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Review

Introduction

The human brain is one of the most complex systems in 
nature. An adult human brain is composed of approxi-
mately 1011 neurons, which are massively interconnected 
to each other by synapses. Such a vast number of interact-
ing neurons work collectively to execute all types of infor-
mation processing and mental representations in the brain. 
It has always been a formidable challenge for neuroscien-
tists and computational biologists to decipher how the 
brain works and directs behaviors (Pessoa 2014; Tognoli 
and Kelso 2014). Resting-state functional magnetic reso-
nance imaging (rfMRI) has provided a promising solution 
for the characterization of human brain dynamics by mea-
suring ongoing brain activity by enabling the recording of 
the Blood Oxygenation Level Dependent (BOLD) sig-
nals, and functional connectivity (FC) is a widely used 
and reliable method for characterizing functional interac-
tions in the human brain connectome (Biswal and others 
2010; Zuo and Xing 2014) (see Box 1).

FC was initially defined as the interregional relationship 
between remote brain regions and employed Pearson’s 

correlation coefficient between their BOLD time series 
(Friston and others 1993). Previous studies have illustrated 
the structural basis (Honey and others 2009), individual 
variability (Mueller and others 2013), behavioral 
(Wendelken and others 2015), and neuropsychiatric corre-
lations (Rudorf and Hare 2014) of the remote FC. Recently, 
with the emergence of the connectome theory of the brain 
and the increasing popularity of network science approaches, 
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Abstract
Much effort has been made to understand the organizational principles of human brain function using functional 
magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized 
technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the 
most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, 
interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially 
at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some 
local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric 
conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies 
on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality 
to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local 
functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical 
morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and 
identify relevant challenges, and recommend its use in future brain connectomics studies.
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some novel features of the human brain such as the exis-
tence of hub regions, modules, rich clubs, core networks, 
and its hierarchical structure have been gradually identified 
(Bullmore and Sporns 2009, 2012; Sporns 2013; van den 
Heuvel and Sporns 2013). These findings demonstrated 
that the brain functions as a whole network system and its 
different units play distinct roles according to their remote 
connection profiles. Olaf Sporns and his colleagues con-
ceived of the brain dynamics as an emergent phenomenon 
from an appropriately structured connectional design 
(Honey and others 2009). This was one of the answers to 
how the brain works and guides our behaviors.

In contrast to the remote FC, local FC is defined as FC 
at a local spatial scale to measure functional interactions 
or synchronizations between the neighboring voxels or 
vertices. The spatial scale for differentiating local FC 
and remote FC is usually between 10 and 15 mm (e.g., 
14 mm used in Sepulcre and others 2010). Deco and oth-
ers (2014) demonstrated how the local FC profiles affect 
the whole brain dynamics. More specifically, they 
described how the local FC could induce alterations in 
the remote FC. This observation points to the signifi-
cance of investigating local FC with local functional 
homogeneity (Zang and others 2004; Zuo and others 

2013). Examination of the associations between local 
and remote FC can thus benefit the modeling of the 
structure-function relationships in the human brain. The 
regional variations in local FC suggest that it is problem-
atic to define a node on the basis of a large structurally or 
anatomically informed region, as well as to construct an 
edge using an FC matrix. Simply averaging the voxel-
wise time series within a large region obviously ignores 
the variability of the local FC strength across large struc-
tural areas, leading to ambiguity in the interpretation of 
the mean time series and further derived network met-
rics. This represents the second advantage of investigat-
ing the local FC, which indicates the boundaries between 
functionally heterogeneous regions (Zuo and others 
2013) and can measure the nodal degree as a regional 
boundary point for delineating brain parcellation 
(Blumensath and others 2013). The final benefit of 
examining the local FC relates to its multimodal nature 
for integrating regional homogeneity in both structure 
and function. This advantage originates from two factors 
for defining regional homogeneity: (1) the definition of 
neighbors, which is determined by spatial adjacency 
reflecting structural or anatomical similarity; and (2) the 
definition of homogeneity, which is represented by the 

Box 1.
Terminology: connectivity, network, connectome, and regional homogeneity.

Functional magnetic resonance imaging (fMRI) is a common method for assessing the temporal dynamic relationship between 
a pair of brain areas. fMRI signals are the recordings of the Blood Oxygenation Level Dependent (BOLD) signals in brain gray 
matter tissue (panel A). Such functional interaction is usually modeled with statistical dependency (e.g., correlation as in Biswal 
and others 1995) between BOLD time series of two areas; this interaction is termed as functional connectivity (FC). Currently, 
the highest resolution for imaging the human brain function with fMRI is 2 to 4 mm in space with a temporal sampling rate (TR) 
of 0.5 to 3 seconds. Ideally, FC measures would be assessed on the cortical surface to reflect the intrinsically layered organiza-
tion of the human brain as a two-dimensional manifold. In practice, however, the accurate reconstruction of cortical surfaces has 
been a challenging topic in the field of computational geometry. Most frequently used, the mesh grid model for surface-based 
neuroimaging data analysis is a tessellation using finite elements of mesh with triangles (panel B). Both pial and white surfaces 
can be reconstructed by extracting boundaries between gray matter and cerebrospinal fluid (solid line in panel A) as well as 
boundaries between white matter and gray matter (dashed line in panel B). On the surfaces, local FC (green line in panel B) is 
defined as the FC between two nearby vertices (v1 and v2 as in panel B), whereas remote FC (blue line in panel B) refers to the 
FC between two distant vertices (v1 and v3 in panel B). The geodesic distance for differentiating local FC and remote FC is 
usually between 10 and 15 mm (Sepulcre and others 2010). FC profiles have segregated the human brain into different networks 
of connectivity between pairs of vertices. Panel C renders a network parcellation based on resting-state fMRI (rfMRI) data sets 
from 1,000 healthy adults, unfolding a total of seven networks in the human brain cortex (Yeo and others 2011). From the per-
spective of a whole brain system, the entirety of FC (functional connectome) is functional outcomes given by the underlying 
structural connectivity as a whole network (Biswal and others 2010; Sporns and others 2005; Zuo and others 2012). Panel D 
depicts a connectome graph (14,299 surface vertices as nodes) derived from 1,003 participants (same as in Zuo and others 2012) 
from the 1000 Functional Connectomes Project (Biswal and others 2010). In this brain graph, a node’s contribution (how central 
it is) to the graph connection is quantified by the centrality metric of the network modeled by the graph. Therefore, theoretically, 
any index measuring the connectional contribution of a network can be termed as a network centrality metric. Regional homo-
geneity (ReHo) describes the summarized local FC between a given node and its nearest neighboring nodes (v1 and surrounding 
six vertices in panel B) and thus can be understood as an index of network centrality for characterizing the importance of the 
node in the human functional connectome. This metric has been widely applied to study the association between healthy or 
disease conditions and the local FC network centrality, namely, human connectome association studies (HCAS).

 (continued)



488 The Neuroscientist 22(5)

Box 1. (continued)

functional homogeneity of the time series from these 
neighbors. These two features make regional homogene-
ity a network centrality metric with both structural and 
functional connectomics characterization.

This review has the following four aims: (1) briefly 
survey the history of studies on the organizational princi-
ples of human brain function; (2) propose local functional 
homogeneity as a network centrality to characterize the 
multimodal local features of the brain connectome; (3) 
render a neurobiological perspective on local functional 
homogeneity by linking its temporal, spatial, and individ-
ual variability to information processing, anatomical mor-
phology, and brain development; and (4) discuss its role 
and recommend its use in performing connectome-wide 

association studies as well as identify the relevant chal-
lenges for future brain connectomics studies.

Principles of Human Brain Function

Explorations into uncovering the organizational principles 
of human brain function can be dated to as far back as one 
hundred years ago, when the dominant theories of func-
tional interactions focused on either segregation or integra-
tion of human brain function (Tononi and others 1994). 
The functional segregation model posited that different 
brain regions were partitioned and specialized for the con-
trol of specific brain functions. This conceptual framework 
of brain function led directly to the discovery of the famous 
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Broca and Wernicke areas. Researchers typically targeted 
only one functional region at a time, and this method was 
proven to be one of the most efficient approaches for 
detecting specific cognitive functions within the entire 
brain, as well as to reveal hub regions for a given brain 
network. An alternative conceptual framework was pro-
posed that suggested that neural pathways and circuits 
involving multiple brain regions supported the information 
processing hierarchies in the visual and auditory systems 
(Mesulam 1998). This concept of segregated brain func-
tions has been developed further using task-based fMRI, 
where each segregated unit was conceived to respond 
selectively to an aspect of brain function.

The brain works as a whole network, and different 
regions play different roles according to their connectional 
patterns. Such an integration of segregated brain modules 
has been increasingly recognized in both empirical and 
computational neuroscience studies employing the tools 
of graph theory (Sporns 2013). Recently, neuroscientists 
have begun to extend our understanding of the brain func-
tional organization of the brain by applying network sci-
ence tools to the analysis of rfMRI data. This updated 
approach to the study of the human brain has enriched our 
knowledge through the discovery of various network 
properties, including the existence of hubs and their “rich 
clubs,” hierarchically organized modules, and small world 
networks in the brain (Bullmore and Sporns 2009, 2012). 
Conversely, many computational biophysical models 
based on the fMRI technique were derived according to 
the classical Hodgkin-Huxley model (Börgers and others 
2010), which used the electrochemical properties of neu-
rons to calculate the membrane potential. It is a relatively 
complicated model containing many parameters and thus 
has not been widely applied in later studies aiming to gen-
erate high-resolution brain connectomes. Simplified ver-
sions of this model, such as the FitzHugh-Nagumo model 
(Ratas and Pyragas 2011), the Ghosh model (Ghosh and 
others 2008), and the Breakspear model (Breakspear and 
others 2003), have emerged to study human brain connec-
tomes at a macro-scale (Honey and others 2009).

In summary, studying both functional segregation and 
integration in the brain is a promising method for under-
standing the functional organization of the brain and how 
it guides our behaviors. Whereas most studies, especially 
those focused on computational modeling, have focused 
on large-scale brain connectomics defined by whole brain 
system dynamics across 100 to 1,000 units, higher resolu-
tion connectomics composed of several 50,000 units of 
millimeters (commonly a resolution of imaging volumet-
ric elements or voxel) has been very challenging for neu-
roscientists (e.g., Buckner and others 2009; Zuo and 
others 2012). These challenges originated from several 
issues related to examinations of both functional segrega-
tion and integration: (1) the difficulty in explicitly 

reconstructing such a large connectivity matrix, due to its 
computation and storage; (2) the need to generalize the 
network metrics at a large scale to those equally applica-
ble at this high resolution; and (3) the requirements of 
integrated connectome algorithms across imaging modal-
ities and temporal/spatial scales. Regional homogeneity 
(ReHo) was developed to address these issues.

A Multimodal and Multiscale 
Network Centrality

fMRI measures human brain function in vivo and in real 
time, which has greatly facilitated the discovery of the 
organizational principles of human brain function and has 
enriched our understanding of mind-brain-behavior rela-
tionships (Buckner and others 2013; Cole and others 2013; 
Cole and others 2014; Sporns 2014). Although the exact 
physiological meaning of the BOLD signal is currently a 
topic of intense research, fMRI is the most efficient tool for 
studying human brain function at a timescale of seconds 
and a spatial scale of millimeters. The BOLD-derived local 
functional homogeneity or connectivity (local FC) has 
been examined with the use of many different metrics (for 
a methodology review, see Zuo and others 2013); however, 
it has rarely been linked to brain connectomics (for a high-
light of this idea, see Zuo and Xing 2014).

Characterizing Local Connectivity with ReHo

Local FC is defined by the temporal coherence or syn-
chronization of the BOLD time series within a set of a 
given voxel’s nearest neighbors. There are three factors 
relevant to quantifying the local FC: (1) the definition of 
nearest neighbors, (2) the computation of coherence or 
synchronization, and (3) the suppression of noise. Beyond 
other FC metrics, ReHo represents the most efficient, 
reliable, and widely used index (Zuo and others 2013; 
Zuo and Xing 2014). Specifically, for a given node (voxel 
or vertex of high-resolution connectomes) of a graph, we 
identify its K nearest neighbors (including this node) and 
denote vi(t) as their BOLD time series. The ReHo index 
of this node is computed as Kendall’s coefficient of con-
cordance (KCC) (Zang and others 2004) among these 
time series. The mathematical formula on KCC is detailed 
as the following equation (Kendall and Gibbons 1990):
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where Ri n=1, ,  represents the ranks of vi(t) and n is the 
number of temporal observations in the time series, Ri  is 
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the mean rank across the K neighbors at the ith temporal 
observation, and R  is the overall mean rank across all the 
K neighbors and all temporal observations. According to 
the equation, this index has obvious advantages in all 
three aspects of local FC: (1) the nearest neighboring 
nodes can be defined spatially, which is highly flexible 
for changing the neighboring size and usually reflects 
anatomical, morphological, and intrinsically geometric 
features in a local brain structure; (2) the rank-based com-
putation is highly efficient in the time domain; and (3) 
this index is very robust against noise by integrating 
noise-filtering operations across both the spatial domain 
(the mean-rank filter) and the temporal domain (the 
order-rank filter).

Zang and others (2004) proposed the original ReHo in 
3D volume imaging space. The neighbor relationship of a 
given voxel was determined by the adjacency of the voxel 
in either native or standard template 3D spaces (Fig. 1C). 
For example, two common neighbor sizes are 1 or 2, cor-
responding to the cubic box sizes of 3 or 5, which contain 
9 or 27 neighbor voxels. We refer to these two ReHo met-
rics as 3dReHo-1 and 3dReHo-2. A highly efficient com-
putation can be implemented by using commands in 
AFNI and FSL. This script has been released as part of 
the Connectome Computation System (CCS; Xu and oth-
ers 2015). However, one issue with 3dReHo is that the 
partial volume effects are particularly salient for voxels 
close to the boundaries between different tissues (e.g., the 
boundary between gray matter and white matter, the yel-
low curve in Fig. 1A). To address this issue, Zuo and oth-
ers (2013) developed a two-dimensional (2D) version of 
this metric by extending the computation onto the cortical 
mantle, namely 2D ReHo.

In nature, the cerebral cortex is organized into a sheet-
like 2D surface (Fig. 1B), which is embedded into 3D 
space, and distributes its function according to both the 
topological and geometrical properties of this surface. 
Therefore, a surface-based analysis of functional data is 
particularly useful for integrating the intrinsic geometry 
(e.g., curvature, geodesic distance, and shape) of the cor-
tical mantle into functional data analyses. While surface-
based approaches have been developed for long-distance 
FC metrics, local FC is rarely examined on the surface 
model of the human cerebral cortex. Beyond the set of 
general benefits discussed above, an additional advantage 
of the surface-based ReHo is that neighboring relation-
ships are both functionally and geographically meaning-
ful. Figure 1D depicts two different neighbor sizes of 2D 
ReHo computation for a given vertex (orange color): (1) 
step-one 2D ReHo (6 blue neighbor vertices) and (2) 
step-two 2D ReHo (6 blue plus 12 pink, for a total of 18 
neighbor vertices). The fast computation of surface-based 
ReHo as well as other functional metrics has also been 
released as part of the CCS.

Group-level analysis is an important step in studies 
using ReHo. Due to ReHo being a regional property, one 
key confounding factor would be the regional differences 
in image registration. As a result, we recommend includ-
ing Jacobian values from the white surface transforma-
tion in general linear models as nuisance variables to 
control for the regional variability of registration. For 
multiple comparison correction, we recommend the clus-
ter-wise method based on random field theory (cluster-
defining P = 0.01, cluster-level corrected P = 0.05), 
which requests a Gaussian field. This requirement can be 
fulfilled by the spatial smoothness intrinsically included 
in ReHo computation.

Thinking about ReHo as a Network Centrality

In a graph, a node’s contribution (or, how central a node 
is) to the connection flow is quantified by the centrality 
metric of the network modeled by the graph (Borgatti 
2005) and serves an important analytic tool in social sci-
ences (Borgatti and others 2009). Therefore, theoreti-
cally, any index measuring the connectional contribution 
of a network can be termed as a network centrality metric. 
Different network centrality maps can be used to charac-
terize different network connectivity by constructing a 
functional brain graph explicitly (e.g., Zuo and others 
2012). In contrast, it is not obvious that ReHo can be 
treated as a network centrality metric because the brain 
graph it depends on is not explicitly modeled. In fact, the 
graph behind the ReHo computation is the whole cortical 
network with its vertices as nodes, and temporal synchro-
nizations between pairs of nodes as edges. This implicit 
graphical methodology offers several advantages in pre-
serving weak connectivity in functional connectomics 
(Jiang and others 2015b; Pessoa 2014). From its defini-
tion, ReHo describes the functional connectivity relation-
ships between a given node and its nearest neighboring 
nodes and thus quantifies the degree of connections with 
the nearest neighbors of a node in the brain graph. It can 
be understood as an index of network centrality to charac-
terize the importance of the node in the human brain con-
nectome regarding its local functional interactions.

To demonstrate the centrality property of ReHo, we 
calculated individual ReHo maps in both native 3D vol-
ume space (1.5 mm isotropic voxel) and 2D surface space 
(2 mm between-vertex distance) of a participant (sub001) 
from a publicly shared 7-T rfMRI data set, which is a part 
of the Consortium for Reliability and Reproducibility 
(CoRR; Zuo and others 2014). The details of the MRI 
scanning can be found in the data descriptor of this par-
ticular data set (Gorgolewski and others 2015). All image 
preprocessing was implemented in CCS and described 
comprehensively in the CCS pipeline paper. To achieve a 
ReHo computation without the confounding factors that 
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may be introduced by spatial normalization and interpo-
lation, we implemented the computation in the individual 
native (both 3D volume and 2D surface) spaces. 
Specifically, in the 3D native volume space, the prepro-
cessed rfMRI time series were used to estimate the 3D 
ReHo computation for both 9 and 27 neighbors (Fig. 1C). 
To make 3D and 2D ReHo comparable, these 3D ReHo 
maps were projected onto a native surface (2 mm 
between-vertex distance) as in Figure 1E by using 

boundary-based registration. For 2D ReHo, the time 
series were first projected onto the native surface space, 
and then the KCC values were estimated across all the 
vertices for both 7 and 19 neighbors (Fig. 1D). Both 2D 
ReHo-1 and 2D ReHo-2 were visualized vertex-wise as 
in Figure 1F.

The assessment of a network centrality metric is essen-
tial for understanding a series of topological properties of 
the network (Zuo and others 2012). ReHo exhibited the 

Figure 1. Computation procedures for ReHo in individual native spaces. (A) The brain tissue segmentation generated the 
boundary curve between gray matter (GM) and white matter (WM) tissues (yellow curve). (B) Cortical white surface was 
reconstructed from the GM/WM boundary by FreeSurfer in native space. (C) ReHo was calculated with the time series in native 
3D volume space for two common neighbor sizes of 1 and 2 (namely 3D ReHo-1 and 3D ReHo-2), corresponding to the cubic 
box sizes of 3 or 5, which contain 27 or 125 neighbor voxels. (D) The time series in 3D space were projected onto the native 
2D surface space. ReHo was then calculated with the time series in native 2D surface space for two common neighbor sizes of 1 
and 2 (namely 2D ReHo-1 and 2D ReHo-2), which contain 7 or 19 neighbor vertices. (E) Map of 3D ReHo was projected onto 
the native 2D surface space. (F) Map of 2D ReHo was visualized on the native 2D surface space.
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highest values in the default network regions, the precu-
neus and medial visual cortex, revealing highly connected 
cortical hubs (Buckner and others 2009; Tomasi and 
Volkow 2011). Previous studies have demonstrated 
power-law and truncated exponent distributions of degree 
centrality for both structurally and functionally sparse 
large-scale networks (Bassett and Bullmore 2006). The 
edge densities of these large-scale networks are com-
monly smaller than 10% and thus named “sparsity.” 
However, recent studies have demonstrated very dense 
(edge density >60%) networks in the monkey brain 
(Markov and others 2014), questioning the suitability of 
the use of the term “sparsity” in connectomics. In humans, 
the true edge density of the brain connectome at voxel or 
vertex level is unknown, and the distribution of its cen-
trality can serve as an indirect measure of understanding 
the network organization in such meso-scale human con-
nectomes. In Figure 2, we plotted the distribution func-
tions or probability densities of 3D ReHo and 2D ReHo 
for two different neighbor sizes (both step-one and step-
two neighbors) across the entire cortical mantle (Fig. 1E 
and F). This plot indicates three features of ReHo: (1) the 
distribution of ReHo is approximately Gaussian or nor-
mal across both 3D volume and 2D surface space; (2) the 
mean and range of ReHo are largely improved by 2D 
surface-based computation; and (3) the increase in neigh-
bor size reduces the mean ReHo but does not change the 
shape of its distribution. These observations raise real 
challenges for investigating these meso-scale functional 
interactions as outputs from the underlying structural 
connectome.

Revealing ReHo’s Multimodal and Multiscale 
Nature

Theoretically, the core aspect of ReHo depends on the 
structural definition of nearest neighbors across the corti-
cal mantle, and such neighboring node information usu-
ally reflects anatomical, morphological, and intrinsically 
geometric features in local brain structure, with contribu-
tions to the determinant of local connectivity measured 
by ReHo. The computational implementation of ReHo is 
primarily constrained within a 2D mesh grid of the corti-
cal surfaces, which is reconstructed from high-resolution 
individual anatomical data. This not only establishes a 
highly reliable index for measuring ReHo’s multimodal 
nature (Zuo and Xing 2014) but also provides a highly 
feasible solution for common multimodal imaging stud-
ies by simultaneously integrating structural, functional, 
morphological, geometrical, and geographical features 
for a node or vertex on the surfaces (e.g., Jiang and others 
2014). In addition, this method can also be employed to 
analyze regional homogeneity of data obtained by other 
imaging modalities across individuals. This has been 

demonstrated for studying the locally spatial covariance 
of the cortical thickness in the following section. Equally, 
such an index can be used to examine the local covari-
ance of other morphological (thickness and area), geo-
metric (curvature and local gyri index), and metabolic 
properties.

Another powerful feature of ReHo metrics is its multi-
scale nature because the neighbor size can be freely 
adjusted to capture the local connectivity across different 
spatial scales (Fig. 1). Regarding the sampling scale 
space, the common ReHo method was developed in the 
temporal domain, and its KCC values (KCC-ReHo) 
would be reduced if there were time lags among the time 
series of neighbors, despite sharing similar shapes. 
Accordingly, switching to the frequency domain, Liu and 
colleagues proposed coherence to measure regional 
homogeneity (Cohe-ReHo) (Liu and others 2010a) and 
found Cohe-ReHo was more sensitive than KCC-ReHo 
in detecting the differences in rfMRI activities.

The theory of neuronal oscillations in the mammalian 
brain proposed a spectrum of oscillatory bands for the 
implementation of functioning in human cognition. The 
whole frequency band could be categorized into 10 sub-
bands: slow5 (0.01–0.027 Hz), slow4 (0.027–0.073 Hz), 
slow3 (0.073–0.198 Hz), slow2 (0.198–0.25 Hz), slow1 
(0.25–1.5 Hz), delta (1.5–4 Hz), theta (4–10 Hz), beta 
(10–30 Hz), gamma (30–80 Hz), fast (80–200 Hz), and 
ultrafast (200–600 Hz) (Buzsaki and Draguhn, 2004). 
They revealed a 1/f power-law relationship between the 
power density of EEG and the frequency (f), as well as 
the possible function of the neuronal oscillation syn-
chrony for input selection, binding cell assemblies, con-
solidation, and the combination of information. With 
rfMRI, Zuo and others (2013) investigated frequency-
dependent properties of ReHo measures across different 
scales of the aforementioned slow subbands. Using a 
series of data-driven frequency bands, Song and col-
leagues generated ReHo maps within different frequency 
intervals and found that ReHo in cortical areas were 
higher and more frequency-dependent or richer in scales 
than those in the subcortical areas (Song and others 
2014). The frequency-specific ReHo properties of differ-
ent brain regions may arise from the varied cytoarchitec-
ture or synaptic types in these areas and may underlie the 
neural-physiological basis of the local BOLD activities 
and the functional specificity of different brain regions.

Linking ReHo to Remote Functional 
Connectivity

The human brain functions as a whole network and a 
highly efficient, complex physical system. It is intuitive 
that neighbor-to-neighbor transmission or connection 
would bridge local connectivity and remote connectivity. 
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From a quantitative standpoint, Deco and others (2014) 
employed biophysical models to illustrate the effects of 
local feedback inhibition on the global dynamics of the 
large-scale brain network. They constructed a large-scale 
brain network model with 66 areas, wherein a cortical 
area was defined as a canonical local circuit composed of 
interconnected excitatory and inhibitory neurons coupled 
through NMDA, AMPA, and GABA synapses 
(Breakspear and others 2003), and inter-area couplings 
were constrained by the white matter fiber density con-
necting the two given brain areas (Honey and others 
2009). They transformed the simulated excitatory synap-
tic activity to BOLD signals using the Ballon-Windkessel 
hemodynamic model (Buxton and others 1998). Their 
theoretical simulations demonstrated that the local feed-
back inhibition control model largely improved the pre-
diction of remote functional connectivity and enhanced 
the dynamical repertoire of evoking the network and the 
accuracy of encoding the external stimulus. All these 
quantitatively validated findings highlighted the idea that 
the local connectivity profile within a network can essen-
tially influence the global network dynamics. A very 
recent study made such efforts by fully decoding the links 
between local FC and remote FC from the perspective of 
the human brain being a complex system to generate syn-
chronization, nonlinear dynamics, and low-frequency 
fluctuations (Minati and others 2015).

Besides the fact that computational neurosciences have 
revealed the importance of local connectivity in generat-
ing the global dynamics of the brain connectome, there is 
also increasing evidence that a similar mechanism for 
local-to-remote connectivity has existed for human brain 
development across much longer time scales, such as 

neurodevelopment (Fair and others 2009) or lifespan 
developmental changes (Betzel and others 2014; Cao and 
others 2014; Chan and others 2014; Zuo and others 2010a, 
2010b). The changes of ReHo as a measure of local FC 
thus most likely induce the alterations of remote FC across 
the cortical mantle. In one recent study, with the use of 
2dReHo, we demonstrated a local-to-remote FC miswir-
ing profile of connectomes in schizophrenia (Jiang and 
others 2015b). The importance of physical distance 
between nodes in human brain network architecture has 
been validated (Ercsey-Ravasz and others 2013; Markov 
and others 2014). Interregional covariance of anatomical 
properties has been related to genetic factors, behavioral 
and cognitive abilities, as well as systematic lifespan 
changes (for a comprehensive review, see Alexander-
Bloch and others 2013). The biological meaning of these 
structural covariance profiles may reflect regional homo-
geneity of developmental coordination or synchronized 
maturation. Future studies of the covariance network con-
structed from the correlations between local functional 
homogeneity (ReHo) and remote FC would help increase 
our understanding of the organizational principles under-
lying human brain function.

A Neurobiological Perspective for 
ReHo

A controversy surrounding ReHo concerns its utility as a 
biologically meaningful measure of human brain func-
tion, although previous studies have made some specula-
tions based on its applications in brain diseases (Liu and 
others 2008). This difficulty of interpretation is partly 
caused by the nonlinearity of the rank-based operation in 

Figure 2. Distribution functions of 3D ReHo and 2D ReHo for two different neighbor sizes (both one-step and two-step 
neighbors) across the entire cortical mantle.
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ReHo computation and the indirect measure of neuronal 
activity using BOLD signals. Beyond that, ReHo is 
believed to reflect the local synchronization of spontane-
ous neural activity. However, strong evidence supporting 
this local synchronization hypothesis was missing. 
Recently, we systematically examined regional differ-
ences in ReHo and its morphological relevance, leading 
to a set of neurobiological evidence supporting the posi-
tion that ReHo reflects the hierarchical organization of 
the brain and neurodevelopmental factors (Jiang and oth-
ers 2014). The main findings in that study are briefly 
reviewed and highlighted as follows.

Hierarchies and Interindividual Variances

The existence of signaling pathways across multiple 
brain regions is the most important organization principle 
of human brain function. The signaling hierarchy usually 
comprises the primary sensory, upstream unimodal, 
downstream unimodal, heteromodal, paralimbic, and 
limbic zones of the cerebral cortex (Mesulam 1998). 
Gradients of ReHo characterize the degree of local func-
tional integration and segregation of the human brain. 
The regional variation of local functional homogeneity 
within a pathway of brain regions can help clarify our 
understanding of the organizational principles of human 
brain function.

The visual system occupies the largest area of the 
human cerebral cortex and gives organisms the ability to 
process visual details, as well as enables the formation of 
several non-image photo response functions. This system 
detects and interprets information from visible light to 
build a representation of the surrounding environment. 
The division of cortical visual processing into distinct 
ventral and dorsal streams is a key framework that guides 
visual neuroscience. The ventral visual stream (VVS) is a 
more widely accepted and influential model in both non-
human primates and humans, compared to the dorsal 
visual stream. The VVS has been clearly demonstrated to 
have a hierarchical organization. The information pro-
cessing hierarchy in this stream can be used to detect the 
hierarchical variation of ReHo and begin unraveling the 
organizational principles of human vision within the 
brain. In the VVS, the primary visual cortex is also known 
as V1, striate cortex, calcarine cortex or Brodmann area 
(BA) 17 and covers the banks of the calcarine fissure. The 
unimodal visual association cortex can be divided into an 
upstream peri-striate component (BA 18, 19) and a down-
stream temporal component including the fusiform (BA 
37), inferior temporal cortex (BA 20), and perhaps parts 
of the middle temporal gyrus (BA 21).

The mean 2D ReHo across the six VVS areas were 
ordered regarding their hierarchies of information pro-
cessing, indicating a correlation between decreases in 2D 

ReHo and increases in complexity of information pro-
cessing across the stream. This order of regional changes 
in 2D ReHo is highly reproducible across the two hemi-
spheres and three large samples of neuroimaging data 
(Fig. 3A). Similarly, regional variation in high-order 
pathways such as posterior medial cortex (Fig. 3B) and 
prefrontal cortex (Fig. 3C) demonstrated more complex 
but reproducible hierarchical profiles of information pro-
cessing. Such exciting illustrations proved that 2D ReHo 
has clearly neurobiological significance for measuring 
human brain function in terms of potential signaling 
pathways.

In general group analysis, we always need to calculate 
mean responses of brain function from a group of partici-
pants, and interindividual variability is often treated as 
noise and is ignored, being irrelevant to our research 
interests. However, covariance network studies of brain 
structure (Mechelli and others 2005) and function (Zhang 
and others 2011) have gradually elucidated the signifi-
cance of interindividual variability or covariance. A 
recent study demonstrated that the interindividual vari-
ability of remote functional connectivity is heterogeneous 
across the human cortex, displaying significantly higher 
variability in the multimodal association cortex (Mueller 
and others 2013). Rather than being noise, interindividual 
variability is invaluable for understanding the principles 
of brain organization, evolution, and development.

To characterize the regional homogeneity of interindi-
vidual variability for local FC, we proposed the spatial 
covariance of ReHo (scovReHo) as KCC by iteratively 
applying the ReHo method on the cortical surfaces. More 
specifically, for each vertex, this algorithm replaced the 
number of time points in Equation (1) with the number of 
participants and the time series in Equation (1) with the 
ReHo values of all individual participants. A total of 627 
participants from three large samples were selected to 
calculate the scovReHo: (1) 126 participants from the 
Nathan Kline Institute-Rockland Sample (NKI-RS; mean 
age: 36.84 ± 21.20 years; 68 males) (Nooner and others 
2012), (2) 316 participants from the Enhanced NKI-RS 
sample (mean age: 44.38 ± 19.72 years; 112 males), and 
(3) 185 participants from the Chinese Color Nest Program 
(CCNP; mean age: 11.91 ± 3.14; 86 males) as part of the 
Consortium for Reliability and Reproducibility (CoRR; 
Zuo and others 2014). As control analyses, we also calcu-
lated coefficient of variation (CV) of ReHo (cvReHo) as 
an IIV metric of ReHo as well as similar computation for 
cortical thickness (CT), that is, scovCT and cvCT. Effects 
of site, gender, brain size, head motion, and registration 
error have been controlled during the analyses.

As shown in Figure 4, across the human lifespan of a 
temporal scale of years, the four high-order networks 
(frontoparietal control, dorsal attention, default mode, and 
ventral attention) exhibited low interindividual variability 
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of ReHo, whereas the other three primary networks (visual, 
somatomotor, and limbic) demonstrated high IIV of ReHo 
(Fig. 4A). In contrast, the spatial covariance profiles of this 
interindividual variability demonstrated a considerably dif-
ferent distribution (Fig. 4C): (1) the visual and somatomo-
tor networks are highly homogeneous in their lifespan 
changes of the local functional homogeneity and (2) the 
default mode, limbic, and control networks showed lower 
regional covariance of their local connectivity. These two 

findings, together, reveal a systematic and dynamic picture 
of the local functional homogeneity in the common neural 
networks across the human lifespan (Collin and van den 
Heuvel 2013). The high-resolution maps also serve as evi-
dence for the local boundaries across cortical mantle and 
indicate a highly stable multimodal neuroimaging marker 
of local FC across the lifespan. In the posterior medial cor-
tex (PMC), the gradient of ReHo covariance transformed 
into a distinct profile across the dorsal PMC and ventral 

Figure 3. Regional hierarchies of ReHo and their reproducibility. Panel A illustrates regional variation of local functional 
homogeneity in the ventral visual system. Panel B illustrates functional network hierarchy of local functional homogeneity of the 
prefrontal cortex. Panel C illustrates regional variation of local functional homogeneity in the posterior medial cortex. Figures are 
reproduced and modified from Jiang and others (2014).
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PMC (for a similar finding, see Jiang and others 2014). 
This echoes that the precuneus had different lifespan tra-
jectories in relation to that of the default mode network 
(Yang and others 2014), which was recently highlighted in 

Power and others (2014). As for the control analyses, the 
cortical thickness exhibited different profiles for both 
interindividual variability (Fig. 4B) and spatial local cova-
riance (Fig. 4D), indicating the distinct lifespan changes of 

Figure 4. Interindividual variability and its regional covariance for local connectivity and cortical thickness across the human 
lifespan. Interindividual variability is measured with coefficient of variation (CV), and the relevant regional covariance is quantified 
by Kendall’s coefficient of concordance (KCC). Panel A depicts the CV map of local connectivity and its Manhattan plot clustered 
according the seven common neural networks. Panel C renders KCC surface of local connectivity and its Manhattan plot. Panels 
B and D illustrates the same plots of cortical thickness regarding CV and KCC, respectively.
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the neural networks as related to their function and 
morphology.

Brain Structure, Morphology, and Metabolism

Deciphering the structure-function relationship of the 
human brain has been a persistent challenge for scientists. 
In the field of single-cell biology, computational biolo-
gists have constructed multiple biophysical models of 
signaling pathways to explore how the signaling network 
topology supports its function (Jiang and others 2010). In 
the field of human brain connectomics, Olaf Sporns and 
colleagues conceived of brain dynamics as a phenome-
non emerging from the appropriate connectional network 
structure of the brain to explain how the structural con-
nectivity matrix shapes the functional connectivity matrix 
(Honey and others 2009). An exponential distance distri-
bution that features stronger local connectivity than 
remote connectivity has also been characterized as a key 
property in human brain networks (Ercsey-Ravasz and 
others 2013), and a simple model derived from this expo-
nential distance rule reproduced many properties of 
human brain networks (Markov and others 2014). From 
the single-cell level, Brodmann areas were constructed 
based on localized cytoarchitecture of neurons and 
remained the most widely known and frequently cited 
cerebral cortex parcellation of human brain function for 
over 100 years. These validate the dependence of human 
brain function on the structure or structural associations 
of function.

The homogeneity of cell number/type and neuron den-
sity can contribute to the functional homogeneity within a 
small region. However, at the time of this writing, these 
cell-level measurements are unavailable because of the 
constraints of the technique. From a morphological per-
spective, at the spatial scale of millimeters, cell properties 
determine the general morphology of cortex. Morphological 
MRI can safely measure cortical thickness, surface area, 
mean curvature, sulcal depth, and the gyrification index 
across the entire cortical mantle. We recently employed 
these metrics to estimate the structural contribution to 2D 
ReHo (Jiang and others 2014) and found widely distrib-
uted negative correlations between surface area and ReHo 
across the cortex, where the posterior dorsal part of the cin-
gulate gyrus exhibited the highest area-homogeneity asso-
ciation. The functional homogeneity of the parieto-occipital 
sulcus, the marginalis cingulate sulcus, and the cingulate 
cortex exhibited significant positive correlations with their 
cortical thicknesses. Geometrically, the mean curvature of 
the cortical surface exhibited a high positive correlation 
with ReHo in a variety of sulcal clusters distributed into the 
frontal, temporal, parietal, and occipital cortices. This 
association was particularly salient along the cingulate sul-
cus. In several clusters of both temporal and parietal cortex 

as well as the anterior medial prefrontal cortex, the ReHo 
was significantly negatively correlated with the sulcal 
depth. Regarding folding pattern of the cortex, significant 
positive correlations between the local gyrus index and 
ReHo were observed in the dorsolateral prefrontal cortex 
and the middle temporal gyrus. These findings support the 
assertion that ReHo not only shares the individual variabil-
ity with a wide range of cortical morphologies but also 
holds its own unique functional variability, which warrants 
comprehensive investigation in future studies.

From a metabolic perspective, the intercell or inter-
neuron variability in the biochemistry of the relevant sig-
naling pathways influences the variability of brain 
activity measured by fMRI. The magnitude of the BOLD 
signal and the connectivity across subjects within the 
default mode and the dorsal attention networks have been 
found to be associated with glucose metabolism (Nugent 
and others 2015). Significant positive correlations were 
observed across the whole brain between the regional 
metabolic rate of glucose and ReHo. Another important 
metabolic variable is cerebral blood flow (CBF), which 
can be examined with arterial spin labeling (ASL) imag-
ing technology. Interestingly, the spatial distribution pro-
files were highly similar across CBF and ReHo metrics, 
particularly within the default network (Zou and others 
2009). Li and others (2012) directly examined the rela-
tionship between rfMRI-derived ReHo and CBF regard-
ing their interindividual variability and found ReHo was 
reliably correlated with CBF in most brain regions. 
Highly connected hub regions in functional connectomes 
have their physiological basis of blood flow (Liang and 
others 2013). These results demonstrated that the vari-
ability of CBF could, at least in part, explain ReHo-based 
variability, assigning a metabolic role to this local con-
nectivity metric.

Developmental Underpinnings

The development of human brain function is a highly 
complex process involving both genetic and environmen-
tal variables. The application of in vivo rfMRI has greatly 
supported the elucidation of core principles during the 
human lifespan. Neuroimaging evidence consistently sug-
gests that short-range connections evolve into long-range 
connections during human brain development, represent-
ing a transition from local to distributed organization dur-
ing development (Lopez-Larson and others 2011). 
Specifically, this normal distance-dependent organization 
represents dynamic changes from short or homologous 
interhemispheric circuits to long-range and more efficient 
networks. Consistently, Uddin and others (2010) observed 
the pruning of local network connectivity and strengthen-
ing of long-range network connectivity with increasing 
age. It is thus not surprising that weakened short-range 
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functional connections can serve as a good predictor of 
brain maturity as indexed by chronological age (Dosenbach 
and others 2010). ReHo as an index of local FC is associ-
ated with age in healthy brains, reflecting this local-to-
remote developmental pattern. A general decrease in 
ReHo with age (11–35 years) was observed across the 
whole brain, of which the anterior cingulate and temporal 
lobe exhibited the greatest reduction (Lopez-Larson and 
others 2011). This reduction of ReHo with age was also 
detectable in a normal aging sample (59–73 years; Wu and 
others 2007) and was recently reproduced in a large lifes-
pan (13–85 years) sample (N = 913; Tomasi and Volkow 
2011).

In addition to the age effects of ReHo discussed above, 
the ReHo-based interindividual covariance network also 
suggested the developmental neurobiological meanings 
of this local connectivity metric. The structural covari-
ance in the human cortex has increasingly been recog-
nized as a reflection of the underlying developmental 
coordination or synchronized maturation between brain 
areas (Alexander-Bloch and others 2013). This rationale 
is generalizable to ReHo due to its structural and morpho-
logical associations. By analyzing the ReHo covariance 
network, we revealed a clear hierarchy of five modules in 
the human brain: the association network, motor network, 
visual network, auditory network, and transition network. 
This topology is attributed, at least in part, to interre-
gional relationships in information processing or devel-
oping the cognitive capacities during brain development 
across the human lifespan. Interestingly, the degree cen-
trality map (see Fig. 7 in Jiang and others 2014) of this 
ReHo covariance network exhibits a highly similar pat-
tern of spatial distribution to that of myelin maps (see 
Fig. 3 in Glasser and Van Essen 2011). These findings 

indicate a potential link during neurodevelopment 
between structure and function regarding the interre-
gional covariation of local functional homogeneity.

Physiological Confounding

Separation of physiological noise from fMRI signals is a 
major challenge in all the BOLD-based neuroimaging 
studies. ReHo, as a measure of local connectivity, may be 
particularly sensitive to cardiac or respiration effects 
within a local region. While we can take some steps to 
mitigate physiological noise influences on ReHo by 
regressing out white matter and cerebrospinal fluid sig-
nals and band-pass filtering signals of noninterest, some 
further processing can improve the accuracy and the 
specificity of physiological noise correction. One can 
model the physiological processes by simultaneously 
recording these noises during the imaging scans and then 
take out these physiological signals from rfMRI time-
series (e.g., RETROICOR in Glover and others 2000). 
Another set of physiologically de-noising methods is 
purely data-driven and involves extracting noise-related 
processes from the rfMRI data (e.g., Falahpour and others 
2013; Griffanti and others 2014; Pruim and others 2015a; 
Pruim and others 2015b; Salimi-Khorshidi and others 
2014). A recent study proposed a very promising solution 
by combining these two strategies: modeling the physio-
logical response functions using participant-specific TR 
of imaging sequences for the noise suppression (Cordes 
and others 2014). These methods are highly valuable for 
ReHo computation and will be implemented in future 
releases of CCS-based ReHo analysis (Xu and others 
2015).

Human Connectome Association 
Studies

Since Zang’s seminal work on the ReHo method published 
in 2004, the number of published research articles using 
ReHo is rapidly increasing, especially in recent years, as 
illustrated in Figure 5. Beyond a small number of method-
ology papers, most previous studies employed ReHo to 
study the association between healthy or disease conditions 
and the local connectivity of the human brain connectome, 
termed Human Connectome Association Studies (HCAS). 
Healthy HCAS mainly targeted behavioral correlations of 
local connectivity with cognitive control and intelligence, 
whereas disease HCAS explored changes of local connec-
tivity in a wide range of neuropsychiatric conditions across 
the lifespan, such as autism spectrum disorders (ASD), 
attention-deficit/hyperactivity disorder (ADHD), schizo-
phrenia, major depression disorder (MDD), addiction, mild 
cognitive impairment (MCI), dementia, and Alzheimer’s 

Figure 5. The number of published research papers using 
ReHo since 2004. These data were obtained by searching the 
PubMed database using the terms “regional homogeneity” 
followed by the manual exclusion of irrelevant references at 
8:00 p.m. on February 17, 2015.
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disease (AD). Here, we systematically review these find-
ings and interpret their explanations under a new perspec-
tive of the local functional homogeneity as a multimodal, 
multiscale marker of the human connectome. For all these 
papers, please visit the online data at http://www.ncbi.nlm.
nih.gov/sites/myncbi/1hwqAdhRyR6/collections/ 
47536879/public, which were obtained by searching the 
PubMed database using the terms “regional homogeneity” 
followed by manually excluding irrelevant references  
(8 p.m., February 17, 2015).

Behavior HCAS: Cognitive Control

Individual variation in the ability to control thoughts and 
behaviors represents individual differences in cognitive 
control. The main function of cognitive control is to 
accomplish goal-directed behaviors by monitoring inter-
ference or response conflict and dynamically adjusting 
performance. Such highly feasible and automatic adap-
tive adjustments can be studied via the “conflict adapta-
tion effect” in congruency tasks. In the dorsal lateral 
prefrontal cortex (DLPFC), individual differences in 
ReHo can reproducibly and robustly predict individual 
variability in performance on a task of the behavioral 
conflict adaptation (Wang and others 2014). This finding 
indicated that higher ReHo values were linked to better 
performance during conflict adaptation behaviors. The 
underlying neural mechanism likely involves the variable 
complexity of information processing in the intrinsic 
functional architecture across different individuals.

Another feature of the brain’s control system is 
response inhibition, which refers to the ability to suppress 
responses that are no longer required or appropriate. This 
ability thus supports flexible behavior in ever-changing 
environments and is a key component of executive con-
trol. The deterioration of response inhibition has been 
linked to certain disorders such as ADHD, OCD, and sub-
stance abuse. It has been demonstrated that ReHo could 
successfully predict stop signal reaction time (SSRT) in a 
stop signal task (Tian and others 2012). Specifically, pos-
itive correlations were observed in the bilateral inferior 
frontal cortex and three critical components of the default 
mode network (DMN), and negative ReHo-SSRT corre-
lations were observed in the rolandic area/posterior insula 
and the bilateral middle occipital cortex. This may sug-
gest that the degree of local functional integration or spe-
cialization was specifically associated with the task 
performance during response inhibition. More unwanted 
thoughts have been associated with lower ReHo (over 
functional specialization) in the right DLPFC and higher 
ReHo (over functional integration) in the left striatum 
(Kuhn and others 2014). The failure to suppress unwanted 
self-related thoughts can lead to extreme forms of nega-
tive thoughts that characterize psychiatric illness such as 

obsessive-compulsive, depression, anxiety, or posttrau-
matic stress disorders.

Behavior HCAS: Intelligence

Since the historical examination of Albert Einstein’s brain, 
one of the most striking challenges in the field of neuro-
science has been to understand the brain mechanism 
underlying intelligence. The intelligence quotient (IQ) is a 
standardized measure of human intellectual capacity that 
takes into account a wide range of cognitive skills and 
generally involves three measures: verbal, performance, 
and a synthesized full-scale IQ (FSIQ). With the advance-
ment of image acquisition and analysis methods in recent 
years, the neural mechanism underlying human intelli-
gence has been studied using rfMRI methods. Among 
these, ReHo was demonstrated to correlate positively with 
the FSIQ scores from the Chinese Revised Wechsler Adult 
Intelligence Scale within the bilateral inferior parietal lob-
ules, the middle frontal, parahippocampal and inferior 
temporal gyri, the right thalamus, superior frontal and 
fusiform gyri, and the left superior parietal lobule (Wang 
and others 2011). The main findings here are consistent 
with the parieto-frontal integration theory of intelligence. 
Another study reported that Raven’s Standard Progressive 
Matrices (RSPM) scores were positively correlated with 
ReHo values in the right fronto-insular cortex of the 
salience network, the right middle frontal gyrus and tem-
poral pole, and the left fusiform and parahippocampal 
gyri. In contrast, RSPM scores were negatively correlated 
with ReHo in the bilateral sensorimotor cortex, the poste-
rior cingulate cortex, the precuneus, and the right inferior 
parietal lobule of the default mode network (Yuan and oth-
ers 2012). Although these findings seem to converge onto 
a macro-scale profile of local functional organization in 
the intrinsic architecture of human brain function, both the 
spatial and the statistical distribution of these correlational 
results are still controversial. This may be an indication 
that many methodological and neurobiological aspects of 
ReHo remain challenging and need to be carefully 
addressed in future studies.

Disease HCAS: ASD, ADHD, and 
Schizophrenia

ReHo was implicated as a reliable metric of neurodevel-
opment, which may be altered in various neurodevelop-
mental disorders such as ASD, ADHD, and early-onset 
schizophrenia. Previous studies have investigated abnor-
mal changes in ReHo across these disorders. More spe-
cifically, when compared with typically developing 
controls, patients with ASD exhibited decreases in ReHo 
in the right superior temporal sulcus, inferior and middle 
frontal gyri, superior parietal and anterior prefrontal 

http://www.ncbi.nlm.nih.gov/sites/myncbi/1hwqAdhRyR6/collections/47536879/public
http://www.ncbi.nlm.nih.gov/sites/myncbi/1hwqAdhRyR6/collections/47536879/public
http://www.ncbi.nlm.nih.gov/sites/myncbi/1hwqAdhRyR6/collections/47536879/public
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regions, bilateral cerebellar crus I, right insula, and right 
postcentral gyrus, as well as increases in ReHo in the 
right thalamus, left inferior frontal and anterior subcallo-
sal gyrus, bilateral cerebellar lobule VIII, and lateral and 
medial temporal regions (Di Martino and others 2014; 
Jiang and others 2015a; Paakki and others 2010; Shukla 
and others 2010). These abnormal organizations of local 
functional homogeneity are predominantly in the right 
hemisphere, leading to the conclusion that ASD is char-
acterized by a right-hemisphere-dominant profile of 
ReHo alterations. Together with the most recent studies 
of the brain connectomics in autism using graph theory, 
we suggest that ReHo is a highly sensitive and reliable 
measure for characterizing local or short-distance con-
nectivity and for detecting their abnormalities in ASD.

There are numerous studies that have examined abnor-
mal brain changes in ADHD children compared to typical 
developing children. Nearly half of these studies employed 
ReHo as a feature for classifier methods and revealed some 
highly discriminative brain regions between ADHD and 
normal children, such as the prefrontal cortex, anterior cin-
gulate cortex, and the thalamus. The ADHD symptom 
scores demonstrated positive correlations with the ReHo 
values in the right cerebellum, dorsal anterior cingulate cor-
tex, and left lingual gyrus. These studies converged on a set 
of abnormal circuits in ADHD across frontal, parietal, tem-
poral, and cingulo-occipito-cerebellar areas, suggesting the 
altered local function across these circuits and a link to 
abnormal behavioral outcomes (An and others 2013).

RfMRI-based ReHo studies on schizophrenia involved 
multiple perspectives, including discriminative models, 
different onset ages, first-degree relatives, DAOA gene 
effects, frequency dependent effects, and MA abuse 
effects. The brain regions showing abnormal ReHo 
included the frontal, the temporal, the cingulate gyrus, the 
cerebellum, the precuneus, the precentral gyrus, the mid-
dle occipital gyrus, and the insula. Regarding the neuro-
developmental aspect of this disorder, it is worth noting 
that consistent increases in local connectivity were 
observed across both early-onset schizophrenia (EOS) 
and adulthood-onset schizophrenia (AOS) patients in the 
right superior frontal gyrus, where the connectivity 
strength was correlated with the positive syndrome score 
in AOS patients (Jiang and others 2015b). In contrast, 
deceases in ReHo were only detectable for EOS patients 
in the postcentral gyrus, where the connectivity strength 
was correlated with the negative syndrome score. 
Diagnosis-age interactions in local FC and long-distance 
FC were also detectable in EOS patients.

Disease HCAS: MDD and Addiction

RfMRI studies have identified prominent abnormalities 
in large-scale brain networks of patients with pediatric, 

geriatric, early onset, late onset, late life, unipolar and 
bipolar depression, as well as relevant pharmacological 
and genetic effects. Unfortunately, it is unclear how local-
ized dysfunctions of specific brain regions contribute to 
network-level abnormalities. We thus summarized stud-
ies investigating changes in ReHo using rfMRI depres-
sion (Iwabuchi and others 2015) and found that the 
medial prefrontal cortex (MPFC) showed the most robust, 
reproducible, and reliable increase in local functional 
connectivity in depression. This abnormality was greater 
in medication-free patients with multiple episodes. The 
brain networks anchoring this region have been identified 
previously to show aberrant connectivity in depression, 
and we thus propose that the localized neuronal ineffi-
ciency of MPFC (loss of optimal balance between func-
tional integration and specialization) exists alongside 
network-level disruptions.

Addiction has been thought to be associated with 
abnormal brain organization for a long time. Moreover, 
recent addiction studies are increasingly focusing on non-
substance addiction disorders, such as Internet addiction 
disorder (IAD). The pathogenesis of IAD has been 
explored regarding its underlying neural correlates by 
using the ReHo method (Kim and others 2015). To ana-
lyze encephalic functional characteristic of IAD, 
researchers recruited college students and examined their 
ReHo changes under resting state according to their self-
reported levels of Internet use. The results showed that 
there are abnormalities of local functional homogeneity 
in IAD college students compared with the controls, indi-
cating an enhancement of functional synchronization in 
most encephalic regions (Liu and others 2010b). Further 
studies revealed that long-term online game playing 
enhanced brain synchronization in sensory-motor coordi-
nation related brain regions and decreased the excitability 
in visual and auditory related brain regions (Dong and 
others 2012). These results show that functional changes 
of local connectivity were detectable in IAD college stu-
dents and were related to reward pathways.

Disease HCAS: MCI, Dementia, and AD

Most patients with mild cognitive impairment (MCI) are 
thought to be in a very early stage of AD. As an index of 
regional brain activity, ReHo can provide a fast method 
for mapping local functional connectivity across the 
whole brain in MCI. Decreased ReHo or increased local 
functional segregation were found in the bilateral precu-
neus, left middle occipital gyrus, right inferior parietal 
lobe, and right angular gyrus of MCI patients, whereas 
increased ReHo or increased local functional integration 
were detected mainly in the left medial frontal gyrus, 
right para-central lobe, and cingulate cortex (Han and 
others 2011; Zhang and others 2012). Correlational 
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analyses indicated that decreases in ReHo were associ-
ated with the reduction of the memory and other cogni-
tive abilities in MCI.

Monogenic dementias represent a great opportunity to 
trace disease progression from preclinical to symptomatic 
stages. Frontotemporal dementia related to Granulin 
(GRN) mutations presents a specific framework of brain 
damage, involving frontotemporal regions and long inter-
hemispheric white matter bundles. Multimodal rfMRI is a 
promising tool for carefully describing the disease signa-
tures in the earliest disease phase. In nature, ReHo is a 
multimodal neuroimaging metric for defining local con-
nectivity and has been applied to examine alterations in 
GRN-related pathology moving from the presymptomatic 
(asymptomatic GRN mutation carriers) to the clinical 
phase of the disease (GRN-related frontotemporal demen-
tia). Asymptomatic GRN carriers had a selective reduc-
tion of ReHo in the left parietal region and increases in 
ReHo in multiple frontal regions compared to healthy 
controls. Considering frontotemporal dementia patients 
(Premi and others 2014), these abnormal changes mainly 
targeted the inferior parietal lobule (IPL), frontal lobes, 
and posterior cingulate cortex (PCC), whereas GRN muta-
tion carriers demonstrated a negative correlation with age 
in PCC, IPL, and orbitofrontal cortex.

Alzheimer’s disease, the most prevalent cause of 
dementia in the elderly, is characterized by progressive 
cognitive and intellectual deficits. Altered spontaneous 
brain activations were found in MPFC, PCC/precuneus, 
and the left IPL in both MCI and AD. A correlation analy-
sis indicated that the lower the memory and other cogni-
tive abilities, the lower the ReHo in both MCI patients 
and AD patients (Zhang and others 2012). Dai and others 
(2012) proposed a novel methodological framework, 
namely, multimodal imaging and multilevel characteris-
tics with multi-classifiers (M3), to discriminate patients 
with AD from healthy controls. The M3 approach chose 
ReHo as a favorite functional feature of the brain and 
contributed greatly to the patient classification predomi-
nantly involving several default-mode (MPFC, PCC, hip-
pocampus and parahippocampal gyrus), occipital 
(fusiform gyrus, inferior and middle occipital gyrus), and 
subcortical (amygdale and pallidum of lenticular nucleus) 
regions. This supported the use of ReHo as an intrinsic 
index of human brain function.

Conclusion, Recommendation, and 
Challenges

No optimal protocol currently exists for ReHo analysis in 
the neuroimaging field. Regarding the recent advances in 
development of ReHo methodology as presented in this 
review, we would recommend the following consider-
ations in use of ReHo. First, compared to 3dReHo, 2dReHo 

is more specific to intrinsic functional organization of the 
cortical mantle and has higher test-retest reliability. It 
should be recommended for more use in future studies. 
Second, ReHo represents the temporal synchronization of 
the nearest neighbors of a given node in a brain graph. The 
nearest neighbors could be defined as two lengths: one 
node (ReHo-1) or two nodes (ReHo-2) away from the 
given node. A large size of neighboring area increases the 
partial volume effect by mixing signals from different 
brain tissues. To optimize the trade-off between mitigation 
of partial volume effects and generation of Gaussian ran-
dom fields, 3dReHo-1 (27 voxels) should be used as it is 
more appropriate for covering all directions in 3D space. In 
contrast, 2dReHo-2 (19 vertices) should be used regarding 
its comparable number of neighbors to 3dReHo-1.Third, 
both 3dReHo and 2dReHo computation should be imple-
mented in individual native spaces to avoid multiple con-
founding sources introduced by head motion, imperfect 
image registration, and nonneural physiological processes. 
Finally, ReHo algorithm is purely data-driven and all the 
advantages discussed in the present work make ReHo 
highly feasible for analyzing images from brains with 
lesions. ReHo can be used to detect brain regions with 
abnormal local FC caused by lesions. Once detected, fur-
ther analysis using these regions as targets of interests can 
reveal lesion-related changes of remote FC.

Anatomical distance and connection profiles are two 
key factors in wiring the human connectome and in gen-
erating its functional outcomes. Coming with an adaptive 
and elegant trade-off between signal and noise, the ReHo 
method introduced by Zang and colleagues is increas-
ingly recognized as a highly sensitive, reproducible, and 
reliable neuroimaging marker to characterize the human 
brain according to its local functional organization as 
well as its relationships with network-level characteris-
tics. During the last decade, over 100 scientific papers 
using ReHo have been published in the functional con-
nectomics field. The rapid advancements not only vali-
dated ReHo’s significance but also raised further 
challenges for functional connectomics. Recent advances 
in ReHo methodology validates its use as a network cen-
trality metric with multiscale nature across both space 
and frequency, its relationship with remote long-distance 
functional connectivity, its neurobiological meanings 
related to information processing complexity and brain 
development, and its contributions to behaviors and neu-
ropsychiatric disorders. As a result, we propose ReHo as 
a multimodal, multiscale neuroimaging marker of the 
brain connectome. These advances not only provide a 
novel perspective on understanding local functional 
homogeneity but also raise a series of challenges regard-
ing its biological interpretation specific to behavior and 
disease as well as those specific to structure and function 
of the human brain connectome.



502 The Neuroscientist 22(5)

Acknowledgments

We thank Erica Ho from Child Mind Institute at New York for 
her assistance in editing the language, and Hao-Ming Dong for 
his assistance in formatting and double-checking the references.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with 
respect to the research, authorship, and/or publication of this 
article.

Funding

The author(s) disclosed receipt of the following financial support 
for the research, authorship, and/or publication of this article: This 
work was partially supported by the National Key Basic Research 
and Development (973) Program (2015CB351702, XNZ), the 
Major Joint Fund for International Cooperation and Exchange of 
the National Natural Science Foundation (81220108014, XNZ), 
the Startup Foundation for Young Talents of the Institute of 
Psychology (Y1CX222005, LJ), the Hundred Talents Program 
and the Key Research Program (KSZD-EW-TZ-002, XNZ) of the 
Chinese Academy of Sciences and the Natural Science Foundation 
of China (11204369, 81471740).

References

Alexander-Bloch A, Giedd JN, Bullmore E. 2013. Imaging 
structural co-variance between human brain regions. Nat 
Rev Neurosci 14:322–36.

An L, Cao QJ, Sui MQ, Sun L, Zou QH, Zang YF, and others. 
2013. Local synchronization and amplitude of the fluctua-
tion of spontaneous brain activity in attention-deficit/hyper-
activity disorder: a resting-state fMRI study. Neurosci Bull 
29:603–13.

Bassett DS, Bullmore E. 2006. Small-world brain networks. 
Neuroscientist 12:512–23.

Betzel RF, Byrge L, He Y, Goñi J, Zuo XN, Sporns O. 
2014. Changes in structural and functional connectivity 
among resting-state networks across the human lifespan. 
Neuroimage 102:345–57.

Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. 1995. 
Functional connectivity in the mortor cortex of resting 
human brain using echo-planar MRI. Magn Reson Med 
34:537–41.

Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, 
and others. 2010. Toward discovery science of human brain 
function. Proc Natl Acad Sci U S A 107:4734–9.

Blumensath T, Jbabdi S, Glasser MF, Van Essen DC, Ugurbil 
K, Behrens TE, and others. 2013. Spatially constrained 
hierarchical parcellation of the brain with resting-state 
fMRI. Neuroimage 76:313–24.

Börgers C, Krupa M, Gielen S. 2010. The response of a classi-
cal Hodgkin–Huxley neuron to an inhibitory input pulse. J 
Comput Neurosci 28:509–26.

Borgatti SP. 2005. Centrality and network flow. Soc Networks 
27:55–71.

Borgatti SP, Mehra A, Brass DJ, Labianca G. 2009. Network 
analysis in the social sciences. Science 323:892–5.

Breakspear M, Terry JR, Friston KJ. 2003. Modulation of 
excitatory synaptic coupling facilitates synchronization 

and complex dynamics in a biophysical model of neuronal 
dynamics. Network 14:703–32.

Buckner RL, Krienen FM, Yeo BT. 2013. Opportunities and 
limitations of intrinsic functional connectivity MRI. Nat 
Neurosci 16:832–7.

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, 
Hedden T, and others. 2009. Cortical hubs revealed by 
intrinsic functional connectivity: mapping, assessment of 
stability, and relation to Alzheimer’s disease. J Neurosci 
29:1860–73.

Bullmore E, Sporns O. 2009. Complex brain networks: graph 
theoretical analysis of structural and functional systems. 
Nat Rev Neurosci 10:186–98.

Bullmore E, Sporns O. 2012. The economy of brain network 
organization. Nat Rev Neurosci 13:336–49.

Buxton RB, Wong EC, Frank LR. 1998. Dynamics of blood 
flow and oxygenation changes during brain activation: the 
balloon model. Magn Reson Med 39:855–64.

Buzsaki G, Draguhn A. 2004. Neuronal oscillations in cortical 
networks. Science 304:1926–9.

Cao M, Wang JH, Dai ZJ, Cao XY, Jiang LL, Fan FM, and oth-
ers. 2014. Topological organization of the human brain func-
tional connectome across the lifespan. Dev Cogn Neurosci 
7:76–93.

Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. 2014. 
Decreased segregation of brain systems across the healthy 
adult lifespan. Proc Natl Acad Sci U S A 111:E4997–5006.

Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. 
2014. Intrinsic and task-evoked network architectures of 
the human brain. Neuron 83:238–51.

Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, 
Braver TS. 2013. Multi-task connectivity reveals flexible 
hubs for adaptive task control. Nat Neurosci 16:1348–55.

Collin G, van den Heuvel MP. 2013. The ontogeny of the 
human connectome: development and dynamic changes 
of brain connectivity across the life span. Neuroscientist 
19:616–28.

Cordes D, Nandy RR, Schafer S, Wager TD. 2014. 
Characterization and reduction of cardiac- and respiratory-
induced noise as a function of the sampling rate (TR) in 
fMRI. Neuroimage 89:314–30.

Dai Z, Yan C, Wang Z, Wang J, Xia M, Li K, and others. 2012. 
Discriminative analysis of early Alzheimer’s disease using 
multi-modal imaging and multi-level characterization with 
multi-classifier (M3). Neuroimage 59:2187–95.

Deco G, Ponce-Alvarez A, Hagmann P, Romani GL, Mantini 
D, Corbetta M. 2014. How local excitation-inhibition 
ratio impacts the whole brain dynamics. J Neurosci 
34:7886–98.

Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts 
K, and others. 2014. The autism brain imaging data 
exchange: towards a large-scale evaluation of the intrinsic 
brain architecture in autism. Mol Psychiatry, 19:659–67.

Dong G, Huang J, Du X. 2012. Alterations in regional homo-
geneity of resting-state brain activity in internet gaming 
addicts. Behav Brain Funct 8:41.

Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, 
Church JA, and others. 2010. Prediction of individual brain 
maturity using fMRI. Science 329:1358–61.



Jiang and Zuo 503

Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, 
Knoblauch K, Toroczkai Z, and others. 2013. A predictive 
network model of cerebral cortical connectivity based on a 
distance rule. Neuron 80:184–97.

Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, 
Miezin FM, and others. 2009. Functional brain networks 
develop from a “local to distributed” organization. PLoS 
Comput Biol 5:e1000381.

Falahpour M, Refai H, Bodurka J. 2013. Subject specific BOLD 
fMRI respiratory and cardiac response functions obtained 
from global signal. Neuroimage 72:252–64.

Friston KJ, Frith CD, Liddle PF, Frackowiak RS. 1993. 
Functional connectivity: the principal-component analysis 
of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14.

Ghosh A, Rho Y, McIntosh A, Kötter R, Jirsa V. 2008. Noise 
during rest enables the exploration of the brain’s dynamic 
repertoire. PLoS Comput Biol 4:e1000196.

Glasser MF, Van Essen DC. 2011. Mapping human corti-
cal areas in vivo based on myelin content as revealed by 
T1-and T2-weighted MRI. J Neurosci 31:11597–616.

Glover GH, Li TQ, Ress D. 2000. Image-based method for 
retrospective correction of physiological motion effects in 
fMRI: RETROICOR. Magn Reson Med 44:162–7.

Gorgolewski KJ, Mendes N, Wilfling D, Wladimirow E, 
Gauthier CJ, Bonnen T, and others. 2015. A high resolution 
7-Tesla resting-state fMRI test-retest dataset with cognitive 
and physiological measures. Sci Data 2:140054.

Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ, 
Douaud G, Sexton CE, and others. 2014. ICA-based arte-
fact removal and accelerated fMRI acquisition for improved 
resting state network imaging. Neuroimage 95:232–47.

Han Y, Wang JH, Zhao ZL, Min BQ, Lu J, Li KC, and oth-
ers. 2011. Frequency-dependent changes in the amplitude 
of low-frequency fluctuations in amnestic mild cogni-
tive impairment: a resting-state fMRI study. Neuroimage 
55:287–95.

Honey C, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli 
R, and others. 2009. Predicting human resting-state func-
tional connectivity from structural connectivity. Proc Natl 
Acad Sci U S A 106:2035–40.

Iwabuchi SJ, Krishnadas R, Li C, Auer DP, Radua J, 
Palaniyappan L. 2015. Localized connectivity in depres-
sion: a meta-analysis of resting state functional imaging 
studies. Neurosci Biobehav Rev 51:77–86.

Jiang L, Hou XH, Yang N, Yang Z, Zuo XN. 2015a. Examination 
of local functional homogeneity in Autism. Biomed Res Int 
2015:174371.

Jiang L, Ouyang Q, Tu Y. 2010. Quantitative modeling of 
Escherichia coli chemotactic motion in environments vary-
ing in space and time. PLoS Comput Biol 6:e1000735.

Jiang L, Xu T, He Y, Hou XH, Wang J, Cao XY, and others. 
2014. Toward neurobiological characterization of functional 
homogeneity in the human cortex: Regional variation, mor-
phological association and functional covariance network 
organization. Brain Struc Func Jun 6. [Epub ahead of print]

Jiang L, Xu Y, Zhu XT, Yang Z, Li HJ, Zuo XN. 2015b. Local 
to remote cortical connectivity in early and adulthood onset 
schizophrenia. Transl Psychiatry 5:e566.

Kendall M, Gibbons JD. 1990. Rank correlation method. 
Oxford, England: Oxford University Press.

Kim H, Kim YK, Gwak AR, Lim JA, Lee JY, Jung HY, and 
others. 2015. Resting-state regional homogeneity as a 
biological marker for patients with Internet gaming disor-
der: a comparison with patients with alcohol use disorder 
and healthy controls. Prog Neuropsychopharmacol Biol 
Psychiatry 60:104–11.

Kuhn S, Vanderhasselt MA, De Raedt R, Gallinat J. 2014. The 
neural basis of unwanted thoughts during resting state. Soc 
Cogn Affect Neurosci 9:1320–4.

Li Z, Zhu Y, Childress AR, Detre JA, Wang Z. 2012. Relations 
between BOLD fMRI-derived resting brain activity and 
cerebral blood flow. PLoS One 7:e44556.

Liang X, Zou Q, He Y, Yang Y. 2013. Coupling of functional 
connectivity and regional cerebral blood flow reveals a 
physiological basis for network hubs of the human brain. 
Proc Natl Acad Sci U S A 110:1929–34.

Liu D, Yan C, Ren J, Yao L, Kiviniemi VJ, Zang Y. 2010a. 
Using coherence to measure regional homogeneity of rest-
ing-state fMRI signal. Front Syst Neurosci 4:24.

Liu J, Gao XP, Osunde I, Li X, Zhou SK, Zheng HR, and others. 
2010b. Increased regional homogeneity in internet addic-
tion disorder: a resting state functional magnetic resonance 
imaging study. Chin Med J (Engl) 123:1904–8.

Liu Y, Wang K, Yu C, He Y, Zhou Y, Liang M, and others. 
2008. Regional homogeneity, functional connectivity 
and imaging markers of Alzheimer’s disease: a review of  
resting-state fMRI studies. Neuropsychologia 46:1648–56.

Lopez-Larson MP, Anderson JS, Ferguson MA, Yurgelun-
Todd D. 2011. Local brain connectivity and associations 
with gender and age. Dev Cogn Neurosci 1:187–97.

Markov N, Ercsey-Ravasz M, Gomes AR, Lamy C, Magrou L, 
Vezoli J, and others. 2014. A weighted and directed intera-
real connectivity matrix for macaque cerebral cortex. Cereb 
Cortex 24:17–36.

Mechelli A, Friston KJ, Frackowiak RS, Price CJ. 2005. 
Structural covariance in the human cortex. J Neurosci 
25:8303–10.

Mesulam MM. 1998. From sensation to cognition. Brain 
121:1013–52.

Minati L, Chiesa P, Tabarelli D, D’Incerti L, Jovicich J. 2015. 
Synchronization, non-linear dynamics and low-frequency 
fluctuations: analogy between spontaneous brain activity 
and networked single-transistor chaotic oscillators. Chaos 
25:033107.

Mueller S, Wang D, Fox MD, Yeo B, Sepulcre J, Sabuncu 
MR, and others. 2013. Individual variability in functional 
connectivity architecture of the human brain. Neuron 77: 
586–95.

Nooner KB, Colcombe SJ, Tobe RH, Mennes M, Benedict MM, 
Moreno AL, and others. 2012. The NKI-Rockland sample: 
a model for accelerating the pace of discovery science in 
psychiatry. Front Neurosci 6:152.

Nugent AC, Martinez A, D’Alfonso A, Zarate CA, Theodore 
WH. 2015. The relationship between glucose metabolism, 
resting-state fMRI BOLD signal, and GABAA-binding 
potential: a preliminary study in healthy subjects and those 



504 The Neuroscientist 22(5)

with temporal lobe epilepsy. J Cereb Blood Flow Metab 
35:583–91.

Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen 
J, and others. 2010. Alterations in regional homogeneity of 
resting-state brain activity in autism spectrum disorders. 
Brain Res 1321:169–79.

Pessoa L. 2014. Understanding brain networks and brain orga-
nization. Phys Life Rev 11:400–35.

Power JD, Schlaggar BL, Petersen SE. 2014. Studying brain orga-
nization via spontaneous fMRI signal. Neuron 84:681–96.

Premi E, Cauda F, Gasparotti R, Diano M, Archetti S, Padovani 
A, and others. 2014. Multimodal FMRI resting-state 
functional connectivity in granulin mutations: the case of 
fronto-parietal dementia. PLoS One 9:e106500.

Pruim RH, Mennes M, Buitelaar JK, Beckmann CF. 2015a. 
Evaluation of ICA-AROMA and alternative strategies for 
motion artifact removal in resting state fMRI. Neuroimage 
112:278–87.

Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, 
Beckmann CF. 2015b. ICA-AROMA: a robust ICA-based 
strategy for removing motion artifacts from fMRI data. 
Neuroimage 112:267–77.

Ratas I, Pyragas K. 2011. Effect of high-frequency stimula-
tion on nerve pulse propagation in the FitzHugh–Nagumo 
model. Nonlinear Dyn 67:2899–908.

Rudorf S, Hare TA. 2014. Interactions between dorsolateral and 
ventromedial prefrontal cortex underlie context-dependent 
stimulus valuation in goal-directed choice. J Neurosci 
34:15988–96.

Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, 
Griffanti L, Smith SM. 2014. Automatic denoising of 
functional MRI data: combining independent component 
analysis and hierarchical fusion of classifiers. Neuroimage 
90:449–68.

Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, 
Buckner RL. 2010. The organization of local and distant 
functional connectivity in the human brain. PLoS Comput 
Biol 6:e1000808.

Shukla DK, Keehn B, Müller RA. 2010. Regional homogeneity 
of fMRI time series in autism spectrum disorders. Neurosci 
Lett 476:46–51.

Song XP, Zhang Y, Liu YJ. 2014. Frequency specificity of 
regional homogeneity in the resting-state human brain. 
PLoS One 9:e86818.

Sporns O, Tononi G, Kotter R. 2005. The human connectome: 
A structural description of the human brain, PLoS Comput 
Biol 1:e42.

Sporns O. 2013. The human connectome: origins and chal-
lenges. Neuroimage 80:53–61.

Sporns O. 2014. Contributions and challenges for network mod-
els in cognitive neuroscience. Nat Neurosci 17:652–60.

Tian L, Ren J, Zang Y. 2012. Regional homogeneity of resting 
state fMRI signals predicts stop signal task performance. 
Neuroimage 60:539–44.

Tognoli E, Kelso JA. 2014. The metastable brain. Neuron 
81:35–48.

Tomasi D, Volkow ND. 2011. Functional connectivity hubs in 
the human brain. Neuroimage 57:908–17.

Tononi G, Sporns O, Edelman GM. 1994. A measure for brain 
complexity: relating functional segregation and integra-
tion in the nervous system. Proc Natl Acad Sci U S A 91: 
5033–7.

Uddin LQ, Supekar K, Menon V. 2010. Typical and atypical 
development of functional human brain networks: insights 
from resting-state FMRI. Front Syst Neurosci 4:21.

van den Heuvel MP, Sporns O. 2013. Network hubs in the 
human brain. Trends Cogn Sci 17:683–96.

Wang L, Song M, Jiang T, Zhang Y, Yu C. 2011. Regional 
homogeneity of the resting-state brain activity corre-
lates with individual intelligence. Neurosci Lett 488: 
275–8.

Wang T, Chen Z, Zhao G, Hitchman G, Liu C, Zhao X, and 
others. 2014. Linking inter-individual differences in the 
conflict adaptation effect to spontaneous brain activity. 
Neuroimage 90:146–52.

Wendelken C, Ferrer E, Whitaker KJ, Bunge SA. 2015. Fronto-
parietal network reconfiguration supports the development 
of reasoning ability. Cereb Cortex Mar 30. [Epub ahead of 
print]

Wu T, Zang Y, Wang L, Long X, Li K, Chan P. 2007. Normal 
aging decreases regional homogeneity of the motor areas in 
the resting state. Neurosci Lett 423:189–93.

Xu T, Yang Z, Jiang LL, Xing XX, Zuo XN. 2015. A connec-
tome computation system for discovery science of brain. 
Sci Bull 60:86–95.

Yang Z, Chang C, Xu T, Jiang LL, Handwerker DA, Castellanos 
FX, and others. 2014. Connectivity trajectory across lifes-
pan differentiates the precuneus from the default network. 
Neuroimage 89:45–56.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, 
Hollinshead M, and others. 2011. The organization of the 
human cerebral cortex estimated by intrinsic functional 
connectivity. J Neurophysiol 106:1125-65.

Yuan Z, Qin W, Wang D, Jiang T, Zhang Y, Yu C. 2012. The 
salience network contributes to an individual’s fluid rea-
soning capacity. Behav Brain Res 229:384–90.

Zang Y, Jiang T, Lu Y, He Y, Tian L. 2004. Regional homo-
geneity approach to fMRI data analysis. Neuroimage 22: 
394–400.

Zhang Z, Liao W, Zuo XN, Wang Z, Yuan C, Jiao Q, and oth-
ers. 2011. Resting-state brain organization revealed by 
functional covariance networks. PloS One 6:e28817.

Zhang Z, Liu Y, Jiang T, Zhou B, An N, Dai H, and others. 
2012. Altered spontaneous activity in Alzheimer’s disease 
and mild cognitive impairment revealed by regional homo-
geneity. Neuroimage 59:1429–40.

Zou Q, Wu CW, Stein EA, Zang Y, Yang Y. 2009. Static and 
dynamic characteristics of cerebral blood flow during the 
resting state. Neuroimage 48:515–24.

Zuo XN, Anderson J, Bellec P, Birn R, Biswal B, Blautzik J, 
and others. 2014. An open science resource for establishing 
reliability and reproducibility in functional connectomics. 
Sci Data 1:140049.

Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein 
DF, and others. 2010a. The oscillating brain: complex and 
reliable. Neuroimage 49:1432–45.



Jiang and Zuo 505

Zuo XN, Ehmke R, Mennes M, Imperati D, Castellanos FX, 
Sporns O, and others. 2012. Network centrality in the 
human functional connectome. Cereb Cortex 22:1862–75.

Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, 
Bangaru S, and others. 2010b. Growing together and grow-
ing apart: regional and sex differences in the lifespan devel-
opmental trajectories of functional homotopy. J Neurosci 
30:15034–43.

Zuo XN, Xing XX. 2014. Test-retest reliabilities of resting-
state FMRI measurements in human brain functional con-
nectomics: a systems neuroscience perspective. Neurosci 
Biobehav Rev 45:100–18.

Zuo XN, Xu T, Jiang LL, Yang Z, Cao XY, He Y, and others. 2013. 
Toward reliable characterization of functional homogeneity in 
the human brain: preprocessing, scan duration, imaging reso-
lution and computational space. Neuroimage 65:374–86.


