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1. Description of the detailed model 

 
Our detailed mathematical model is built on the original model by Forger and Peskin 

2003, which was revised in Ko et al. 2010.  Please see these two manuscripts for a more 

detailed description of the model.  The variables of our detailed model are listed in 

Supplementary Tables 1 and 2.  Parameters used in the model, as well as any references 

used to provide estimates of parameters are listed in Supplementary Table 3.  A 

schematic of the model can be found in Figure 1.  

 

1) The newly included mechanisms to the previous models   

 
(1) Detailed modeling of additional feedback loops: The new model includes secondary 

feedback loops, which regulate the transcription of genes with a RORE in their promoters, 

including Bmals (Bmal1 and Bmal2) and Npas2. The RORE is repressed by binding of 

REV-ERBs (REV-ERBα and REV-ERBβ) (Liu et al, 2008; Preitner et al, 2002). Binding 

to the RORE is modeled with the same formalism used for E-box binding in the original 

model. While Bmals and Npas2 mRNA are produced proportional to the activity of 

RORE, Clock mRNA is assumed to be produced at a constant rate, matching 

experimental data (Ueda et al, 2005). After transcription, Bmals, Clock and Npas2 

mRNA are exported to the cytoplasm and then translated. BMALs can bind with CLOCK 

or NPAS2, which promote phosphorylation of the complex. The phosphorylated dimer 

can enter the nucleus, activate transcription of promoters with an E-box and is less stable 

than the unphosphorylated dimer (Kwon et al, 2006). 

 

(2) Updated mechanisms of BMALs-CLOCK/NPAS2 repression: Matching recent 

findings, we updated the mechanisms by which the repressors (PER/CRY) inhibit the 

activators (BMALs-CLOCK/NPAS2) (Chen et al, 2009; Dardente et al, 2007; Kondratov 

et al, 2006; Ye et al, 2011). CRY1, 2 bind with BMALs-CLOCK/NPAS2 and make the 

dimer transcriptionally inactive as in the original model. Furthermore, CRY1, 2 binding 

stabilize the dimer (Dardente et al, 2007; Kondratov et al, 2006; Ye et al, 2011). With 
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higher affinity, PER1, 2 also bind with BMALs-CLOCK/NPAS2 and interfere with the 

binding of the dimer with E-box (Chen et al, 2009; Ye et al, 2011). 

 

(3) Accounting for the heterogeneity of different genes with E-boxes: The Per1/2, Cry1/2, 

and Rev-erbs genes have E-boxes on their promoters and their transcription occurs 

proportional to the activity of the E-box. Experimental studies found that the behavior of 

E-boxes on these genes is different. For example, when the activators (BMAL1-CLOCK) 

are overexpressed, expression of Per1, 2/Cry1, 2 shows little change while that of Rev-

erbs significantly increases (Lee et al, 2011), which implies that the activators are 

saturated on the E-boxes of Per/Cry genes, but not Rev-erbs. Furthermore, the time 

profile of Cry2 in SCN is almost flat unlike the other mRNAs (Ueda et al, 2005). 

Therefore, we introduced the three different types of E-boxes for Per1/Per2/Cry1, Cry2 

and Rev-erbs.   

 

(4) Inclusion of the kinase GSK3β: The new model includes another important kinase 

GSK3β for post-translational modification of the circadian clock as well as CKIε/δ. 

GSK3β phosphorylates PER2 and promotes its binding with CRY and nucleus 

translocation (Akashi et al, 2002; Iitaka et al, 2005; Lee et al, 2001; Vielhaber et al, 

2000). GSK3β also phosphorylates the REV-ERBs and stabilizes them (Yin et al, 2006). 

Because GSK3β is expressed constitutively, we assume that its concentration is constant 

in our model (Iitaka et al, 2005). Although the GSK3β concentration is constant, its 

activity shows a circadian rhythm with a peak around ZT12 matching data from SCN 

(Iitaka et al, 2005). For this reason, we modeled the activity of GSK3β with a phase 

similar to Cry1 mRNA because the Cry1 mRNA time profile has a peak around ZT12. 

We allow CKIε/δ and GSK3β to enter the nucleus only when they bind with their 

substrates (Lee et al, 2001). 

  

(5) Precise description of the effect of light on the circadian clocks: We included a 

previously model of the effect of light on the circadian clocks (Kronauer et al, 1999), 

which quantified the human circadian pacemaker response to the light successfully. In 

this model, the light increase on the transcription rate of Per1-2 decreases as more light is 
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presented. This matches experiment data (Wilsbacher et al, 2002). In addition, we include 

a higher increase in Per2 transcription by light than the increase in Per1 transcription also 

matching experimental data (Challet et al, 2003). That is, the amplitude of per1 and per2 

gene expression are higher about 16% and 30%, respectively, under 12:12 LD cycle with 

100 lux than 12:12 DD cycle. Because light is known to increase the transcription rate of 

Per1/2 regardless of the E-box state (Okamura et al, 1999; Reppert & Weaver, 2002), we 

assumed that the light effect was independent of the E-box state as occurred in the 

original Forger and Peskin model.  

 

(6) Processes not explicitly modeled: First, we do not distinguish between BMAL1 and 

BMAL2, REV-ERBα and REV-ERBβ, CKIε and CKIδ, or CLOCK and NPAS2 because 

specific functional differences between these proteins or homologs have not been found. 

Second, we do not model the D-box, which is one of the clock-controlled elements (Ueda 

et al, 2005). Third, we removed the Rorc from the model because the existence of the 

Rorc did not change the model behavior due to its constant mRNA level (Liu et al, 2008). 

Fourth, we did not model the dimerization of the REV-ERBs. Finally, we did not model 

the phosphorylation of GSK3β on the CRY2 and BMAL1, which affects their 

degradation rate because the modest change of the amount of those proteins did not affect 

the model’s behavior (Harada et al, 2005; Sahar et al, 2010).  

 

2) Variables and Equations of the Detailed Model 

The monomer proteins considered in our model are PER1/2, CRY1/2, BMALs, 

CLOCK/NPAS2, REV-ERBs, CKI, and GSK3β. Although only 10 monomers are 

considered in the model, they can produce many complexes depending on the state of 

binding, phosphorylation and subcellular locations. To describe these all complexes, 208 

variables are needed (Supplementary Tables 1 and 2): 185 variables are for proteins, 12 

variables are for mRNAs, 8 variables are indicator of the promoter activity, and 2 

variables are for light effect and GSK3β activity. The model variables are listed in 

Supplementary Tables 1 and 2. To simply describe the approximately two hundreds 

complexes included in our model, which can result from bindings of PER1/2, CRY1/2, 

BMALs-CLOCK/NPAS2, and kinase, we use the following shorthand x[j][k][l][m][n] 
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(Ko et al, 2010) (Supplementary Table 2). The variable j, k, l and n represents the binding 

state of PER, CRY, kinase, and phosphorylated BMALs-CLOCK/NPAS2, respectively. 

The variable m represents the subcellular location. For example, x[4][0][0][0][0] 

represents phosphorylated PER2 by CKI in the cytoplasm.  x[3][1][1][1][1] represents the 

PER2-CRY1-CKI-BMALs-CLOCK/NPAS2P complex in the nucleus, where P indicates 

phosphorylation. Some of these variables do not exist in our model due to the restrictions 

of the reaction. For instance, x[0][1][1][0][0] does not exist, because CRY binding with 

CKI is not allowed if PER1 or PER2 are not bound in our model. In this case, the 

variable’s concentration is always zero. The reactions between these variables are 

described by ODE systems using explicit mass kinetics as in the original model (Forger 

& Peskin, 2003). The model equations are provided in the last section of the supporting 

information: Equations of the detailed model. 

 

3) Parameter estimation of the detailed model 

While the original model used 36 parameters, the new model has the 70 parameters due 

to the extensions and modifications of the model (Forger & Peskin, 2003).  Despite this 

large number of parameters (which is still less than other models: 132 in (Mirsky et al, 

2009) and 73 in (Relogio et al, 2011)), we still obtain better estimates of the parameters 

with newly published data and time courses. 

 

(1) We choose 14 parameters (degradation rate of mRNAs and proteins) matching 

published experimental data. These parameter values were allowed to vary up to 50% 

from the experimentally determined values to account for experimental error and cellular 

heterogeneity.  

(2) PER1’s phosphorylation rate is set lower than that of PER2 (Lee et al, 2001). Light 

induced-Per1 transcription is set lower than light induced-Per2 transcription (Challet et 

al, 2003). 
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(3) The dissociation constant between BMALs-CLOCK and CRY is set greater than that 

between BMALs-CLOCK and PER (Chen et al, 2009).  

(4) The ratio between cytoplasm and nucleus volume are limited to between 1 and 3.5 

(Miller et al, 1989).  

(5) The other parameters are also restricted into a biologically reasonable range (see 

Supplementary Table 3).  

  

Within these restrictions, a simulated annealing method (SA, a global stochastic 

parameter searcher) (Gonzalez et al, 2007) was used to estimate the parameters in two 

steps. First, we tried to find the parameters that provides a good fit with mRNA and 

protein time profiles measured in mouse suprachiasmatic nuclei (SCN) (Reppert & 

Weaver, 2001; Ueda et al, 2005) and relative abundance of clock proteins measured in 

mouse liver (Lee et al, 2001) and fibroblast (Lee et al, 2009; Lee et al, 2011) (Figures 

2A-C). From this estimation, multiple parameter sets were found. Among these parameter 

sets, we selected several parameter sets showing qualitative matching with various 

knockout mutation phenotypes of mice (Table 1). Then, we used these parameter sets as 

initial parameter sets for another round of SA to get the final parameter set, which should 

a good fit with knockout mutation phenotype as well as time profiles (Supplementary 

Table 3). Supplementary Table 3 also indicates the changes from the original model. The 

references providing restrictions on parameter values are also noted in the table.  

 

4) Validation of the detailed model with experimental data  
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(1) Time profile of mRNA and proteins: As previously mentioned, we fit the model 

simulations with time profiles of clock mRNA and proteins in SCN to estimate the 

unknown parameters. We followed the same experimental procedures used to measure 

time profiles. The model was entrained under 12hr-12hr Light/Dark cycle with 500lux 

light strength for 20 days. Then, the concentrations of mRNAs were measured during the 

following 48 hr in darkness and measured time courses were compared with experimental 

data (Ueda et al, 2005) (Figure 2A). In the same way, the simulated protein time profiles 

are also fit with the data (Reppert & Weaver, 2001) (Figure 2B).  

(2) Relative abundance of proteins: Relative abundance among core clock proteins were 

compared with liver (Lee et al, 2001) and fibroblast data (Lee et al, 2011) because SCN 

data has not yet been reported (Figure 2C).  

(3) Knockout mutation phenotypes: We also tested whether our model could predict the 

phenotype of mutations of clock genes (Table 1). Overall, the model simulation well 

matches with SCN or behavioral phenotype. Homozygous and heterozygous knockouts 

were simulated by reducing transcription rates by 100% and 50%, respectively. To 

simulate the Rev-erbα-/-, we also reduced the transcription rate of the Rev-Erbs by 50%, 

which represented both Rev-erbα and Rev-erbβ in our model. To model the Bmal1-/-, we 

reduced transcriptional rate of Bmals by 95%, which accounts for the low levels of 

Bmal2 when compared with Bmal1 (Ko et al, 2010). For the ClockΔ
19/+, the half of WT 

CLOCK proteins were mutated to be transcriptionally inactive, yet still competed with 

the remaining WT CLOCK proteins. 

 

5) Simulation of the detailed model  
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All the simulations were done with MATHEMATICA 8.0 (Wolfram Research). 

Simulation programs are available from the authors upon request. 

 

2. Description and nondimensionalization of the simple model 
 

The simple model is generated by modifying the well-studied Goodwin model to include 

an activator, which can be inactivated when bound in complex with the repressor. The 

mRNA (M) is transcribed proportional to the % of unbound free activator f (P, A, Kd), 

which indicates the activity of the promoter (Buchler & Cross, 2009; Buchler & Louis, 

2008). Then, as in the Goodwin model, mRNA is translated to cytoplasmic protein Pc. Pc 

enters the nucleus (denoted P). P then represses transcription by inhibiting activator A 

through binding with dissociation constant Kd. 

 

 

 

1) Single Negative Feedback Loop (SNF) Model 

 

The model has 8 parameters. We reduce the number of parameters by scaling and 

assuming degradation rates are the same to increase the chance of the oscillations.  

 

In scaling all variables, we have  

 

! 

M = ˆ M M*, P = ˆ P P*, Pc = ˆ P cPc*, A = ˆ A A*, Kd = ˆ K dKd *, t = ˆ t t *  

 

and the model equations are 

dM
dt

=!1 f (P,A,Kd )!!1M

dPc
dt

=!2M !!2Pc

dP
dt

=!3Pc !!3P

f (P,A,Kd ) =
1
2
1!P / A!Kd / A+ (1!P / A!Kd / A)

2 + 4Kd / A( )
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By selecting the scale of each variables as 

 

 

 

and assuming the entire degradation rates are the same to increase the chance of 

oscillations (Forger, 2011)  as 

 

 

 

the system becomes 

 

 

 

This system has now two non-dimensional parameters, dissociation constant ( ) and 

the concentration of the activator ( ). Because these two parameters are scaled by the all 

the original parameters, these two parameters represents combined effect of all original 

dM̂M *

dt̂t*
=!1 f (P̂P

*, ÂA*, K̂dKd
* )!!1M̂M

*

dP̂cPc
*

dt̂t*
=!2M̂M

* !!2P̂cPc
*

dP̂P*

dt̂t*
=!3P̂cPc

* !!3P̂P
*

f (P̂P*, ÂA*, K̂dKd
* ) = 1

2
1! P̂P* / ÂA* ! K̂dKd

* / ÂA* + (1! P̂P* / ÂA* ! K̂dKd
* / ÂA*)2 + 4K̂dKd

* / ÂA*( )

M * =
!1
"1
,PC

* =
!1!2

"1"2
,P* = A* = Kd

* =
!1!2!3
"1"2"3

, t* = 1
"1

!1 = !2 = !3

dM̂
dt̂

= f (P̂, Â, K̂d )! M̂

dP̂c
dt̂

= M̂ ! P̂c

dP̂
dt̂

= P̂c ! P̂

f (P̂, Â, K̂d ) =
1
2
1! P̂ / Â! K̂d / Â+ (1! P̂ / Â! K̂d / Â)

2 + 4K̂d / Â( )

K̂d

Â
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parameters on the behavior of the system. Therefore, the model’s behavior including the 

range of stoichiometry where the model becomes rhythmic (Figure 3D), the sensitivity of 

the stoichiometry (Figure 4B and Supplementary Figure 4A and 4B) and the robustness 

of the rhythms as parameters are perturbed (Figure 5A) can be understood by the effects 

of these two parameters. 

 

2) The NNF and PNF models 

 

This single negative feedback loop (SNF) model can be extended by adding additional 

negative or positive feedback loops controlling the production of activator. 

 

(Additional Negative Feedback Loop) 

 

(Additional Positive Feedback Loop) 

 

We can also reduce the number of parameters by scaling the R and assuming the 

degradation rate of R and A are the same.  

 

dR̂
dt̂

= f (P̂, Â, K̂d )!!R̂

dÂ
dt̂

=
"
R̂
!! Â

(Additional Negative Feedback Loop) 

 

dR̂
dt̂

= f (P̂, Â, K̂d )!!R̂

dÂ
dt̂

= " R̂!! Â
(Additional Positive Feedback Loop) 

dR
dt

= !1 f (P,A,Kd )!!1R

dA
dt

=
!2
R
!!2A

dR
dt

= !1 f (P,A,Kd )!"1R

dA
dt

= !2R!"2A
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Then, both the NNF (Negative-Negative Feedback Loops) model and the PNF (Positive-

Negative Feedback Loops) model have three free parameters, a dissociation constant (

), a transcription rate of the activator (γ) and a degradation rate of the activator (δ). The 

SNF model has two free parameters, dissociation constant ( ) and the fixed level of 

activator concentration ( ). Because , δ also represents the relative speed of 

the additional feedback loop. 

 

K̂d

K̂d

Â ! = !1 / "1
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3. Analysis showing that a balanced stoichiometry promotes 

oscillations 
 

Recent studies have shown that when repressor binds to an activator to repress 

transcription, an ultrasensitive response (a large change in transcription rate for a small 

change in repressor or activator concentration) can be seen when the stoichiometry of the 

activator and repressor is near 1-1 (Buchler & Cross, 2009; Buchler & Louis, 2008). 

Many previous studies have argued that ultrasensitive responses can cause oscillations in 

feedback loops (Kim & Ferrell, 2007; Novak & Tyson, 2008). These results are built on a 

longstanding mathematical theory (Forger, 2011; Novak & Tyson, 2008; Thron, 1991). 

The combination of these results shows why a balanced stoichiometry leads to 

oscillations in transcription-translation feedback loops. 

 

These previous studies also match our simulation results (Figure 3D). To provide further 

evidence for these results, we now provide detailed mathematical analysis of our 

simplified mathematical model (See below). Additionally, we showed that a 1-1 

stoichiometry leads to the ultra-sensitivity in our detailed and simple models 

(Supplementary Figure 3A). 

 

This analysis first considers the stability of the fixed point of the model.  By the theory of 

Mallet-Paret and Smith, instability of the fixed point implies that the model will oscillate 

(Mallet-Paret & Smith, 1990).  The “Secant Condition” proposed by Thron and several 

earlier authors can be used to determine whether the fixed point is unstable (Sontag, 2006; 

Thron, 1991) . This gives a range of stoichiometry around 1-1 where oscillations can be 

seen.  We then also use recent nonlinear analysis presented in (Forger, 2011) to show that 

if the fixed point is stable, that no oscillations can be seen. We then show that if the 

stoichiometry is far from 1-1, no oscillations can be seen.  

 

1) Local Instability Analysis (which Implies Oscillations by the theory of Mallet-

Paret and Smith) when Kd=0  
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The secant condition shows that the fixed point will be unstable if   

df
dP

P
f
> (sec! / 3)3 = 8  (1.1) 

 

and as shown above, the nondimensionalized model has the following form: 

 

dM / dt = f (P,A,Kd )!M
dPC / dt =M !PC
dP / dt = PC !P

(1.2) 

 

at the fixed point, P / f =1 , so (1.1) is equivalent to 

 

df
dP

> (sec! / 3)3 = 8  (1.3) 

 

Since the dissociation constant (Kd) is small when rhythms occur (Figure 3D), let us, for 

the moment, consider it to be zero (this assumption will be relaxed later).  Then: 

 

f (P,A,Kd ) =
1
2
1!P / A!Kd / A+ (1!P / A!Kd / A)

2 + 4Kd / A( ) = 1!P / A
0

P / A "1
otherwise

#
$
%

&
'
(
) 1!P / A*+ ,-

 

Therefore, the secant condition implies that the system will oscillate if 

 

df
dP

=
1
A
> (sec! / 3)3 = 8

 
 

Since 1!P / A = P  at the fixed point, the model oscillates if 

 

S = P
A
=

1
A+1

>
8
9
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We also note, that if the steady state of stoichiometry is greater than 1, the transcription 

rate of this model is zero, which implies that the value of P at the fixed point would be 

zero.  So the steady state of stoichiometry must be bounded from above by 1.  Thus: 

 

8 / 9 < S !1   

 

2) An accurate approximation for f (P,A,Kd )  when Kd≠0 and the stoichiometry is 

not 1-1  

 

Before analyzing the stability of the simple model (Kd≠0), we find a simple 

approximation for f (P,A,Kd ) . Since oscillations occur only when Kd is small (<10-4) 

(Figure 3D), let us assume that ! = Kd / A  is small which implies that the activators and 

repressors form a stable complex, which is also supported by experimental data (see 

above). Because we want to show that the model loses rhythms if the stoichiometry is not 

1-1, we only consider the case where the stoichiometry is not 1-1. In this case, we can 

derive a simple approximation for f.  That is, if the stoichiometry is  

 

P
A
<<1! (2 2! 2 +! !3!)  or P

A
>>1+ (2 2! 2 +! +3!)    

 

 (where the right hand side of these inequalities is very close to 1 when ε is small). These 

inequalities are equivalent to 

 

(1! P
A
+!)2 >> 4! P

A
 

 

which allows the Taylor series expansion of f and a simple approximation for f. 
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f (P,A,Kd ) =
1
2
1!P / A!Kd / A+ (1!P / A!Kd / A)

2 + 4Kd / A( )
=
1
2
1!P / A!! + (1!P / A!!)2 + 4!( )

=
1
2
1!P / A!! + (1!P / A+!)2 + 4!P / A( )

"
1
2
1!P / A!! + (1!P / A+!) + 2!P / A

(1!P / A+!)

#

$
%%

&

'
(( if (1!P / A +!)2 << 4!P / A

=

1! P
A
+

!P / A
(1!P / A+!)

if P / A <<1! (2 2! 2 +! !3!) or 1!P / A+! >> 2 2! 2 +! ! 2! > 0

!(1+!)
(P / A!1!!)

if P
A
>>1+ (2 2! 2 +! +3!) or 1!P / A+! << !2 2! 2 +! ! 2! < 0

)

*

+
+

,

+
+

"
1!P / A if P / A <<1! (2 2! 2 +! !3!)

! / (P / A!1) if P / A >>1+ (2 2! 2 +! +3!)

)

*
+

,+

(1.4) 

 

This approximation matches the original function well (see Supplementary Figures 6). 

 

3) Local Instability Analysis (which Implies Oscillations) when Kd≠0  

 

First, we find a lower bound of the steady state of stoichiometry (S) where the model 

oscillates. If S = P / A <<1! (2 2! 2 +! !3!) , f !1"P / A  by (1.4). Then, the secant 

condition (1.3) implies   

 

df / dP !1/ A > 8  (1.5) 

 

Since at the fixed point 1!P / A " f = P  or P ! A / (A+1) , (1.5) is equivalent with  

 

S ! 1
A+1

>
8
9

 (1.6) 
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This provides the lower bound of S where the fixed point is unstable. Now, let us find the 

upper bound. If S = P
A
>>1+ (2 2! 2 +! +3!) , f ! ! / (P / A"1) . The secant condition 

(1.3) implies  

 

df / dP ! !A / (P " A)2 > 8  (1.7) 

 

Since at the fixed point ! / (P / A!1) " f = P , (1.7) is equivalent with  

 

f ' ! !A
(P " A)2

!
P

P " A
=

P / A
P / A"1

> 8   (1.8) 

 

or 

 

P / A > 8(P / A!1)  (1.9) 

 

From (1.9), we can get an upper bound on the steady state of stoichiometry where the 

fixed point is unstable: 

 

S = P
A
<
8
7

 (1.10) 

 

Thus, (1.6) and (1.10) provides the approximate range of the steady state of stoichiometry 

where the model is locally unstable:  

 

8
9
< S < 8

7
  

 

Indeed, this approximation matches with the actual stoichiometry range, which is 

calculated without approximation (see Supplementary Figure 3B). Since the instability of 

the fixed point implies the oscillation in the model by the theory of Mallet-Paret and 
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Smith, the model can be rhythmic when the steady state of the stoichiometry is around 1-

1.  

 

4) Global Stability Analysis 

 

At the previous section, we showed that if S < 8 / 7 , the model is locally stable. Here, we 

show that in this case, the model is globally stable (i.e. oscillation does not occur).  

 

(1) Global Stability Conditions  

The model becomes globally stable (oscillations cannot be seen) if the gain of 

f (P,A,Kd )  satisfies 

 

f ! f
P(t)! pm

< 8  (1.11) 

 

, where f  is mean of f and pm is defined by f (pm,A,Kd ) = f  (Forger, 2011).  The 

left hand side of the equation is the average slope of f between (pm, f )  and 

(P(t), f (P(t),A,Kd )) , and since d 2 f / dP2 ! 0 (e.g. see Supplementary Figure 2A) we 

have: 

 

f ! f
P(t)! pm

"
1! f
0! pm

=
1! f
pm

 

 

Therefore,  

 

1! f
pm

< 8  (1.12) 

 

will be a sufficient condition to show the global stability of the model.  
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(2) The average value of P is greater than or equal to the value of P at the fixed point   

The average value of P ( P ) and the average value of f ( f (P,A,Kd ) ) of our model 

(1.2) satisfies f (P,A,Kd ) = P (Forger, 2011). Since d 2 f / dP2 ! 0 ,  

 

f (P,A,Kd ) ! f ( P ,A,Kd )  (1.13) 

 

or 

 

P = f (P,A,Kd ) = f ( P ,A,Kd )+!  and ! ! 0  

 

Since at the fixed point, P = f (P,A,Kd ) , if ! = 0 , the average of P and the steady state of 

P are the same. If ! > 0 , the average of P is greater than the steady state of P or 

 

P ! P  (1.14) 

 

, where P represents the steady state of P.  

 

(3) Global Stability when S<8/9 

 

Since f (pm,A,Kd ) = P  and f (P,A,Kd ) = P  at the fixed point, (1.14) implies that  

 

f (pm,A,Kd ) = P ! P = f (P,A,Kd )   

 

Since f is a decreasing function of P, we find 

 

pm ! P (1.15) 

 

Therefore,  
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pm
A

!
P
A
= S < 8

9
 

 

and we can use approximation (1.4). That is f = f (pm,A,Kd ) !1" pm / A  or 

pm ! A(1" f ) . Then, the global stability condition (1.12) is equivalent to  

 

1! f
pm

"
1! f
A(1! f )

=
1
A
< 8  (1.16) 

 

From (1.5) and (1.6), S<8/9 implies that 1/A<8. Therefore, if S<8/9, the model is globally 

stable as well as locally stable. 

 

5) Bounds on the Average Stoichiometry ( S ) 

 

If S<8/9, the model is globally stable and S = S . As described above, when S  = 8/9, the 

fixed point becomes unstable and oscillations are seen. At this point, stoichiometry is low 

and f !1"P / A . Then, the linearity of f !1"P / A  implies the equality of (1.13) and 

(1.14) or S ! S  when S = 8/9. Therefore, the model becomes rhythmic when the 

average stoichiometry is greater than 8/9. This explains the lower bounds of the average 

stoichiometry that appear in Figure 3D. 

 

Since P is greater than or equal to the steady state shown (1.13), the average 

stoichiometry ( S ) is also greater than equal to the steady state of stoichiometry (S). 

Therefore, if S  is less than 8/7, then S is also less than 8/7 and the model is rhythmic 

due to (1.10). Therefore, if S  is between 8/9 and 8/7 or S  is around 1-1, the model 

becomes rhythmic. This explains why a 1-1 average stoichiometry generates the rhythms 

in the model (Figure 3D). However, the upper bound is a sufficient condition (but not a 
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necessary one), so S  is greater than equal to 8/7 does not mean that the model 

necessarily loses rhythms.  

 

The upper bound of S  increases as Kd is decreases, which can be seen in Figure 3D. 

Here we explain this behavior. When the steady state stoichiometry S reaches its lower 

bound 8/9, near the fixed point, S = S  or P = P  as shown above. This implies that 

steady state of P / A and pm / A  are the same since f (P) = P  and f (pm) = P . As the 

activator concentration decreases, both P / A  and pm / A  increase from 8/9 to 8/7. When 

S = P / A  reaches its upper bound 8/7, we can expect pm / A >1+ (2 2! 2 +! +3!)  as in 

the approximation of f above. Then, < f >! ! / (pm / A"1)< ! / (2 2! 2 +! +3!)  by (1.4).  

Since < f >=< p > ,  

 

< p >
A

<
!

A(2 2! 2 +! +3!)
=

1
A(2 2+!!1 +3)

 (1.16) 

 

When S = P / A  reaches its upper bound 8/7, by (1.7), A = 7 Kd / 8  and ! = 8Kd / 7 . 

Then (1.16) becomes 

 

< p >
A

<
8

7 Kd (2 2+ 7 / 8 /Kd +3)
=

8
7(2 2Kd + 7 Kd / 8 +3 Kd )

!
2

7 7 Kd / 2
(1.17) 

 

(1.17) implies that the upper bound of average stoichiometry S will increase as Kd  

decreases, which is seen in Figure 3D. Furthermore, (1.17) explains why the model does 

not oscillate when Kd is too large. For instance, the upper bound of the average 

stoichiometry becomes 0.61 when Kd =10
!3 , which is less than the lower bound 8/9. This 

is why the model does not oscillate when Kd =10
!3  (Figure 3D). Moreover, the upper 

bound is 1.16 when Kd =10
!4  which matches our simulations in Figure 3D. In summary, 

the mathematical analysis about the range of average stoichiometry implies that 



 22 

• If  S < 8 / 9 , the model is globally stable and does not oscillates. 

• If 8 / 9 < S < 8 / 7 , the model is locally instable and oscillates. 

• If S = 8 / 7 , < p >
A

<
8

7(2 2Kd + 7 Kd / 8 +3 Kd )
!

2
7 7 Kd / 2

 

 

This is in agreement with simulations shown in Figure 3D: 1) Oscillations are seen 

around a 1-1 stoichiometry; 2) the stoichiometry needs to be greater than 8/9 for 

oscillations; 3) as the dissociation constant decreases, oscillations are seen over a larger 

range of stoichiometry. 
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4. Analysis of the role of an additional feedback loop in balancing 

stoichiometry   
 

Our simulations showed that an additional negative feedback loop improves the 

regulation of stoichiometric balance (Figure 4B and Supplementary Figure 4A and 4B). 

Here, we provide the mathematical analysis for the simulation results in Figure 4B and 

Supplementary Figure 4A and 4B. Because the model only oscillates when the 

dissociation constant is small (<10-4) (Figure 3D), we assume that the dissociation 

constant is small for the simplicity of the analysis. In this case, the % of free activator 

equation can be simplified to 

 

f (P,A,Kd ) =
1
2
1!P / A!Kd / A+ (1!P / A!Kd / A)

2 + 4Kd / A( ) " 1!P / A
0

P / A #1
otherwise

$
%
&

'
(
)
= 1!P / A*+ ,-

 

1) Single Negative Feedback Loop (SNF) 

 

With the approximation, the system can be simplified as 

 

dM
dt

=!1 1!
P
A

"

#"
$

%$
!"1M

dPC
dt

=!2M !"2PC

dP
dt

=!3PC !"3P

 

 

Then, the steady state of the system becomes 

 

p / a
1! p / a"# $%

a = !1!2!3
"1"2"3

 (2.1) 

 

, where p and a are steady state of P and A in the system. Since activator is constant, A 

and a are the same. Then, 
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(2.2)  

, where ! = 1! p / a"# $% representing the steady state of % of free activator and C1 represents 

all parameters of the system.  

 

 (2.3) 

 

Now, let’s calculate the relative sensitivity of ε with respect to C1 from the above 

equation. If this sensitivity is low, then we can expect the % of free activator of this 

system is stable for the perturbation of any parameters.  

 

(2.4)
 

 

Because the system oscillates only when the stoichiometry between p and a is close to 1 

(Figure 3D), ε will become close to 0 and  C1 becomes large from (2.2) or (2.3) when the 

model oscillates. Therefore, we can expect the relative sensitivity would be around -1 

from (2.4) (Supplementary Figure 4C).  

 

2) Negative Feedback Loop with an Additional Negative Feedback Loop (NNF) 

 

Additional secondary loop in the NNF also becomes simple with the assumption Kd=0. 

 

dR
dt

= !1 1!
P
A

"

#"
$

%$
!"1R

dA
dt

=
!2
R
!"2A

 

 

Then, the steady state of the activator A becomes 

1!!
!

=C / a =C1

! =
1

1+C1

d!
dC1

C1
!
=

!1
(1+C1)

2 C1
1+C1
1

=
!C1
1+C1
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a = !2"1
!1"2

1
1! p / a"# $%

=
D

1! p / a"# $%
=
D
#  (2.5)

 

 

By combining two steady state equations (2.1) and (2.5), we can get  

 

  
 

Again, C2 represents the all parameters in NNF.  
 

  

  

For small ε, the relative sensitivity becomes about -0.5 (Supplementary Figure 4C), 

which is half of that of SNF.  

 

 

3) Negative Feedback Loop with an Additional Positive Feedback Loop (PNF) 

 

In a similar way used to analyze NNF, we can also derive the steady state of the activator 

in PNF, 

 

a = !1!2
"1"2

1! p / a"# $%= E 1! p / a"# $%  (2.6) 

 

By combining two steady state equations (2.2) and (2.6), we can get  

 

1!!
!

a = 1!!
!

D
!
=C <=> 1!!

! 2
=C /D =C2

! =
!1+ 1+ 4C2

2C2

d!
dC2

C2
!
= ( 1
C2 1+ 4C2

!
!1+ 1+ 4C2

2C2
2 )C2

2C2
!1+ 1+ 4C2
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 (7) 

 (2.8) 

 (2.9) 

 

For small ε, 1- C3 is small by (2.8). Then, we can expect the sensitivity will be huge for 

small ε (Supplementary Figure 4C) from (2.9). In fact, by combining (2.8) and (2.9), 

 

 

 

We can see that the sensitivity is approximately 1/ε. 

 

4) Summary 

 

The relative sensitivity of the % of free activator (ε) for any parameter perturbation 

becomes about 1, 0.5 and 1/ε in NF, NNF and PNF, respectively (Supplementary Figure 

4C). This means % of free activator (ε) is most robust for parameter perturbation in NNF 

structure. Because ! = 1! p / a"# $%= 1! stoichiometry"# $% , the robustness of ε in NNF implies 

the robustness of stoichiometry in the NNF structure. In the previous section, we showed 

that the model becomes rhythmic when the steady state of stoichiometry is in appropriate 

range (Supplementary Figure 4C). Since an additional negative feedback loop improves 

the regulation of the stoichiometric balance, the NNF structure is the best to maintain the 

rhythms for the perturbations.  

1!!
!

A = 1!!
!

E! =C <=>1!! =C / E =C3

! =1!C3

d!
dC3

C3
!
= !C3

1
1!C3

=
!C3
1!C3

d!
dC3

C3
!
=
!C3
1!C3

=
!1+!
!

"
1
!
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5. Analysis of the role of an additional negative feedback loop in 

maintaining a fixed period  

 
We showed that the NNF structure has a nearly constant period in the presence of large 

changes in gene expression levels (Figure 6D). Here, we provide the mathematical 

analysis for the simulation results in Figure 6D. As we showed at the previous section, 

the simple model can be approximated as  
 

dM / dt = 1!P / A"# $%!M
dPC / dt =M !PC
dP / dt = PC !P  

(3.1) 

 

If the transcription rate is increased by α, then the model is changed to  

 

dM / dt =! 1!P / A"# $%!M
dPC / dt =M !PC
dP / dt = PC !P

(3.2) 

 

If we define new variable !M =M /! , !PC = PC /! and !P = P /! , the model (3.2) becomes  

 

d !M / dt = 1!! !P / A"# $%! !M

d !PC / dt = !M ! !PC
d !P / dt = !PC ! !P

(3.3) 

 

These equations are the same with the original equations (3.1) except for the transcription 

term, 1!! !P / A"# $% . We have shown that the additional negative feedback loop maintains 

the stoichiometric balance by adjusting the level of the activators according to the change 

of the repressor levels. In this case, the repressor level is increased by α, so in ideal case, 

the activator level (A) can be increased by α through the additional negative feedback 
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loop. This makes 1!! !P / A"# $%  to the 1! !P / A"# $% . That is, with the additional negative 

feedback loop, (3.3) becomes  

 

d !M / dt = 1! !P / A"# $%! !M

d !PC / dt = !M ! !PC
d !P / dt = !PC ! !P

(3.4) 

 

Therefore, the model (3.4) has the solution with the same period of the solution of the 

original model (3.1) while the amplitude of solution ( !P ) is increased by α since 

!P = P /! . 
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7. Supplementary Tables  

 
Supplementary Table 1. The variables used in the detailed model.  

Name Symbol 

The concentration of Per1 mRNA in the nucleus/ cytoplasm MnPo/McPo 

The concentration of Per2 mRNA in the nucleus/ cytoplasm MnPt/McPt 

The concentration of Cry1 mRNA in the nucleus/ cytoplasm MnRo/McRo 

The concentration of Cry2 mRNA in the nucleus/ cytoplasm MnRt/McRt 

The concentration of Bmals mRNA in the nucleus/ cytoplasm MnB/McB 

The concentration of Npas2 mRNA in the nucleus/ cytoplasm MnNp/McNp 

The concentration of Rev-erbs mRNA in the nucleus/cytoplasm MnRev/McRev 

The concentration of BMALs protein in the cytoplasm B 

The concentration of CLOCK/NPAS2 protein in the cytoplasm Cl 

The concentration of unphosphorylated BMALs-CLOCK/NPAS2 BC 

The concentration of unphosphorylated REV-ERBs in the 

nucleus/cytoplasm 
revn/cyrev 

The concentration of unphosphorylated REV-ERBs bound with 

GSK3β in the nucleus/cytoplasm 
revng/cyrevg 

The concentration of phosphorylated REV-ERBs bound with GSK3β 

in the nucleus/cytoplasm 
revngp/cyrevgp 

The concentration of phosphorylated REV-ERBs in the 

nucleus/cytoplasm 
revnp/cyrevp 

The probability of the per1, per2, and cry1 E-box being activated G 

The probability of the per1, per2, and cry1 E-box being repressed GR 

The probability of the cry2 E-box being activated Gc 

The probability of the cry2 E-box being repressed GcR 

The probability of the rev-erbs E-box being activated Gr 

The probability of the rev-erbs E-box being repressed GrR 

The probability of the npas2 and cry1 RORE being activated GB 

The probability of the npas2 and cry1 RORE being repressed GBR 
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The probability of the Bmals RORE being activated GBb 

The probability of the Bmals RORE being repressed GBRb 

The activity of GSK3β gto 

The strength of transcription drive of light ltn 

Note the protein complexes are separately listed in Supplementary Table 2. 
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Supplementary Table 2. The variables of protein complexes used in our detailed 

model. 

Index 

j 

 

PER 

k 

 

CRY 

l 

 

Kinase 

m 

 

Location 

n 

 

BMALs-CLK 

0 No PER bound 
No CRY 

bound 

No Kinases 

bound 
Cytoplasm 

No BMALs-

CLK bound 

1 PER1 CRY1 CKI Nucleus BMALsP-CLKP 

2 PER1P by CKI CRY2 GSK3   

3 PER2  CKI&GSK3   

4 PER2p by CKI     

5 PER2P by GSK3     

6 
PER2P by both 

GSK3 and CKI 
    

 

Each complex is encoded as x[j][k][l][m][n], where j, k, l, m and n refer to the proteins 

that are present in the complex, or the location of the complex. We also assume that when 

BMALs-CLK is phosphorylated when in complex. “P” represents “phosphorylated”. 

Further details can be seen in the section “Equations of the Detailed Model.” 
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Supplementary Table 3. Parameters of the Detailed Model. 
Parameter Description Symbol Value Reference 
Transcription rate constant for Per1 trPo 25.92  
Transcription rate constant for of Per2 trPt 44.85  
Transcription rate constant for of Cry1 trRo 23.07  
Transcription rate constant for Cry2 trRt 39.94  
Transcription rate constant for Bmal (1) trB  46.10  
Transcription rate constant for Npas2 (1) trNp  0.33  
Transcription rate constant for Rev-Erbs trRev 102.9  
Translation rate constant for PER1 and PER2 tlp 1.81  
Translation rate constant for CRY1 and CRY2 tlr 5.038  
Translation rate constant for BMAL (1) tlb 0.53  
Translation rate constant for CLOCK (1) tlc 4.645  
Translation rate constant for NPAS2 (1) tlnp 1.251  
Translation rate constant for REV-ERBs  tlrev 8.907  
Binding rate constant for PER2 to GSK3β (4) agp 1.396  
Binding rate constant for REV-ERBs to GSK3β (4) ag 0.162  
Unbinding rate constant for PER2/REV-ERBs to 
GSK3β (4) dg 2.935  

Binding rate constant for PER1/2 to CKIε/δ ac 0.046  
Unbinding rate constant for PER1/2 to CKIε/δ dc 0.108  
Binding rate constant for PER1/2 to CRY1/2 ar 0.024  
Unbinding rate constant for PER1/2 to CRY1/2 dr 0.605  
Binding rate constant for PER1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) bbin 6.926 (Chen et al, 2009) 

Unbinding rate constant for PER1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) unbbin 0.13 (Chen et al, 2009) 

Binding rate constant for CRY1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) cbbin 6.599 (Chen et al, 2009) 

Unbinding rate constant for CRY1/2 to BMAL-
CLOCK/NPAS2 in the nucleus (2) uncbbin 0.304 (Chen et al, 2009) 

Binding rate constant for BMAL to CLOCK/NPAS2 
(1) cbin 0.045  

Unbinding rate constant for BMAL to 
CLOCK/NPAS2 (1) uncbin 7.272  

Binding rate constant for REV-ERBs to GSK3β (4) ag 0.162  
Normalized binding rate constant for BMAL-
CLOCK/NPAS2 to Per1/2/Cry1 E-box (3) bin 6.972  

Normalized unbinding rate constant for BMAL-
CLOCK/NPAS2 to Per1/2/Cry1 E-box (3) unbin 0.255  

Normalized binding rate constant for BMAL-
CLOCK/NPAS2 to Cry2 E-box  (3) binc 0.280  

Normalized unbinding rate constant for BMAL-
CLOCK/NPAS2 to Cry2 E-box (3) unbinc 0.009  

Normalized binding rate constant for BMAL-
CLOCK/NPAS2 to Rev-erbs E-box (3) binr 6.154  

Normalized unbinding rate constant for BMAL-
CLOCK/NPAS2 to Rev-erbs E-box (3) unbinr 2.91  

Normalized binding rate constant for REV-ERBs to 
Bmal RORE (1) binrevb 0.006  
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Normalized unbinding rate constant for REV-ERBs 
to Bmal RORE (1) 

unbinre
vb 5.305  

Normalized binding rate constant for REV-ERBs to 
Cry1/Npas2 RORE (1) binrev 0.012  

Normalized unbinding rate constant for REV-ERBs 
to Cry1/Npas2 RORE (1) 

unbinre
v 10.97  

Rate constant for folding and nuclear export of 
Per1/2, Cry1/2, Bmal and Npas2 mRNA tmc 0.164  

Rate constant for folding and nuclear export of Rev-
Erbs mRNA tmcrev 9.263  

Nuclear localization rate constant for proteins bound 
to PER nl 0.643  

Nuclear export rate constant for protein bound to 
PER ne 0.026  

Nuclear localization rate constant for REV-ERBs as 
well as GSK3β if bound (4) nlrev 9.637  

Nuclear export rate constant for REV-ERBs as well 
as GSK3β if bound (4) nerve 0.015  

Nuclear localization rate constant for BMAL-
CLOCK/NPAS2 (1) nlbc 5.265  

Nuclear export rate constant for unbound kinases 
GSK3β and CKI (4) lne 0.595  

Total CK1 concentration Ct 57.61  (Lee et al, 2001) 
Total GSK3β concentration (4) Gt 79.73  

CKIε/δ phosphorylation rate constant for PER1 hoo 0.527 (Lee et al, 2001) 

CKIε/δ phosphorylation rate constant for PER2 hto 2.456 (Lee et al, 2001) 
Phosphorylation rate constant for BMAL-
CLOCK/NPAS2 (1) phos 0.291  

Increase rate of GSK3β activity (4) trgto 0.644  

Decrease rate of GSK3β activity (4) ugto 0.063  
Degradation rate constant for Per1 umPo 0.765 (Siepka et al, 2007) 
Degradation rate constant for Per2 umPt 0.589 (Siepka et al, 2007) 
Degradation rate constant for Cry1 umRo 0.403 (Siepka et al, 2007) 
Degradation rate constant for Cry2 umRt 0.456 (Siepka et al, 2007) 
Degradation rate constant for Bmal (1) umB 0.795 (Suter et al, 2011) 
Degradation rate constant for Npas2 (1) umNp 0.369  

Degradation rate constant for Rev-Erbs  umRev 1.51 (Chawla & Lazar, 
1993) 

Degradation rate constant for unphosphorylated PER upu 0.07 (Lee et al, 2009) 
Degradation rate constant for CKI phosphorylated 
PER up 3.537 (Meng et al, 2008) 

Degradation rate constant for CRY1 uro 0.174 (Siepka et al, 2007) 

Degradation rate constant for CRY2 urt 0.482 (Busino et al, 2007; 
Chen et al, 2009) 

Degradation rate constant for BMAL (1) ub 0.019 (Kwon et al, 2006) 
Degradation rate constant for CLOCK/NPAS2 (1) uc 0.025 (Kwon et al, 2006) 
Degradation rate constant for BMAL-
CLOCK/NPAS2 (1) ubc 0.349 (Kwon et al, 2006) 

Degradation rate constant for unphosphorylated 
REV-ERBs (4) urev 1.649 (Suter et al, 2011) 

Degradation rate constant for GSK3β phosphorylated uprev 0.517 (Suter et al, 2011) 
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REV-ERBs (4) 
Ratio of nuclear to cytoplasmic compartment volume Nf 3.351 (Miller et al, 1989) 
Additional Per1 transcription rate in the presence of 
light(5) lono 0.206 (Challet et al, 2003) 

Additional Per2 transcription rate in the presence of 
light (5) lont 0.396 (Challet et al, 2003) 

Light level (5) ltI 500 (Kronauer et al, 1999) 
Rate of activation of pho (5) lta 0.607 (Kronauer et al, 1999) 
Light effect decrease (backward) rate (5) ltb 0.013 (Kronauer et al, 1999) 

References presenting experimental data on the parameter are indicated. If a parameter 
has been newly added to the previous model, a number is presented after the parameter 
description.  This number corresponds to the list that describes the changes that were 
made to the model in the section: A description of the detailed model. The units of time 
are hours, concentrations are expressed in nM and light is presented in Lux. As described 
in Forger and Peskin 2003, binding rates to promoter elements are considered 
“normalized” because they are tracked by the probability that they are unbound.  Further 
details can be found in Forger and Peskin 2003. 
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Supplementary Table 4. Activators have a longer half-life than repressors. 

 Mice Fibroblasts Drosophila S2 cells 

Repressors PER PERP CRY dPER 

Half-Life(hr) 13 1.4 3.1-5.2 1.5 

Activators BMAL1 CLOCK BMAL1-CLK dCLOCK 

Half-Life(hr) 47 13 3 6 

The endogenous activators (BMAL1/CLOCK/BMAL1-CLOCK/dCLOCK) have longer 

half-life than the endogenous repressors (PER/PERP/CRY/dPER) in mice fibroblasts and 

Drosophila S2 cells. This implies that feedback loops for the activators are slower than 

those of the repressors in the circadian clocks because the degradation rates of the 

components of the feedback loops are the key step that determines the time scale of a 

feedback loop. These data come from the following experimental studies: PER: 

Unphosphorylated PER1, 2 (Lee et al, 2009), PERP: Phosphorylated PER1, 2 (Meng et al, 

2008), CRY: CRY1, 2 (Chen et al, 2009; Meng et al, 2008; Siepka et al, 2007), BMAL1: 

CLOCK unbinding BMAL1 (Kwon et al, 2006), CLOCK: BMAL1 unbinding (Kwon et 

al, 2006) CLOCK (Kwon et al, 2006), BMAL1-CLOCK: dimer BMAL1-CLOCK (Kwon 

et al, 2006), dPER: PER in Drosophila S2 cells (Syed et al, 2011), and dCLOCK: 

CLOCK in Drosophila S2 cells (Lamaze et al, 2011). 
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7. Supplementary Figures 

 
 

Supplementary Figure 1. Top 10 ranked sensitivities for period. The changes of period 

are measured in the presence of 1% perturbation of each parameter. Relative sensitivity 

equation used is  

 
The model shows large sensitivities to perturbation of parameters related with 

degradation rate or phosphorylation of PER2. 
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Supplementary Figure 2. The transcription rate control by protein sequestration of 

the simple model matches experimental data. (A) The fraction of the free activator, 

f(P, A, Kd), with various dissociation constants, Kd. As dissociation constant between the 

activator (A) and the repressor (P) decreases, the fraction of free activator decreases or 

transcription rate decreases. Here, A=0.0659. (B) The effects of mCRY1 expression on 

CLOCK:BMAL1 activated transcription.  Data are taken from Figure 2 and 

Supplementary Figure 2 of (Froy et al, 2002).  Our model can easily match this data. 
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Supplementary Figure 3. 1-1 stoichiometry generates an ultrasensitive response. (A) 

The relative sensitivity of transcription rate of repressors is the highest at 1-1 

stoichiometry in both the detailed and the simple model. From the solutions of model, we 

calculated  

 

Re lative Sensitivity = d(% of Free Activators)
d(Stoichiometry)

Stoichiometry
% of Free Activators

 

 

(See Supplementary Figures 4A for the parameters used). (B) The upper and lower bound 

of steady state of stoichiometry where the simple model oscillates. See “Analysis 

showing that a balanced stoichiometry promotes oscillations” in the Supplementary 

information for details.  
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Supplementary Figure 4. Controlling the activator concentration with an additional 

negative feedback loop maintains stoichiometry in balance. (A) The relative 

sensitivity of the stoichiometry with respect to transcription rate change in the SNF, 

NNF, and PNF was measured over the range of transcription rates with which the 

stoichiometry are in the appropriate range for rhythm generation seen Figure 3D. The 

relative sensitivity equation used is 
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Re lative Senstivity = d(Stoichiometry)
d(Transcription Rate)

Transcription Rate
Stoichiometry

 

 

This equation is the % change in the stoichiometry (repressor/activator) per % change in 

transcription rate of repressor. (B) We calculated the average of relative sensitivity over 

the range of parameters. On average, the relative sensitivity of the NNF model is about 2 

fold less sensitive that of the SNF model, but  that of the PNF model is about 4 fold more 

sensitive than that of the SNF model regardless of the binding affinity. This implies that 

the NNF is best to maintain the stoichiometry balance when the transcription rate is 

perturbed. (Here we assumed δ=0.2. When this assumption was relaxed, the result is 

similar. See Supplementary information and Supplementary Figure 4C). (C) Relative 

sensitivity of the steady state of % of free activator for the general parameters of the 

simple models with different structures (see “Analysis of the role of an additional 

feedback loop in balancing stoichiometry” in Supplementary information for the details). 

(D) The schematic explanation how the NNF structure maintains the stoichiometric 

balance. Clock-/- increases the stoichiometry (repressors/activators) because the activator 

decreases. The increased stoichiometry strengthens the core negative feedback and 

reduces the expression of the repressors and Rev-erbs. This weakens the additional 

negative feedback loop and increases the expression of other activators. The reduced 

expression of the repressors and increased expression of the activators decrease the 

increased stoichiometry to 1-1. 
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Supplementary Figure 5. The NNF structure oscillates over the widest range of 

parameters. (A-B) To compare the robustness of the three feedback loop structures 

(NNF, SNF and PNF), parameters for the activators were selected to make the 

timecourses of the repressors in the three structures similar. (A) The repressor (P) time 

profiles of simple models of the three structures. The amplitude is normalized by its 
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average value.  Here, we assumed Kd = 10-5 and δ = 0.2. γ in the NNF model and the PNF 

model were selected as 0.0043 and 0.0395, which made the NNF model and the PNF 

model have the same average activator concentration as in the SNF model (A=0.0659). 

With these parameters models have a similar stoichiometry, amplitude and period. (B) 

The Per2 mRNA time profile of detailed mammalian circadian clock models with three 

types of structures. In the SNF model, the level of the oscillating activators (Bmals and 

Npas2) is fixed at the average level in the original model (NNF). Transcription of Bmals 

and Npas2 are activated with E-box activation in the PNF model while they are repressed 

with E-box activation through REV-ERBs in the original model (NNF). (C) The NNF 

structure has the widest range of parameters where the model oscillates regardless the 

dissociation constant. Here, Kd is decreased to 10-15 from 10-5 in Figure 5A. The range of 

parameters where the system oscillates is shown when the transcription rate of the 

repressor and activator were changed from their initial value (100%). As the dissociation 

constant decreases, the ranges of parameters, where the system oscillates, increase in all 

three structures. Here we assumed δ=0.2 (D) A slower additional feedback loop (i.e. more 

stable activator) increases the range of parameters for which the system oscillates in 

NNF.  Here, δ is changed from 0.2 to 3. γ is also changed from 0.0043 to 0.0645 to keep 

the same expression levels of the activator. Other parameters are the same with those in 

Figure 5A.  (E) For a significant increase or decrease of transcription rate of both 

activator and repressor, both the simple model and the detailed model still show sustained 

oscillations. All structures (NNF, SNF and PNF) oscillate when transcription rate of both 

repressor and activator increases or decreases by the same amount because the 

stoichiometry is still balanced for the change. The PNF, SNF and NNF models oscillate 

inside of red, green and blue line, respectively. The bifurcation lines, which indicate 

where oscillations in the system are lost, were calculated with XPP-AUTO.  

 

. 
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Supplementary Figure 6. Approximation of free activator functions in the simple 

model. (A) Approximation of f (P,A,Kd ) with 1!P / A when 

P / A <1! (2 2! 2 +3! ! 2!) and ! = Kd / A is small. Here, A =10!3 and Kd =10
!5 . See 

“Analysis showing that a balanced stoichiometry promotes oscillations” in 

Supplementary information for details. (B) Approximation of f (P,A,Kd )  with 

! / (P / A!1)  when P / A >1+ (2 2! 2 +! +3!) .  
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Supplementary Figure 7. Comparison of the predictions of the new model and 

experimental data. The predictions of the new model based on the protein sequestration 

match experimental data of circadian clocks of higher organisms, but not Neurospora 

circadian clocks.  
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Gene does analysis implies that the clock balances the stoichiometry through NNF (Baggs et al (2009)) 

2nd Negative feedback loop play more dominant role than 2nd positive feedback loop (Liu et al (2008)) 

Loss of part of 2nd negative feedback loop increase the deviation of period (Preitner et al (2001)) 

The half-life of activators are significantly longer than the half-life of repressors (Table S4) 

2nd negative feedback loop has not been identified in Neurospora clock (Baker et al (2012)).  
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Supplementary Figure 8. Comparison of the predictions of the previous models and 

experimental data. The predictions of the previous models based on the cooperative 

reactions (e.g. cooperative binding or phosphorylation on multiple sites) match 

experimental data of Neurospora circadian clocks, but not higher organisms circadian 

clocks (Becker-Weimann et al, 2004; Griffith, 1968; Leloup & Goldbeter, 2004; Relógio 

et al, 2011).   
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9. Equations of the detailed model 
 

Promoter Activity 

E-‐box	  

GR'=bin*(Sum[x[0][kk][0][1][1],{kk,1,2}])*(1-G-GR)-unbin*GR 

G'=bin*x[0][0][0][1][1]*(1-G-GR)-unbin*G 

GrR'=binr*(Sum[x[0][kk][0][1][1],{kk,1,2}])*(1-Gr-GrR)-unbinr*GrR 

Gr'=binr*x[0][0][0][1][1]*(1-Gr-GrR)-unbinr*Gr 

GcR'=binc*(Sum[x[0][kk][0][1][1],{kk,1,2}])*(1-Gc-GcR)-unbinc*GcR 

Gc'=binc*x[0][0][0][1][1]*(1-Gc-GcR)-unbinc*Gc 

 

RORE	  

GBR'=binrev*(revn+revng+revngp+revnp)*GB-unbinrev*GBR 

GB'=-binrev*(revn+revng+revngp+revnp)*GB+unbinrev*GBR 

GBRb'=binrevb*(revn+revng+revngp+revnp)*GBb-unbinrevb*GBRb 

GBb'=-binrevb*(revn+revng+revngp+revnp)*GBb+unbinrevb*GBRb 

 

Transcription 
 

MnPo'=trPo*G-tmc*MnPo-umPo*MnPo 

McPo'=tmc*MnPo-umPo*McPo 

MnPt'=trPt*G-tmc*MnPt-umPt*MnPt 

McPt'=tmc*MnPt-umPt*McPt 

MnRt'=trRt*Gc-tmc*MnRt-umRt*MnRt 

McRt'=tmc*MnRt-umRt*McRt 
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MnRev'=trRev*x[0][0][0][1][1]*Gr-tmcrev*MnRev-umRev*MnRev 

McRev'=tmcrev*MnRev-umRev*McRev 

MnRo'=trRo*G*GB-tmc*MnRo-umRo*MnRo 

McRo'=tmc*MnRo-umRo*McRo 

MnB'=trB*GBb-tmc*MnB-umB*MnB 

McB'=tmc*MnB-umB*McB 

MnNp'=trNp*GB- tmc*MnNp - umNp*MnNp 

McNp'=tmc*MnNp-umNp*McNp 

 

Secondary Loop 

 

B'=tlb*McB-cbin*B*Cl+uncbin*BC-ub*B 

Cl'=tlnp*McNp+tlc-cbin*B*Cl+uncbin*BC-uc*Cl 

BC'=cbin*B*Cl-uncbin*BC-phos*BC-ubc*BC 

cyrev'=tlrev*McRev-(nlrev+urev)*cyrev-ag*cyrev*(x[0][0][2][0][0])+nerev*revn+dg*cyrevg 

revn'=-(nerev+urev)*revn-ag*Nf*revn*(x[0][0][2][1][0])+nlrev*cyrev+dg*(revng) 

cyrevg'=ag*cyrev*x[0][0][2][0][0]-(dg+gto+urev+nlrev)*cyrevg+nerev*revng 

revng'=ag*Nf*revn*x[0][0][2][1][0]-(dg+gto+urev+nerev)*revng+nlrev*cyrevg 

cyrevgp'=gto*cyrevg-(dg+uprev+nlrev)*cyrevgp+nerev*revngp 

revngp'=gto*revng-(dg+uprev+nerev)*revngp+nlrev*cyrevgp 

cyrevp'=dg*(cyrevgp)-(uprev+nlrev)*cyrevp+nerev*revnp 

revnp'=dg*(revngp)-(uprev+nerev)*revnp+nlrev*cyrevp 

 

Translation 

 

x[j][k][l][m][n]'= 
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If[(j=1)&&(k=0)&&(l=0)&&(m=0)&&(n=0),tlp*McPo,0] 

+If[(j=3)&&(k=0)&&(l=0)&&(m=0)&&(n=0),tlp*McPt,0] 

+If[(j=0)&&(k=1)&&(l=0)&&(m=0)&&(n=0),tlr*McRo,0] 

+If[(j=0)&&(k=2)&&(l=0)&&(m=0)&&(n=0),tlr*McRt,0] 

 

Binding/Unbinding 

 

PER-‐CRY	  

x[j][k][l][m][n]'= 

If[(k=0)&&(n=0)&&((j=2)||(j=4)||(j=5)||(j=6)),-

ar*If[m=1,Nf,1]*Sum[x[0][kk][0][m][0],{kk,1,2}]*x[j][k][l][m][n]+dr*Sum[x[j][kk][l][m][n],{kk,1,

2}],0]+ 

If[(j=0)&&((k=1)||(k=2))&&(l=0)&&(n=0),-

ar*If[m=1,Nf,1]*x[j][k][l][m][n]*Sum[x[jj][0][ll][m][0],{jj,{2,4,5,6}},{ll,0,3}]+dr*Sum[x[jj][k][ll][m]

[n],{jj,{2,4,5,6}},{ll,0,3}],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&((k=1)||(k=2))&&(n=0),ar*If[m=1,Nf,1]*x[0][k][0][m][n]*x[j][0][l][

m][0]-dr*x[j][k][l][m][n],0]+ 

If[(k=0)&&(n=1)&&((j=2)||(j=4)||(j=5)||(j=6))&&(m=1),-

ar*Nf*x[j][k][l][m][n]*Sum[x[0][kk][0][m][0],{kk,1,2}]+dr*Sum[x[j][kk][l][m][n],{kk,1,2}],0]+ 

If[(j=0)&&((k=1)||(k=2))&&(l=0)&&(m=1)&&(n=0),-

ar*Nf*x[j][k][l][m][n]*Sum[x[jj][0][ll][m][1],{jj,{2,4,5,6}},{ll,0,3}]+dr*Sum[x[jj][k][ll][m][1],{jj,{2,4

,5,6}},{ll,0,3}],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&((k=1)||(k=2))&&(m=1)&&(n=1),ar*Nf*x[j][0][l][m][n]*x[0][k][0][

m][0]-dr*x[j][k][l][m][n],0]+ 

If[(k=0)&&(n=0)&&((j=2)||(j=4)||(j=5)||(j=6))&&(m=1),-

ar*Nf*x[j][k][l][m][n]*Sum[x[0][kk][0][m][1],{kk,1,2}]+dr*Sum[x[j][kk][l][m][1],{kk,1,2}],0]+ 
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If[(j=0)&&((k=1)||(k=2))&&(l=0)&&(m=1)&&(n=1),-

ar*Nf*x[j][k][l][m][n]*Sum[x[jj][0][ll][m][0],{jj,{2,4,5,6}},{ll,0,3}]+dr*Sum[x[jj][k][ll][m][n],{jj,{2,4

,5,6}},{ll,0,3}],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&((k=1)||(k=2))&&(m=1)&&(n=1),ar*Nf*x[j][0][l][m][0]*x[0][k][0][

m][1]-dr*x[j][k][l][m][n],0]+ 

If[(l=0)&&(j>0)&&(n=0),ac*If[m=1,Nf,1]*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][1][m][n],0] 

 

PER-‐CKI	  

x[j][k][l][m][n]'= 

If[(j=0)&&(k=0)&&(l=1)&&(n=0),-

ac*If[m=1,Nf,1]*x[j][k][l][m][n]*Sum[x[jj][kk][0][m][0],{jj,1,6},{kk,0,2}]+dc*Sum[x[jj][kk][l][m][

0],{jj,1,6},{kk,0,2}],0]+ 

If[(j>0)&&(l=1)&&(n=0),ac*If[m=1,Nf,1]*x[0][0][1][m][0]*x[j][k][0][m][n]-dc*x[j][k][l][m][n],0]+ 

If[(l=0)&&(j>0)&&(m=1)&&(n=1),-

ac*Nf*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][1][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=1)&&(m=1)&&(n=0),-

ac*Nf*x[j][k][l][m][n]*Sum[x[jj][kk][0][m][1],{jj,1,6},{kk,0,2}]+dc*Sum[x[jj][kk][l][m][1],{jj,1,6},{

kk,0,2}],0]+ 

If[(j>0)&&(l=1)&&(m=1)&&(n=1),ac*Nf*x[0][0][1][m][0]*x[j][k][0][m][n]-dc*x[j][k][l][m][n],0]+ 

If[(j>2)&&(l=2)&&(n=0),-

ac*If[m=1,Nf,1]*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][3][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=1)&&(n=0),-

ac*If[m=1,Nf,1]*x[j][k][l][m][n]*Sum[x[jj][kk][2][m][0],{jj,3,6},{kk,0,2}]+dc*Sum[x[jj][kk][3][m][

0],{jj,3,6},{kk,0,2}],0]+ 

If[(j>2)&&(l=3)&&(n=0),ac*If[m=1,Nf,1]*x[0][0][1][m][0]*x[j][k][2][m][n]-dc*x[j][k][l][m][n],0]+ 

If[(j>2)&&(l=2)&&(m=1)&&(n=1),-

ac*Nf*x[j][k][l][m][n]*x[0][0][1][m][0]+dc*x[j][k][3][m][n],0]+ 
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If[(j=0)&&(k=0)&&(l=1)&&(m=1)&&(n=0),-

ac*Nf*x[j][k][l][m][n]*Sum[x[jj][kk][2][m][1],{jj,3,6},{kk,0,2}]+dc*Sum[x[jj][kk][3][m][1],{jj,3,6},

{kk,0,2}],0]+ 

If[(j>2)&&(l=3)&&(m=1)&&(n=1),ac*Nf*x[0][0][1][m][0]*x[j][k][2][m][n]-dc*x[j][k][l][m][n],0] 

 

PER-‐GSK3β	  

x[j][k][l][m][n]'= 

If[(j>2)&&((l=0)||(l=1)),-

If[m=1,Nf,1]*agp*x[j][k][l][m][n]*x[0][0][2][m][0]+dg*x[j][k][l+2][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(n=0),-

If[m=1,Nf,1]*agp*Sum[x[jj][kk][ll][m][nn],{jj,3,6},{kk,0,2},{ll,0,1},{nn,0,1}]*x[j][k][l][m][n]+dg*

Sum[x[jj][kk][ll][m][nn],{jj,3,6},{kk,0,2},{ll,2,3},{nn,0,1}],0]+ 

If[(j>2)&&((l=2)||(l=3)),If[m=1,Nf,1]*agp*x[j][k][l-2][m][n]*x[0][0][2][m][0]-dg*x[j][k][l][m][n],0] 

 

PER-‐BMALs-‐CLOCK/NPAS2	  

x[j][k][l][m][n]'= 

If[(j>0)&&(m=1)&&(n=0),-bbin*Nf*x[j][k][l][m][n]*x[0][0][0][m][1]+unbbin*x[j][k][l][m][1],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1),-

bbin*Nf*Sum[x[jj][kk][ll][m][0],{jj,1,6},{kk,0,2},{ll,0,3}]*x[j][k][l][m][n]+unbbin*Sum[x[jj][kk][ll][

m][n],{jj,1,6},{kk,0,2},{ll,0,3}],0]+ 

If[(j>0)&&(m=1)&&(n=1),bbin*Nf*x[j][k][l][m][0]*x[0][0][0][m][n]-unbbin*x[j][k][l][m][n],0] 

 

CRY-‐BMALs-‐CLOCK/NPAS2	  

x[j][k][l][m][n]'= 

If[(j=0)&&(k>0)&&(l=0)&&(m=1)&&(n=0),-

cbbin*Nf*x[j][k][l][m][n]*x[0][0][0][m][1]+uncbbin*x[j][k][l][m][1],0]+ 
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If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1),-

cbbin*Nf*Sum[x[0][kk][0][m][0],{kk,1,2}]*x[j][k][l][m][n]+uncbbin*Sum[x[0][kk][0][m][n],{kk,1

,2}],0]+ 

If[(j=0)&&(k>0)&&(l=0)&&(m=1)&&(n=1),cbbin*Nf*x[j][k][l][m][0]*x[0][0][0][m][n]-

uncbbin*x[j][k][l][m][n],0]+ 

 

REV-‐ERBs-‐GSK3β	  

x[j][k][l][m][n]'= 

If[(j=0)&&(k=0)&&(l=2)&&(m=0)&&(n=0),-

ag*cyrev*x[j][k][l][m][n]+(dg)*cyrevg+(dg)*cyrevgp,0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(m=1)&&(n=0),-

ag*Nf*revn*x[j][k][l][m][n]+(dg)*revng+(dg)*revngp,0] 

 

Translocation 

 

PER	  binding	  proteins	  

x[j][k][l][m][n]'= 

If[((j=2)||(j=4)||(j=5)||(j=6))&&(m=1),-

ne*If[(n=0),1,0]*x[j][k][l][m][n]+If[(n=0),1,0]*nl*x[j][k][l][0][n],0]+ 

If[((j=2)||(j=4)||(j=5)||(j=6))&&(m=0),ne*If[(n=0),1,0]*x[j][k][l][1][n]-

If[(n=0),1,0]*nl*x[j][k][l][m][n],0]+ 

 

BMALs-‐CLOCK/NPAS2	  

x[j][k][l][m][n]'= 

If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1, nlbc*x[j][k][l][0][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=0)&&(n=1),-nlbc*x[j][k][l][m][n],0]+ 
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Kinase	  

x[j][k][l][m][n]'= 

If[(j=0)&&(k=0)&&((l=1)||(l=2))&&(m=1)&&(n=0),-lne*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&((l=1)||(l=2))&&(m=0)&&(n=0),lne*x[j][k][l][1][n],0] 

 

Phosphorylation 

 

x[j][k][l][m][n]'= 

If[((j=1))&&(l=1)&&(k=0)&&(m=0)&&(n=0),-hoo*x[j][k][l][m][n],0]+ 

If[((j=2))&&(l=1)&&(k=0)&&(m=0)&&(n=0),+hoo*x[1][k][l][m][n],0]+ 

If[((j=3)||(j=5))&&((l=1)||(l=3))&&(k=0),-hto*x[j][k][l][m][n],0]+ 

If[((j=4)||(j=6))&&((l=1)||(l=3))&&(k=0),hto*x[j-1][k][l][m][n],0]+ 

If[((j=3)||(j=4))&&((l=2)||(l=3)),-gto*x[j][k][l][m][n],0]+If[((j=5)||(j=6))&&((l=2)||(l=3)),gto*x[j-

2][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=0)&&(n=1),phos*BC,0]+ 

Degradation 

 

PER	  and	  CRY	  

x[j][k][l][m][n]'= 

If[(j=0)&&(k=1)&&(l=0)&&(n=0),-uro*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=2)&&(l=0)&&(n=0),-urt*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=1)&&(l=0)&&(m=1)&&(n=1),-uro*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=2)&&(l=0)&&(m=1)&&(n=1),-urt*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1),uro*x[j][1][l][m][n]+urt*x[j][2][l][m][n],0]+ 

If[((j=1)||(j=3)||(j=5))&&(k=0),-If[(m=0)&&(n=1),0,1]*upu*x[j][k][l][m][n],0]+ 
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If[((j=2)||(j=4)||(j=6))&&(k=0),-If[(m=0)&&(n=1),0,1]*up*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=1)&&(n=0),up*Sum[x[jj][0][ll][m][nn],{jj,2,6,2},{nn,0,1},{ll,1,3,2}]+upu*

Sum[x[jj][0][ll][m][nn],{jj,1,5,2},{nn,0,1},{ll,1,3,2}],0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(n=0),up*Sum[x[jj][0][ll][m][nn],{jj,2,6,2},{ll,2,3},{nn,0,1}]+upu*Su

m[x[jj][0][ll][m][nn],{jj,1,5,2},{ll,2,3},{nn,0,1}],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(n=1)&&(m=1),up*Sum[x[jj][0][ll][m][n],{jj,2,6,2},{ll,0,3}]+upu*Su

m[x[jj][0][ll][m][n],{jj,1,5,2},{ll,0,3}],0] 

 

BMALs-‐CLOCK/NPAS2	  and	  REV-‐ERBs	  

x[j][k][l][m][n]'= 

If[(j>0)&&(k=0)&&(m=1)&&(n=1),-ubc*x[j][k][l][m][n],0]+ 

If[(j=0)&&(k=0)&&(l=0)&&(n=1),-ubc*x[j][k][l][m][n],0]+ 

If[(j>0)&&(k=0)&&(m=1)&&(n=0),ubc*x[j][k][l][m][1],0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(m=0)&&(n=0),urev*cyrevg+uprev*cyrevgp,0]+ 

If[(j=0)&&(k=0)&&(l=2)&&(m=1)&&(n=0),urev*revng+uprev*revngp,0] 

 

Transcriptional Activity of GSK3β  

 

gto'=trgto*G*GB-ugto*gto 

 

Light Activity 

 

ltn'=60*lta*(1-ltn)-ltb*ltn 

MnPo'=trPo*G-tmc*MnPo-umPo*MnPo+lono*19.9*lta*(1-ltn[t])*trPo 

MnPt'=trPt*G-tmc*MnPt-umPt*MnPt+lont*19.9*lta*(1-ltn[t])*trPt 
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The way to understand the equations of multi-state variables 

 

x[j][k][l][m][n]'=If[(j=1)&&(k=0)&&(l=0)&&(m=0)&&(n=0),tlp*McPo,0] is same with 

x[1][0][0][0][0]'= tlp*McPo. This means PER1 proteins are translated from cytoplasmic 

Per1 mRNA (McPo) with the rate, tlp.  

 

x[j][k][l][m][n]'=If[(j=0)&&(k=0)&&(l=0)&&(m=1)&&(n=1), nlbc*x[j][k][l][0][n],0] is same with 

x[0][0][0][1][1]'= nlbc*x[0][0][0][0][1]. This means that BMALs-CLOCK/NPAS in 

cytoplasm (x[0][0][0][0][1]) enters the nucleus and becomes x[0][0][0][1][1], with rate 

nlbc. 

 

 


