that include
both x and y.

This is illustrated for a simple network in Figure 4. Usually, only the pure options are considered (Dias et al., 2010),
but one could argue that choosing a different included treatment in different trials can result in a more balanced
evidence network, and might thus be preferred. In any case, exploring all 2k+ 1 alternative models is generally
infeasible, which is probably why it has not received any attention. Moreover, given the computationally
intensive nature of model estimation, even estimating the two alternative models that correspond to options
(1) and (2) is undesirable, and in practice, one of them is chosen arbitrarily.

Now we show that model generation is trivial if the comparisons to be split are chosen according to the
decision rule and if we parameterise the node-splitting model according to option (3), and by extension that
it is also trivial if we use option (1) or (2) instead. First, if the reduced network defined by the decision rule
contains components that are not connected to the comparison xy under consideration, then we can safely
remove those components from the network because they will not contribute to inconsistency on xy. However,
it may be desirable to include disconnected components in the model to estimate the heterogeneity parameter,
especially if estimates of this parameter are being compared between models. In addition, the decision rule
guarantees that x and y are connected even in the absence of any trials that include the xy comparison. Given this,
the network of indirect evidence can simply be analysed using a consistency model that connects x and y indirectly,
so its parameterisation is arbitrary, and existing algorithms can be applied (van Valkenhoef et al., 2012a). Any
disconnected components can be parameterised similarly and estimated in a single model in which the
heterogeneity parameter is shared. Moreover, the direct evidence can be synthesised in a pair-wise model, which
is also trivial to parameterise.
Figure 4. When splitting the yz comparison of the network shown in (a), the indirect evidence can be parameterised in 2
3
+ 1 = 9 ways owing to

the three three-arm trials that include yz. Three such ways are shown here: (b) consistently include the xz comparison of the three-arm trials; (c)
include xy for some trials and xz for others; (d) include neither the xy nor the xz comparison.
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This discussion extends to options (1) and (2) because x and y are already connected in the network of indirect
evidence, so adding one of these arms back into the relevant multi-arm trials will again result in a connected
network, which can be parameterised as a consistency model with the amendment that the study reference effect
parameter μi will be shared between the two sub-models. The model corresponding to option (3) has no such
shared reference treatment, as each multi-arm study that includes the comparison being split is subdivided into
two virtual studies: one including the two treatments of interest and another containing all remaining arms. If the
second virtual study contains only a single arm, it can be eliminated altogether because it provides no information
on relative effects.

Thus, however we decide to parameterise the node-splitting model, generating the model is trivial if the
comparison being split was chosen according to the decision rule proposed in the previous section. The
2k+ 1 alternative parameterisations correspond to 2k mixtures of options (1) and (2) and a single model
corresponding to option (3) described earlier. If a single model is to be estimated, one could argue that one
of the 2k mixtures of options (1) and (2) is preferred because these models make fuller use of the evidence,
or that option (3) should be preferred because it results in a unique model that more closely mimics a
consistency model.
4. Implementation and example

The methods have been implemented in version 0.6-1 of the gemtc package (http://cran.r-project.org/
package=gemtc) for the R statistical software (http://www.r-project.org). Source code is available on GitHub:
https://github.com/gertvv/gemtc/tree/0.6-1. gemtc currently generates node-splitting models according to
option (3): for multi-arm trials that include the comparison being split, it includes neither treatment of that
comparison in the network of indirect evidence. If the evidence network becomes disconnected as a result,
the disconnected components are not discarded, but are included in the model to aid the estimation of
the heterogeneity parameter. The R package can generate and estimate all relevant node-splitting models
according to the decision rule proposed in this paper and summarise the results textually or graphically.
Estimation uses standard Markov chain Monte Carlo software, and the package requires one of JAGS (Plummer,
2003), OpenBUGS (Lunn et al., 2009), or WinBUGS (Lunn et al., 2000), to be installed, as well as the
corresponding R package. Because it is more actively maintained and integrates more nicely with R, we
recommend JAGS and the rjags package.

In this section, we illustrate the methods and implementation using a worked example based on a real-life
evidence network. The dataset consists of seven trials comparing placebo against four dopamine agonists
(pramipexole, ropinirole, bromocriptine and cabergoline) as adjunct therapy for Parkinson’s disease (Franchini
et al., 2012). Parkinsons patients often experience fluctuations in their response to treatment: ‘on-time’ periods
when the drugs appear to be effective alternate with ‘off-time’ periods when symptoms are not under control.
We compare the drugs’ ability to reduce the amount of ‘off-time’ relative to the amount of ‘off-time’ on placebo
(both in conjunction with the background therapy). The data are summarised in Table 1, and the treatment
network is shown in Figure 5. Naturally, automation is most useful for large and complex networks, but a small
network makes the example easier to follow.
Table 1. Mean off-time reduction (hours) data from seven trials studying treatments
for Parkinson’s disease (Franchini et al., 2012).

Study Treatment Mean Standard deviation Sample size

1 A � 1.22 3.70 54
C � 1.53 4.28 95

2 A � 0.70 3.70 172
B � 2.40 3.40 173

3 A � 0.30 4.40 76
B � 2.60 4.30 71
D � 1.20 4.30 81

4 C � 0.24 3.00 128
D � 0.59 3.00 72

5 C � 0.73 3.00 80
D � 0.18 3.00 46

6 D � 2.20 2.31 137
E � 2.50 2.18 131

7 D � 1.80 2.48 154
E � 2.10 2.99 143

A=placebo; B = pramipexole; C = ropinirole; D = bromocriptine; E = cabergoline.
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Figure 5. Evidence network for the Parkinson’s disease dataset. A = placebo; B = pramipexole; C = ropinirole; D = bromocriptine; E = cabergoline.
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The Parkinson dataset is included with the gemtc package, so we can load it as follows:

>library(gemtc)
Loadingrequiredpackage: coda
Loadingrequiredpackage: lattice
>file<�system.file("extdata/parkinson.gemtc",package="gemtc")
>network<�read.mtc.network(file)
>network
MTCdataset:
Arm-leveldata:
studytreatment meanstd.devsampleSize

1 1 A�1.22 3.70 54
2 1 C�1.53 4.28 95
3 2 A�0.70 3.70 172
…

Here, lines that start with a ‘>’ signify commands entered into R, and lines that do not are output of
those commands. The output has been truncated (indicated by ‘…’) for inclusion in the paper, and R will display
the full dataset given in Table 1. As aforementioned, we use system.file to find an XML file included with
the gemtc package (produced using the discontinued Java-based GeMTC graphical user interface) and load it
using read.mtc.network. For new datasets, it is more convenient to use mtc.network to construct
networks from R data frames structured like the previous output. In addition, mtc.data.studyrow can convert
the one-study-per-row format commonly used in BUGS code to the format used by gemtc. The package has a
wide range of features for working with network meta-analysis datasets and models, such as evidence network
plots, convergence assessment diagnostics and plots and output summaries and visualisations. In this section,
we only present the specific functionality for node-splitting, and we refer the interested reader to the manual
of the gemtc package for further information.

Using the mtc.nodesplit.comparisons command, we can see which comparisons the decision rule
elects to split for this network (Figure 5):

>mtc.nodesplit.comparisons(network)
t1 t2

1 A C
2 A D
3 B D
4 C D

The decision rule selects the AC, AD, BD and CD comparisons, but not AB or DE. AC and CD are selected because
they only occur in two-arm trials and are clearly still connected if those trials are removed from the network.
Conversely, the DE comparison clearly has no indirect evidence.

The three comparisons involving the three-arm trial are more interesting. The AD comparison is selected
because, if we remove the three-arm trial from the network, AD is still connected through the AC and CD trials.
Similarly, the BD comparison remains connected through BA, AC and CD trials. Finally, the AB comparison is not
split because, if the ABD and AB trials are removed from the network, there is no longer a connection between
A and B. It could be argued that splitting only one of the AC, BD or CD comparisons might be sufficient to
investigate inconsistency in the ACDBA loop. However, as we pointed out earlier, such dependencies are difficult
to work out for more complex networks, and we accept potential redundant testing such as this to be able to test
for inconsistency wherever in the network it may reasonably exist.

To automatically run node-splitting models for all of the comparisons selected by the decision rule, we can
use the mtc.nodesplit function. This function accepts a number of arguments to modify which
comparisons it will split as well as the priors, starting values and number of iterations, for which we again refer
to the gemtc manual.
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>result<�mtc.nodesplit(network)
…
>summary(result)
Node-splittinganalysisofinconsistency
========================================

comparison p.value CrI
1 d.A.C 0.725150
2 ->direct �0.30(�2.1,1.6)
3 ->indirect �0.72(�2.9,1.2)
4 ->network �0.50(�1.8,0.71)
5 d.A.D 0.661300
…
>plot(summary(result))

The output of the plot command in Figure 6 visually conveys the information in the summary (truncated in the
output). In this case, it would appear that the results from direct and indirect evidence are in agreement with each
other and with the results of the consistency model. This is also reflected by the inconsistency P-values, which are
far from concerning. Because of the small number of included trials, and consequently low power to detect
differences, this is not too surprising.

It is also possible to more closely inspect the results of individual models. For example, to inspect heterogeneity
statistics:

>names(result)
[1]"d.A.C" "d.A.D" "d.B.D" "d.C.D" "consistency"
>summary(result$d.A.C)
…
2.Quantilesforeachvariable:

2.5% 25% 50% 75% 97.5%
…
sd.d 0.01475 0.1548 0.34268 0.65833 1.7328
…

The summary is typically quite long, giving both moments and quantiles for all parameters in the model, and
the output is heavily truncated to highlight the between-studies standard deviation. The following code computes
the median between-studies standard deviation for all five models:

>medianHeterogeneity<�function(x){
+ median(as.matrix(x$samples[,’sd.d’]))
+}
>sapply(result,medianHeterogeneity)

d.A.C d.A.D d.B.D d.C.D consistency
0.3426849 0.4370690 0.4661001 0.3490753 0.2611246
Figure 6. Summary of a node-splitting analysis consisting of four separate node-splitting models and a consistency model. A = placebo;
B = pramipexole; C = ropinirole; D = bromocriptine; E = cabergoline.
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In this case, the estimated heterogeneity in each of the node-splitting models is larger than in the consistency
model because the node-splitting model has more degrees of freedom, resulting in reduced power to estimate
the heterogeneity parameter. If it were smaller in the node-splitting models, this would indicate that splitting that
comparison explained some of the heterogeneity observed in the consistency model and thus that there is reason
to suspect inconsistency. It may also be useful to inspect the densities (Dias et al., 2010), which can be achieved as
follows:

>nsdensity<�function(x,t1,t2,xlim=c(�8,8)){
+ param<�paste("d",t1,t2,sep=".")
+ par(mfrow=c(3,1))
+ cons<�relative.effect(x[[’consistency’]],t1=t1,t2=t2)
+ densplot(cons[[’samples’]][,param,drop=FALSE],xlim=xlim)
+ ns<�x[[param]][[’samples’]][,c(’d.direct’,’d.indirect’)]
+ densplot(ns,xlim=xlim)
+}
>nsdensity(result,’C’,’D’)

Here, we first define a function that, given the results of a node-splitting analysis, plots the densities relevant to
a specific comparison in three rows using the densplot function from the coda package. Then we invoke it to
produce a plot of the densities for the CD comparison, shown in Figure 7. Again, direct and indirect evidence
appear to be in broad agreement, and the consistency-model result is more precise than either the direct or
the indirect evidence.

As for any analysis using Markov chain Monte Carlo techniques, it is important to assess convergence. The
package supports a number of ways to do this for individual models, mostly provided by the coda package;
for details, we refer to the documentation of gemtc and coda. Convergence was sufficient for each of the five
models estimated in this analysis.
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Figure 7. Comparison of posterior densities estimated for the CD comparison from the consistency model (top), and direct (middle) and indirect
(bottom) evidence from the node-splitting model. N is the sample size, and ‘Bandwidth’ is a parameter of the kernel density estimation that is used
to produce smooth density plots. The coda package automatically sets the bandwidth as a function of the standard deviation, the interquartile

range and the size of the sample.
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5. Conclusion

In this paper, we provide methods to automatically generate the models required for the assessment of
inconsistency using node-splitting models. Our work advances the state of the art in two ways. First, we provide
an unambiguous decision rule for choosing the comparisons to be split and prove that it will select all
comparisons of interest and only comparisons of interest. The decision rule improves upon the rule originally
proposed (Dias et al., 2010) by being fully unambiguous, less computationally expensive and proven correct under
a specific definition of potential inconsistency. Second, although each comparison to be split may allow several
alternative parameterisations, we prove that for each comparison selected by the decision rule, generating the
model is trivial. This is not true for every comparison that occurs in a potentially inconsistent loop; it required
careful design of the decision rule.

Our methods have a number of limitations. First, although automation reduces the impact of some of the
drawbacks of the node-splitting approach, it does not eliminate them. Ambiguities still exist in which nodes to
split and how to parameterise the model, and these may affect the results to some extent. A large number of
models must still be run, and this process may be time-consuming for larger networks. Second, especially in small
networks, the decision rule tends to split more comparisons than there are potentially inconsistent loops. Future
work could investigate methods for reducing such redundancies. However, it seems unlikely that redundancies
can be eliminated completely, so such approaches are likely to also be heuristic.

Finally, the assessment of heterogeneity and inconsistency remains a challenge, especially because in many
circumstances that involve multi-arm trials, there is no clear distinction between the two. One model may detect
an inconsistency, whereas another model detects high heterogeneity but no inconsistency. However, this
situation is not problematic because the response in both cases should be the same: to investigate the cause
of the observed inconsistency or heterogeneity. This holds whether it is a three-arm trial that differs from a set
of two-arm trials, a two-arm trial that differs from other two-arm trials, or any other case. Hopefully, such an
investigation will yield insight into the cause of heterogeneity or inconsistency, such as differences in population,
study sponsorship or intervention definitions.
9
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Appendix A: Proof of correctness of the decision rule
In the proofs, we use some standard notions from graph and set theory; in particular, we refer to loops as cycles
and to comparisons as edges. We follow van Valkenhoef et al. (2012a) in defining the network (graph) of treatment
comparisons, which we take to be undirected.

Definition 1 (Potential inconsistency)
Let each edge (i.e. comparison) be the set of the vertices (i.e. treatments) it connects: e= {x, y}. Denote the set of
studies that include an edge e as r(e) = {Si2 S : e� T(Si)}. Let a cycle (i.e. loop) then be the ordered list C= (e1,…, en)
of its edges ei, i2 {1,…, n}. A cycle C= (e1,…, en) is potentially inconsistent if and only if n> 2 and each of its edges
has a unique set of supporting studies: 8 i, j : r(ei) = r(ej)⇒ i= j.

Lemma 1
If a cycle is potentially inconsistent, at least one of its edges will be split.

Proof
Consider a potentially inconsistent cycle C= (e1,…, en). According to the decision rule, an edge ei= {x, y} will be
split if 8j 6¼ i : r eið Þ⊅ r ej

� �
, because only those edges that are included in some studies where ei is not will

survive the removal of the studies that include ei. We show by contradiction that such an edge must exist.
Assume that there is no edge ei such that8j 6¼ i : r eið Þ⊅ r ej

� �
. Then, for any edge ei, we can find another edge

ej such that r(ei)� r(ej). Further, r(ei) 6¼ r(ej), so r(ei)⊋ r(ej). By repeated application of this fact, we can construct a

permutation p(i) of the edges such that r(ep(1))⊋ r(ep(2))⊋…⊋ r(ep(n)). However, there must then also be an edge

ei such that r(ep(n))⊋ r(ei), which contradicts the strict order we just constructed. □

Lemma 2
If an edge is split, it occurs in at least one potentially inconsistent cycle.

Proof
If the edge e1 = {x, y} is split, then it is part of at least one cycle C= (e1,…, en), n> 2, where 8 i> 1 : r(e1) ⊅ r(ei),
and hence, 8 i> 1: r(e1) 6¼ r(ei). Suppose en= {w, x} and e2 = {y, z}, then r(e2) must contain at least some studies that
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. Res. Syn. Meth. 2016, 7 80–93
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do not include x and r(en) must contain some studies that do not include y. By definition, all studies in r(e2) include
y and all studies in r(en) include x. Thus, r(e2) 6¼ r(en), r(e1) 6¼ r(e2), and r(e1) 6¼ r(en), so there are at least three distinct
sets of supporting studies.

Now, if for any i, j> 1, i< j, we have r(ei) = r(ej), and ei= {t, u}, ej= {v,w}, t 6¼w, then we can create a shorter
cycle C′= (e1,…, ei� 1, {t,w}, ej + 1,…, en). C′ has length > 2 unless r(e2) = r(en), which we already showed is not
the case. Moreover, we have r({t,w})� r(ei) = r(ej), so r e1ð Þ⊅ r t;wf gð Þ.

The cycle C′ has the same properties as C, so we can apply this step repeatedly to obtain a series C, C′, C″,
… of cycles of successively smaller length. Finally, there must be a cycle C* = (e1,…, em), with m> 2, where
8 i, j : r(ei) = r(ej)⇒ ei= ej. □
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