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Abstract

A variety of antioxidant compounds derived from natural products (nutraceuticals) have 

demonstrated neuroprotective activity in either in vitro or in vivo models of neuronal cell death or 

neurodegeneration, respectively. These natural antioxidants fall into several distinct groups based 

on their chemical structures: (1) flavonoid polyphenols like epigallocatechin 3-gallate (EGCG) 

from green tea and quercetin from apples; (2) non-flavonoid polyphenols such as curcumin from 

tumeric and resveratrol from grapes; (3) phenolic acids or phenolic diterpenes such as rosmarinic 

acid or carnosic acid, respectively, both from rosemary; and (4) organosulfur compounds 

including the isothiocyanate, L-sulforaphane, from broccoli and the thiosulfonate allicin, from 

garlic. All of these compounds are generally considered to be antioxidants. They may be classified 

this way either because they directly scavenge free radicals or they indirectly increase endogenous 

cellular antioxidant defenses, for example, via activation of the nuclear factor erythroid-derived 2-

related factor 2 (Nrf2) transcription factor pathway. Alternative mechanisms of action have also 

been suggested for the neuroprotective effects of these compounds such as modulation of signal 

transduction cascades or effects on gene expression. Here, we review the literature pertaining to 

these various classes of nutraceutical antioxidants and discuss their potential therapeutic value in 

neurodegenerative diseases.
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1. Introduction

There are a wide variety of neurodegenerative diseases with distinct symptoms and 

pathologies. For many of these diseases, the vast majority of cases are sporadic and 

therefore, the challenge is to discover the underlying causes of neurodegeneration in order to 

prevent or slow these disorders. Oxidative stress is recognized as a common factor in many 

neurodegenerative diseases and is a proposed mechanism for age-related degenerative 
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processes as a whole [1,2]. Numerous studies have provided compelling evidence linking 

neuronal oxidative stress to Parkinson’s disease (PD) [3–7], Alzheimer’s disease (AD) [8–

10], amyotrophic lateral sclerosis (ALS) [11,12], and multiple sclerosis (MS) [13,14], to 

highlight but a few.

Oxidative stress occurs when reactive oxygen species (ROS) accumulate in the cell, either 

from excessive production or insufficient neutralization, causing damage to DNA, lipids, 

and proteins. Mitochondria are both a major source and target for ROS. Mitochondria are 

the powerhouses of the cell; they have the essential function of generating cellular energy in 

the form of ATP. Without ATP the cell will become energy deprived and eventually die. 

The most effective way for a cell to produce ATP is through oxidative phosphorylation 

within the mitochondria via the electron transport chain (ETC). The ETC is not entirely 

efficient so there is a basal level of electron leak under even the most optimum of 

conditions. The inadvertent leakage of electrons and their reaction with molecular oxygen 

are major contributors to the production of cellular ROS. Moreover, ROS produced within 

mitochondria subsequently target the various components of the ETC (in particular, 

complexes I and III), resulting in a vicious feed forward cycle of enhanced generation of 

ROS, more severe ATP depletion, and ultimately cell death [15,16]. Various genetic 

mutations and environmental exposures can undoubtedly sensitize neurons to mitochondrial 

ROS production either by increasing the exogenous production of free radicals or decreasing 

endogenous antioxidant defense systems.

Based on the premise that oxidative stress underlies a number of neurodegenerative diseases, 

the identification of novel antioxidants as potential therapeutics is a prolific area of 

neuroscience research [17]. Amongst the most studied categories of antioxidants, dietary 

polyphenols and other natural antioxidants have rapidly gained attention as viable candidates 

for clinical testing in neurodegeneration and acute neuronal injury such as stroke [18–21]. In 

this review, we focus on a variety of natural compounds (nutraceuticals) and their abilities to 

act as antioxidants and cell protectants in neuronal systems. Given that oxidative stress is a 

principal cause of neurodegenerative disease, effective natural antioxidants could provide 

novel and safe therapeutic options for these devastating disorders.

2. Intrinsic Antioxidant Properties of Nutraceuticals

There are many chemical classes of nutraceuticals found in all sorts of foods. Some 

nutraceuticals are well known, like epigallocatechin 3-gallate (EGCG) from green tea and 

resveratrol from grapes, while others are largely foreign to the lay consumer. The chemical 

structures of the natural compounds reviewed here are shown in Figure 1. Although these 

compounds differ structurally, each of them has been shown to have neuroprotective and 

antioxidant properties.

A common method of determining intrinsic free radical scavenging activity is to use a cell 

free assay system with the radical 2,2-diphenyl-1-picryhydrazyl (DPPH). Resveratrol [22], 

carnosic acid [23], and rosmarinic acid [24] have each been shown to be effective 

scavengers of DPPH radicals. In contrast, allicin has been found to be a poor scavenger of 

peroxyl radicals while another garlic compound, 2-propenesulphenic acid, is a good 
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scavenger of these radicals [25]. Additionally, EGCG has been shown to scavenge a wide 

variety of free radicals including superoxide, hydroxyl radical, hydrogen peroxide, and nitric 

oxide [26,27]. The intrinsic free radical scavenging activities of these nutraceutical 

antioxidants suggest that they may have potential utility in mitigating neuronal oxidative 

stress and neurodegeneration.

3. Neuroprotective Properties of Flavonoid Polyphenols

3.1. Epigallocatechin 3-Gallate (EGCG)

EGCG (Figure 1A) is a flavonoid polyphenol and the main antioxidant compound found in 

green tea. EGCG displays neuroprotective effects in a variety of in vitro paradigms. Our 

own work has shown that EGCG selectively protects cultured rat cerebellar granule neurons 

(CGNs) from oxidative stress [28]. Figure 2 shows the dramatic effects EGCG has against 

oxidative stress in the CGN model. CGNs incubated with the Bcl-2 inhibitor, HA14-1 (ethyl 

2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate), undergo 

mitochondrial oxidative stress and intrinsic apoptosis [29,30]. Co-treatment with EGCG 

significantly preserves the microtubule network and prevents the apoptotic nuclear 

morphology of CGNs exposed to HA14-1 (Figure 2).

Other studies have demonstrated similar results where EGCG significantly mitigates 

oxidative stress and neuronal death induced by hydrogen peroxide in motor neurons [31], 

N18D3 mouse neuroblastoma x dorsal root ganglion hybrid cells [32], spiral ganglion cells 

[33], and RGC-5 retinal ganglion cells [34]. EGCG similarly protects SH-SY5Y human 

neuroblastoma cells from amyloid precursor protein (APP), 3-hydroxykynurenine, or 6-

hydroxydopamine (6-OHDA) toxicity [35–37], and rescues rat PC12 cells from serum 

withdrawal or paraquat-induced apoptosis [38,39]. In addition, EGCG reduces apoptosis 

caused by exposure of fetal rhombencephalic neurons to ethanol [40]. Furthermore, EGCG 

significantly reduces β-amyloid-induced toxicity in hippocampal neurons by inhibiting Aβ 

fibril formation and oligomerization [41,42]. Finally, EGCG rescues primary dopamine 

neurons from 1-methyl-4-phenylpyridinium (MPP+) toxicity [43]. Thus, EGCG exerts 

significant neuroprotective effects against a wide range of oxidative insults in a multitude of 

neuronal cell systems.

In addition to the neuroprotective effects of EGCG observed in vitro, this nutraceutical 

antioxidant also preserves neuronal survival and function in several in vivo models of 

neurodegeneration. For example, oral administration of EGCG protects mice from the 

dopaminergic toxicity caused by the Parkinson’s neurotoxin, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP). EGCG treatment prevents the MPTP-induced loss of dopamine 

neurons from the substantia nigra pars compacta and preserves striatal dopamine levels in 

mice [44]. In a similar manner, EGCG is protective in a mouse model of familial ALS. Oral 

dosing of EGCG to transgenic mice expressing a human G93A mutant SOD1 (Cu, Zn-

superoxide dismutase) gene significantly delays symptom onset and moderately extends life 

span when compared to vehicle treated mice [45,46]. EGCG also reduces photoreceptor 

degeneration and improves motor function in a Drosophila model of Huntington’s disease 

[47]. Finally, oral administration of EGCG to Swedish mutant APP (APPsw) overexpressing 

transgenic mice substantially decreases amyloid plaque burden and reduces cognitive 
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impairment [48]. Collectively, these findings indicate that EGCG may be a viable 

therapeutic candidate for chronic neurodegenerative diseases such as AD, PD, ALS, or 

Huntington’s [49,50]. Additionally, EGCG given by intraperitoneal injection to rats with 

induced spinal cord injury, reduces malondialdehyde (MDA) levels, TUNEL-positive 

staining, and lesion area, resulting in increased motor function [51]. This latter study 

suggests that EGCG may also be beneficial in episodes of acute neuronal damage such as 

spinal cord trauma. The principal mechanism of action of EGCG is probably antioxidant 

activity; however, the activation of specific protein kinase pathways (discussed below in 

sections 7.2 and 7.3) also appears to play a significant role in the neuroprotective action of 

this polyphenol.

3.2. Quercetin

Quercetin (Figure 1A) is a flavonoid polyphenol found in many common foods such as 

apples and capers. Like EGCG, quercetin has also been extensively studied in in vitro and in 

vivo neuronal models. In vitro studies in PC12 cells show that quercetin increases cell 

survival in the presence of hydrogen peroxide [52,53], linoleic acid hydroperoxide [54], and 

tert-butyl hydroperoxide [55]. Also, in C6 glioma cells quercetin alleviates oxidative stress 

induced by hydrogen peroxide or interleukin-1β [56,57]. In addition, in human SH-SY5Y 

neuroblastoma cells, quercetin protects against the PD toxin 6-OHDA. In another PD toxin 

model, MPP(+)-induced toxicity in mixed ventral mesencephalic cultures was significantly 

attenuated by quercetin treatment [58].

In vivo studies of quercetin effects on neurodegeneration have mostly focused on cognitive 

impairments, ischemia, and traumatic injury. Quercetin improves memory and hippocampal 

synaptic plasticity in models of impairment induced by chronic lead exposure [59]. In 

addition, quercetin is neuroprotective against colchicine administration, which similarly 

causes cognitive impairments [60]. In a rat ischemia model using middle cerebral artery 

occlusion, quercetin decreases the size of the ischemic lesion [61] and suppresses 

hippocampal neuronal death [62]. Finally, in a model of acute spinal cord injury, motor 

function was improved by administration of quercetin post-injury [63]. Cumulatively, these 

studies indicate that quercetin has the potential, like EGCG, to be developed into a novel 

therapy for neurodegeneration.

4. Non-Flavonoid Polyphenols as Neuroprotective Agents

4.1. Resveratrol

Resveratrol (Figure 1B) is a polyphenolic antioxidant found in many kinds of grapes and is 

known mostly for its cardiovascular benefits [64,65]. However, resveratrol also 

demonstrates significant neuroprotective activity in vitro and in vivo. In various culture 

models, resveratrol protects organotypic hippocampal slices from oxygen-glucose 

deprivation [66], embryonic rat mesencephalic cultures from tert-butyl hydroperoxide [67], 

and CGNs from MPP(+)-induced toxicity [68]. In vivo, resveratrol significantly attenuates 

hippocampal neurodegeneration and learning impairment in the inducible p25 transgenic 

mouse model of AD and tauopathy [69]. Moreover, resveratrol also reduces oxidative 

damage and preserves striatal dopamine in the 6-OHDA rat model of PD [70]. The 
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antioxidant activity of resveratrol plays a significant role in its neuroprotective mechanism 

of action as does its modulatory effects on sirtuins and protein kinases (discussed below in 

Sections 7.1 and 7.3).

4.2. Curcumin

Research into the neuroprotective effects of the non-flavonoid polyphenol curcumin (Figure 

1B), is less extensive than that for resveratrol. However, in Neuro2a mouse neuroblastoma 

cells infected with Japanese encephalitis virus, curcumin enhances cell viability by 

decreasing ROS and inhibiting pro-apoptotic signals [71]. In vivo, curcumin protects rats 

from focal cerebral ischemia induced by middle cerebral artery occlusion [72]. In addition, 

curcumin is neuroprotective against the MPTP-induced neurodegeneration of the 

nigrostriatal tract in mice and was shown to prevent glutathione depletion and lipid 

peroxidation induced by this toxin. Furthermore, curcumin displays an additive protective 

effect to that of catalase and SOD activities in the striatum and midbrain of MPTP-treated 

mice [73].

The studies noted above indicate that the non-flavonoid polyphenols, resveratrol and 

curcumin, each show beneficial effects in cell culture and in vivo models of neurotoxicity 

and neurodegeneration, respectively. Thus, these compounds may have promise as novel 

neuroprotective agents for clinical use.

5. Phenolic Acids and Diterpenes from Rosemary Demonstrate Significant 

Neuroprotective Properties

Rosmarinic and Carnosic Acids

Phenolic acids and diterpenes constitute another family of nutraceutical antioxidants (Figure 

1C). Several of these compounds are found in rosemary, with rosmarinic acid and carnosic 

acid being two of the most prominent antioxidants concentrated in this herb. Rosmarinic 

acid has been shown to scavenge the reactive nitrogen species, peroxynitrite, and various 

ROS [74,75]. As a free radical scavenger, rosmarinic acid is effective at protecting SH-

SY5Y human neuroblastoma cells from hydrogen peroxide-induced oxidative stress and cell 

death [76]. In a similar experiment to the one shown above for EGCG (see Figure 2), we 

have demonstrated that rosmarinic acid provides dramatic neuroprotection in the CGN 

model against oxidative stress and mitochondrial apoptosis induced by the Bcl-2 inhibitor, 

HA14-1 (Figure 3). In vivo studies using mouse models of AD and ALS have shown that 

rosmarinic acid significantly alleviates memory impairment associated with Aβ 

neurotoxicity and significantly delays disease onset and prolongs lifespan in the G93A 

mutant SOD1 mouse model, respectively [77,78].

Carnosic acid, like rosmarinic acid, has been shown to be neuroprotective in both in vitro 

models of neuronal death and in vivo models of neurodegenerative disease. In vitro, carnosic 

acid activates the nuclear factor-erythroid 2-related factor 2 (Nrf2) transcription factor 

pathway (discussed in detail in the next section), and in this manner, protects neurons from 

oxidative stress [79]. In vivo, carnosic acid crosses the blood brain barrier and preserves 

reduced glutathione levels in the brain protecting it against injury induced by middle 
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cerebral artery ischemia/reperfusion [79]. Collectively, these findings suggest that the 

phenolic acids and diterpenes concentrated in rosemary may provide a novel class of 

neuroprotective agents for future theraputic development.

6. Organosulfur Compounds as Inducers of Endogenous Antioxidant 

Defenses

6.1. Allicin and L-Sulforaphane

The last class of nutraceutical antioxidants to be discussed in this review includes the 

organosulfur compounds, allicin and L-sulforaphane (Figure 1D). Allicin is highly enriched 

in garlic, and garlic extract is used more often than pure allicin in many studies. One such 

study examined the effects of garlic extract on brain synaptosomes isolated from young 

versus old rats. In synaptosomes isolated from young rats, under both control and hydrogen 

peroxide-induced oxidative stress conditions garlic extract significantly decreased the 

production of 8-iso-prostaglandin F2α (8-iso-PGF). 8-iso-PGF is a modified, unsaturated 

fatty acid released from the plasma membrane under oxidative stress. In contrast, aged rat 

brain synaptosomes only showed inhibition of 8-iso-PGF release at the highest dose of garlic 

extract studied and specifically under conditions of oxidative stress [80]. In a cell free in 

vitro study, garlic extract directly inhibited caspase-3, the executioner protease of the 

apoptotic cascade [81]. Thus, the neuroprotective mechanism of garlic appears to be two-

fold; it depends on its capacity to suppress oxidative stress and its potential to inhibit 

caspase-3 and prevent apoptosis. The potential neuroprotective effects of garlic in the 

context of AD are reviewed elsewhere [82].

L-Sulforaphane is an isothiocyanate compound found in broccoli and other cruciferous 

vegetables which has also been used as a neuroprotectant. Dopaminergic neurons, which are 

affected in PD, produce toxic dopamine quinone and ROS when exposed to 6-OHDA [83]. 

Dopamine quinone-induced neuronal death is markedly inhibited by pretreatment with L-

sulforaphane [84]. Additionally, neurons undergoing hydrogen peroxide-induced oxidative 

stress in a mixed neuron-astrocyte culture system are protected through stimulation of the 

Nrf2-antioxidant response element (ARE) transcriptional pathway, which L-sulforaphane 

has been shown to activate [85]. L-Sulforaphane activates this pathway by causing the 

dissociation of the negative regulator, kelch-like ECH associating protein 1 (Keap1), from 

Nrf2, as shown in Figure 4 (discussed in detail below). Finally, in a rat organotypic 

nigrostriatal tissue slice model, L-sulforaphane mitigated dopaminergic neuronal loss 

induced by 6-OHDA [86].

6.2. The Nrf2/ARE Antioxidant Pathway as a Target of Nutraceuticals

The above studies indicate that the sulfur-containing nutraceuticals, allicin and L-

sulforaphane, demonstrate neuroprotective effects in a number of in vitro systems. Although 

these compounds may have some direct antioxidant effects that have yet to be elucidated, 

their principal mode of neuroprotection is indirect via activation of endogenous antioxidant 

systems, including gene targets of the Nrf2/ARE transcription factor pathway.
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ROS created during normal cellular respiration must be neutralized by cellular antioxidant 

defenses before these free radicals have the opportunity to damage the cell. As previously 

discussed, ROS become a major problem for the cell when there is an imbalance between 

ROS created and ROS neutralized. As the cell’s balance of ROS and antioxidants becomes 

disparate, oxidative stress occurs which can act as a trigger for apoptosis and other modes of 

cell death. The ETC within the mitochondria is a major source of ROS production within a 

cell. For this reason, it is important to have antioxidants like glutathione peroxidase and 

SOD located within the mitochondria.

Glutathione peroxidase, SOD, and other endogenous antioxidants are critical for cell 

survival. In addition, transcription factors for these antioxidant genes, like Nrf2, are equally 

essential because they regulate the expression of these key antioxidants. In response to 

oxidative stress, Nrf2 induces a variety of antioxidant genes by recognizing an ARE binding 

site within their promoter regions [87]. Some key antioxidant genes induced by Nrf2 include 

γ-glutamylcysteine ligase (GCL), the rate limiting enzyme in the synthesis of glutathione 

(GSH), MnSOD (SOD2), and heme oxygenase, to name a few [88]. As a result, this 

pathway has been identified as a promising therapeutic target for neurodegenerative diseases 

[89]. Nrf2 is normally sequestered in the cytoplasm by Keap1, which must be dissociated in 

order for Nrf2 to translocate into the nucleus and promote gene transcription. The general 

mechanism of activating Nrf2 is demonstrated in Figure 4 and reviewed by Kobayashi and 

Yamamoto [90].

The organosulfur compounds, allicin and L-sulforaphane, share the unique ability to activate 

Nrf2 [91–93]. This common attribute is derived from the fact that each of these compounds 

has an electrophilic center which can serve as an attack site for nucleophiles, such as 

specific protein sulfhydryl groups present on Keap1 (Figure 5). Indeed, the mechanism of 

Nrf2 activation by L-sulforaphane has been demonstrated to involve disruption of the Nrf2-

Keap1 interaction due to modification of critical Keap1 cysteine residues [91,94,95]. The 

ability of these organsulfur compounds to induce Nrf2-ARE-dependent gene transcription 

suggests that this pathway is essential for their neuroprotective effects.

Nrf2 has been meticulously investigated in order to elucidate its role in antioxidant gene 

regulation. It has been shown to be neuroprotective in many different paradigms of neuronal 

injury or neurodegeneration. For example, an increase in Nrf2 activity protects SH-SY5Y 

human neuroblastoma cells from oxidative damage induced by the PD neurotoxin, 6-OHDA 

[96]. 6-OHDA was again used in both in vivo and in vitro models to demonstrate Nrf2 

neuroprotection [86,97].

Mixed neuron/astrocyte cultures from mice are another model in which Nrf2 induction is 

protective against oxidative stress [85,98]. Nrf2 activation mitigates dopamine neuron loss 

and striatal dopamine depletion in the MPTP mouse model of PD [99]. In addition to Nrf2 

activation being neuroprotective in the previously mentioned PD models, a transgenic AD 

mouse model showed attenuated Aβ toxicity following either adenoviral Nrf2 expression or 

induction of Nrf2 by tert-butylhydroquinone [100]. The critical importance of Nrf2 in 

controlling oxidative stress is further demonstrated by the enhanced oxidative stress and 

early embryonic lethality observed in combination Nrf1/Nrf2 knockout mice [101]. Nrf2 
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knockout alone is not embryonic lethal but does enhance the susceptibility of these animals 

to oxidative stress [89]. Finally, Johnson and colleagues have shown that Nrf2 induction 

specifically in astrocytes is sufficient to rescue neurons in vivo from death induced by 

mutant SOD1, MPTP, or malonate-induced complex II inhibition [102–104]. Given the 

striking neuroprotective effects of Nrf2 activation, it is reasonable to assume that 

nutraceutical Nrf2 inducers, like allicin and L-sulforaphane, may provide significant 

therapeutic benefit against neurodegeneration.

7. Alternative Mechanisms of Neuroprotection Attributed to Nutraceuticals

7.1. Sirtuins

The sirtuin (SIRT) proteins are a part of the histone deacetylase family and they possess 

(NADH)-dependent deacetylase activity. SIRT1 is a homologue of the yeast gene, silent 

information regulator two (Sir2), which is linked to longevity. An extra copy of the Sir2 

gene in yeast can mimic a calorie-restricted diet, extending lifespan [105]. In a similar 

manner, caloric restriction delays neurodegenerative disease onset. Qin et al. showed that 

caloric restriction activated SIRT1 in the brains of AD model Tg2576 mice, and reduced 

amyloid neuropathology [106]. Furthermore, they showed that expression of SIRT1 in either 

primary Tg2576 neuronal cultures or CHO cells expressing APPsw significantly attenuated 

Aβ peptide formation. SIRT1 has also been linked to alleviating Aβ toxicity in cortical 

neuron/glial co-cultures [107]. There is still much to learn about how nutraceuticals, like 

resveratrol, induce SIRT1. Regardless of whether the mechanism of SIRT1 activation by 

resveratrol is direct [108] or indirect [109,110], induction of SIRT1 appears to be a principal 

mechanism underlying the neuroprotective effects of this polyphenol [111–113]. The 

putative pro-survival effects of SIRT1 activation are multifaceted and involve the inhibition 

of Aβ peptide generation, suppression of Bax-dependent apoptosis, and repression of 

multiple pro-apoptotic transcription factors (Figure 6) [114–118].

7.2. Protein Kinase C (PKC)

PKC is another protein involved in a myriad of signaling pathways including cell survival 

and programmed cell death [119]. In rat hippocampal neurons it was shown that resveratrol 

activates a PKC pathway which protects these neurons from Aβ toxicity [120]. EGCG is 

also known to activate a pro-survival PKC pathway. EGCG activation of PKC, via enhanced 

phosphorylation of this kinase, underlies its neuroprotective effects in SH-SY5Y and PC12 

cells against Aβ toxicity [121]. The beta/gamma secretase-dependent processing of APP to 

the toxic Aβ peptide forms the basis of the pathophysiology underlying AD. There are 

however nontoxic processing pathways for APP, one of which is the alpha secretase-

dependent production of nonamyloidogenic sAPPα. EGCG augments this nontoxic 

processing pathway through PKC activation [121]. PKC activation has also been implicated 

in EGCG neuroprotection from serum withdrawal in PC12 cells [122] and 6-OHDA toxicity 

in SH-SY5Y cells [35]. Finally, Kalfon et al. have connected EGCG to the PKC-mediated 

degradation of pro-apoptotic Bad in SH-SY5Y neuroblastoma cells [123]. Thus, the 

activation of PKC by EGCG may play as significant a role in its neuroprotective mechanism 

of action as its intrinsic antioxidant capacity (Figure 7). There are many isozymes of PKC 

that have been investigated individually for their neuroprotective effects. Specifically, 
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PKCepsilon overexpression has been shown to reduce amyloid plaque burden and Aβ levels 

in human APP transgenic mice [124].

7.3. Other Protein Kinases

There are a number of additional signaling cascades that have been shown to be modulated 

by nutraceutical antioxidants including the predominantly pro-survival MEK/ERK and 

PI3K/AKT pathways, reviewed by Spencer [125]. For instance, resveratrol protects HT22 

hippocampal cells from glutamate-induced oxidative stress via a PI3K/AKT-dependent 

induction of SOD2 [126]. Similarly, EGCG rescues retinal ganglion cells from axotomy-

induced injury through activation of both PI3K/AKT and MEK/ERK pro-survival pathways 

[127]. Downstream of each of these pathways lies the transcription factor, cAMP-response 

element binding protein (CREB), which can induce the expression of key pro-survival genes 

like Bcl-2 [128,129]. Consistent with a role for this pathway in the neuroprotective effects of 

nutraceuticals, long term administration of green tea catechins in drinking water 

significantly increased CREB activity and decreased Aβ oligomer production in a mouse 

model of early onset deficits in learning and memory [130]. The characteristic of 

nutraceuticals to modulate key pro-survival kinase pathways likely plays a significant role in 

their neuroprotective actions (Figure 8).

8. Conclusions

Nutraceutical antioxidants have strong scientific support to be developed as novel therapies 

for neurodegenerative diseases. Many of these natural antioxidants are not only active 

scavengers of free radicals but also act as modulators of pro-survival or pro-apoptotic 

signaling pathways. As a result, these compounds may have a greater potential for 

therapeutic success than drugs with only one mechanism of action. The multiple modes of 

action of nutraceuticals to mitigate oxidative stress and promote neuronal survival signals 

likely underlie their effectiveness in so many in vitro and in vivo models of neuronal injury 

and neurodegenerative disease. Although individual neurodegenerative diseases manifest in 

distinct neuronal cell types, oxidative stress and suppression of neuronal survival signals are 

common to many of these pathological conditions and appear to be highly relevant targets 

for treatment.

Overall, neurodegenerative diseases lack effective treatment options for patients. AD and 

PD receive the most attention through extensive funding and research, yet even these 

diseases have only palliative therapies available and none that significantly slow or halt the 

underlying pathology of the disease. Others, like ALS, have an even worse prognosis with 

death occurring typically 2–5 years after diagnosis and only one FDA approved drug, 

Riluzole, which is minimally effective and only prolongs life by two-to-three months. 

Nutraceutical antioxidants may be the best options for these patients in the short term since 

they are subject to fewer regulations than traditional pharmaceuticals and therefore, could be 

made available to patients much more rapidly than new prescription drugs.

Finally, a testament to the tremendous potential of nutraceutical antioxidants as novel 

therapeutics for neurodegeneration includes the recent initiation of several clinical trials with 

these compounds. EGCG is currently being tested in Phase II trials for PD (Xuanwu 
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Hospital, Beijing, China) and early stage AD (Charite University, Berlin, Germany). 

Similarly, resveratrol is being tested in a Phase II trial to improve memory performance in 

the elderly (McKnight Brain Institute, University of Florida) [131]. Lastly, the safety and 

tolerability of curcumin is being investigated in patients with AD in a Phase II study [132]. 

The future appears to hold much promise for nutraceutical antioxidants to provide 

significant therapeutic benefits to patients suffering from neurodegenerative diseases. 

Research, medical, and patient communities eagerly await the results of these initial clinical 

trials with this novel class of neuroprotective compounds.
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Figure 1. 
Chemical structures of various nutraceutical antioxidants.
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Figure 2. 
EGCG protects neurons from oxidative stress. Representative images of CGNs incubated for 

24 hrs with the Bcl-2 inhibitor HA14-1 (15 M), HA14-1 + EGCG (25 M), or no treatment 

(Control). Immunocytochemistry was performed for β-tubulin (green) and active caspase-3 

(red). Nuclei are stained with DAPI, blue. Scale bar; 10 microns.
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Figure 3. 
Rosmarinic acid protects neurons from oxidative stress. Representative images of CGNs 

incubated for 24 hrs with the Bcl-2 inhibitor HA14-1 (15 M), HA14-1 + rosmarinic acid 

(Ros Acid; 50 M), or no treatment (Control). Immunocytochemistry was performed for β-

tubulin (green) and active caspase-3 (red). Nuclei are stained with DAPI, blue. Scale bar; 10 

microns.
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Figure 4. 
Activation of the Nrf2 transcription factor pathway by L-sulforaphane. The schematic shows 

a general mechanism by which ARE-mediated gene transcription is induced.
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Figure 5. 
Proposed chemical mechanism by which organosulfur compounds dissociate Keap1 from 

Nrf2. HS-Protein = critical Cys residues on Keap1 which are essential for its ability to 

suppress Nrf2 activity. Modified from Hong et al. [91] and Rabinkov et al. [92].
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Figure 6. 
Pro-survival effects of SIRT1. The schematic demonstrates the downstream consequences of 

nutraceutical activation of SIRT1.
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Figure 7. 
PKC is a key mediator of EGCG neuroprotection. The schematic shows the effects of PKC 

activation downstream of EGCG on the processing of APP being skewed towards the 

nonamyloidogenic product, sAPP, and the phosphorylation and targeting of pro-apoptotic 

Bad for degradation.
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Figure 8. 
Modulation of pro-survival protein kinase pathways by nutraceuticals.
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