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Figure S1: Full overview of our computational model. Here we show the pro-

cessing of three sequences with different lengths. Notice that after processing,

the sequence-length-dependent feature encodings, which have different dimen-

sionality, become convolutional and sequential features with the same length.

S1: Model Structure Details

As shown in Figure S1, we used different feature extractor structures for sequence-

length-dependent feature encoding and sequence-length-independent feature en-

coding. For the former, we combined convolutional neural network and recurrent

neural network. In practice, the component contains six convolutional layers

and four max-pooling layers, as well as a recurrent layer. Correspondingly, the

output of the convolutional layers is a 3D tensor, whose dimensionality is (256,

25, 5), where 256 represents the channel number; 25 is the feature map height;

and 5 is the feature map width. The 3D tensor is then fed into the recurrent

layer, whose output is a 256D vector. Regarding the latter, we used two fully



connected layers to conduct feature extraction, whose output is a 1024D vector.

Until now, there is no interaction between any different kinds of features, with

the feature extractors acting on each encoding individually. After the feature

extraction step, we concatenated different vectors into one vector, whose length

is 1536 if we have PSSM, sequence encoding and FuncD as inputs, which is then

fed into a fully connected component, that is, the classifier.

S2: Model Parameter Setting

First of all, we have to set a proper feeding batch size. Due to the extremely

high dimensionality of our input (for example, the highest dimensionality of

PSSM input is 20*5000), we faced serious GPU memory issues when training

the model. To make the model work, we set the batch size as 20 for two Pascal

Titan X with 24G memory in total. Secondly, the initialization of the model

weights would affect the final model performance significantly. We adopted the

method mentioned in (He et al., 2015), which suggests a better distribution

shape from which the weights should be drawn. Another parameter should be

aware of is the weight decay coefficient. If we set it too large, the model tends

to be under-fitting while on the other hand, it would be sensitive to noise, which

leads to over-fitting if we set it too small. We chose the coefficient as 0.0002

when training the level 0 and level 1 models. For level 2 and level 3 models,

since there are less data, which results in higher risk of over-fitting, we increased

the weight decay slightly to 0.0005. Furthermore, the training steps should be

set appropriately as well. Like the weight decay, the improper value of it would

lead to either over-fitting or under-fitting. For level 0 and level 1 models, we set

it as 20000, while for level 2 and level 3 models, we set it as 3000.

Hyperparameters that we need to tune are the number of hidden layers

and hidden nodes in the fully connected classifier. For models that have larger

training dataset, we can increase them to some extent because the dataset makes



the model less likely to become over-fitting. However, for level 2 and level 3,

whose dataset is much small for each class, we should decrease them accordingly

to avoid too high model complexity. Practically, we chose three hidden layers

with 1024, 2048, and 1024 hidden nodes for level 0 and level 1 models while

only one hidden layers with 1024 nodes for level 2 and level 3 models.

S3: Performance Measure

For the enzyme or non-enzyme prediction, since it is a binary classification

problem, we use accuracy, Cohne’s Kappa Score (Viera and Garrett, 2005),

precision, recall and F1 score to evaluate the classifiers’ performance. For other

predictions, since they are multi-class classification problems, we use accuracy,

Cohen’s Kappa Score, Macro-precision, Macro-recall and Macro-F1 score to

evaluate the classifiers’ performance, which are defined below:

accuracy(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

1(yi=ŷi),

Macro-precision(y, ŷ) =
1

|M |
∑
l∈M

precision(yl, ŷl),

Macro-recall(y, ŷ) =
1

|M |
∑
l∈M

recall(yl, ŷl),

Macro-F1 score(y, ŷ) =
1

|M |
∑
l∈M

F1 score(yl, ŷl),

where M is the set of labels; yl is the subset of y with label l; and ŷl is the

predicted label for the subset.

The Cohen’s Kappa Score is defined as follows:

κ =
po − pe
1− pe

,



where po is the relative observed agreement between true labels and predicted

labels, which is identical to accuracy, and pe is the expected agreement between

true labels and predicted labels if we predict the label randomly. Details can be

referred to (Viera and Garrett, 2005).

As for the accuracy defined above, it is the weighted average of the

accuracy that is commonly used in binary classification, whereas the Macro

criteria are the unweighted average of the corresponding criterion used in binary

classification. The accuracy is used to reflect the overall performance of the

model on the entire dataset, while the Macro criteria are utilized to show the

model’s performance on small classes. If the model does not perform well on a

certain small class, such as class 1.20 which only contains 10 sequences, although

it may not be shown in the accuracy since it is biased towards the result of large

classes, it would be reflected in the Macro criteria by the unweighted average.

S4: Local Feature Processing

As shown in Figure S1, we also performed analysis on the local features, like sol-

vent accessibility and secondary structure. After obtaining the raw result from

DeepCNF (Wang et al., 2016), we incorporated the two pieces of information

with active site information from the database and performed analysis in the

following way.

1. We collected the active site information from UniProt (UniProt, 2007)

(released on February 15, 2017). Since the database is not complete with

some entries lacking that information, we sifted the NEW dataset to pro-

duce another dataset, containing 8382 enzymes, whose sequences all have

active site information.

2. Inputting the selected enzyme sequence into DeepCNF, we obtained sol-

vent accessibility and secondary structure encoding, both of which are L



by 3 matrices.

3. Using active site information, we cropped a smaller matrix around the

active site with the window size as seven from the raw output of DeepCNF.

If the enzyme has more than one active site, we would concatenate those

small matrices into a larger one. If there are overlaps between the small

matrices, we would merge the overlaps into one copy. The merged matrix is

the output of our model. Because different enzymes have different numbers

of active sites, those two feature encodings are still sequence-dependent

although we performed some modification.

4. We trained the model with the original three feature and the model with

current five features on the sifted dataset and conducted performance

comparison.

Figure S2: The performance comparison of different servers on the subclass (i.e.,

the second-digit) prediction of the COFACTOR dataset.



S5: Second-digit Prediction on COFACTOR

Figure S2 shows the performance comparison of different servers on predicting

the subclass (i.e., the second-digit) on the COFACtoR dataset. DEEPre out-

performs EzyPred and SVM-Prot consistently under all the five criteria. It also

surpasses EFICAz in accuracy, Kappa score and Macro-recall. The only two

criteria that EFICAz outperforms DEEPre are Macro-precision and Macro-F1.

There are three possible reasons for this. First, EFICAz is a meta-server which

combines six individual methods together. Although it is widely recognized that

a meta-server often outperforms individual methods, DEEPre still outperforms

EFICAz under all the criteria on the first-digit prediction, as well as under three

criteria on the second-digit prediction on the COFACTOR dataset. Second,

when preprocessing the COFACTOR dataset, we excluded those sequences that

overlap with the DEEPre training data. However, since we did not know the

exact training set of EFICAz, we did not perform any overlap reduction between

the EFICAz training set and the COFACTOR dataset, which means there are

likely overlapping enzymes between the two. This may result in a biased perfor-

mance of EFICAz. Third, it should be noticed that several methods in EFICAz,

such as the pairwise sequence comparison component and multiple PROSITE

pattern recognition component, are similarity-based approaches. According to

the definition of precision, that is, the ratio of true positives to predicted posi-

tives, similarity-based methods are expected to have high precision. especially

on problems with small classes, like the enzyme function prediction problem. In

summary, we believe the statistical nature of DEEPre and the fact that it does

not rely on similarity search makes it a promising method to predict functions

of novel enzymes, especially those without close homologs.



S6: Case Study Performance Comparison

Table S1 shows the performance of different servers on the two case studies.

Server Glutaminase Aurora kinases B

DEEPre Completely correct annotation Completely correct annotation

EFICAz Completely correct annotation Failed in predicting the function

of isoform 3

EzyPred Completely correct annotation Completely correct annotation

SVM-Prot Failed in predicting the EC num-

ber of the “canonical” sequence

Failed in predict the EC number

of both isoforms

COFACTOR Failed in predicting the EC num-

ber of the “canonical” sequence;

The structure of isoform 2 is not

available.

The structures of all isoforms

of Aurora kinases B are not

available.

Table S1: Comparison of server’s performance on case studies
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