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ABSTRACT
Aging is the primary risk factor underlying hypertension and incident
cardiovascular disease. With aging, the vasculature undergoes struc-
tural and functional changes characterized by endothelial dysfunction,
wall thickening, reduced distensibility, and arterial stiffening. Vascular
stiffness results from fibrosis and extracellular matrix (ECM) remod-
elling, processes that are associated with aging and are amplified by
hypertension. Some recently characterized molecular mechanisms
underlying these processes include increased expression and activa-
tion of matrix metalloproteinases, activation of transforming growth
factor-b1/SMAD signalling, upregulation of galectin-3, and activation
of proinflammatory and profibrotic signalling pathways. These events
can be induced by vasoactive agents, such as angiotensin II,
endothelin-1, and aldosterone, which are increased in the vasculature
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R�ESUM�E
Le vieillissement constitue le principal facteur de risque d’apparition
de l’hypertension et de la maladie cardiovasculaire. En vieillissant, le
système vasculaire subit des modifications structurelles et fonction-
nelles caract�eris�ees par une dysfonction endoth�eliale ainsi que
l’�epaississement, la rigidification et la perte d’�elasticit�e des parois
vasculaires. La rigidit�e vasculaire est caus�ee par la fibrose et le
remodelage de la matrice extracellulaire, des processus qui sont
associ�es au vieillissement et qui sont amplifi�es en pr�esence d’hy-
pertension. Parmi les m�ecanismes mol�eculaires sous-jacents du
vieillissement r�ecemment identifi�es, on retrouve l’augmentation de
l’expression et de l’activation des m�etalloprot�einases matricielles,
l’activation des voies de signalisation du facteur de croissance trans-
formant bêta 1 impliquant les prot�eines SMAD, la r�egulation positive
Hypertension is the largest contributor to the global burden of
cardiovascular disease. The World Health Organization esti-
mates that the number of adults with high blood pressure will
increase from 1 billion to 1.5 billion worldwide by 2020.1

This increase is related in part to the fact that the popula-
tion is aging. Of all the factors contributing to hypertension,
such as genetics, obesity, dyslipidemia, sedentary lifestyle, and
diabetes, advancing age is the most important risk factor. Both
aging and hypertension are associated with structural, me-
chanical, and functional changes in the vasculature, charac-
terized by increased arterial stiffness, reduced elasticity,
impaired distensibility, endothelial dysfunction, and increased
vascular tone. The prevalence of vascular stiffness and high
blood pressure increases with age and as such, hypertension
has been considered to be a condition of aging. Arterial
stiffening precedes the development of hypertension, and both
phenomena occur more frequently in the elderly. The rela-
tionship between aging, cardiovascular disease, and vascular
stiffening is further exemplified in patients with progeria
(premature aging), who exhibit accelerated vascular aging and
often die of cardiovascular disease.2 Arterial stiffening is
caused primarily by excessive fibrosis and reduced elasticity,
with associated increased collagen deposition, increased elastin
fiber fragmentation/degeneration, laminar medial necrosis,
calcification, and cross-linking of collagen molecules by
advanced glycation end-products.

Fibrosis as a dynamic process initially is an adaptive repair
response that is reversible. However, the fibrogenic process is
progressive, leading to further worsening of arterial stiffness
and fibrosis that gradually extends into the neighbouring
interstitial space. Fibrosis occurs in both large and small ar-
teries. In large vessels, vascular stiffening leads to hemody-
namic damage to peripheral tissues.3 Fibrosis and stiffening of
the resistance circulation impair endothelial function, increase
vasomotor tone, promote vascular rarefaction, and alter tissue
perfusion. The combination of “aging” and prohypertensive
elements, such as activation of the renin-angiotensin-
aldosterone system, inflammation, oxidative stress, salt
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during aging and hypertension. Complex interplay between the “aging
process” and prohypertensive factors results in accelerated vascular
remodelling and fibrosis and increased arterial stiffness, which is
typically observed in hypertension. Because the vascular phenotype in
a young hypertensive individual resembles that of an elderly otherwise
healthy individual, the notion of “early” or “premature” vascular aging
is now often used to describe hypertension-associated vascular dis-
ease. We review the vascular phenotype in aging and hypertension,
focusing on arterial stiffness and vascular remodelling. We also high-
light the clinical implications of these processes and discuss some
novel molecular mechanisms of fibrosis and ECM reorganization.

de la galectine-3 et l’activation des voies de signalisation pro-
inflammatoires et profibrotiques. Ces m�ecanismes peuvent être
induits par divers agents vasoactifs comme l’angiotensine II, l’en-
doth�eline-1 et l’aldost�erone dont la pr�esence s’accroît au fil du pro-
cessus de vieillissement et en pr�esence d’hypertension. Cette
interaction complexe entre le « processus de vieillissement » et les
facteurs pro-hypertensifs entraîne un remodelage et une fibrose
acc�el�er�ee ainsi que la rigidification des artères qu’on observe ha-
bituellement avec l’hypertension. Puisque le ph�enotype vasculaire de
l’hypertendu jeune ressemble à celui de la personne âg�ee par ailleurs
en bonne sant�e, on fait d�esormais de plus en plus souvent appel au
vocable de vieillissement vasculaire « pr�ecoce » ou « pr�ematur�e » pour
d�esigner la maladie vasculaire li�ee à l’hypertension. Nous passons ici
en revue le ph�enotype vasculaire du vieillissement et de l’hypertension
en mettant l’accent sur la rigidit�e art�erielle et le remodelage vascu-
laire. Nous traitons �egalement de l’incidence clinique de ces pro-
cessus, en plus d’aborder quelques-uns des m�ecanismes mol�eculaires
de la fibrose et de la r�eorganisation de la matrice extracellulaire.
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consumption, and genetic factors, results in excessive arterial
fibrosis and extracellular matrix (ECM) deposition with
amplification of aging-related vascular injury and stiffness.
These processes lead to excessive fibrosis, which often extends
from small arteries and replaces parenchymal tissue, thereby
leading to tissue fibrosis, scarring, and hypertension-associated
target organ damage of the heart, kidney, and brain.

At the molecular and cellular levels, arterial aging and
hypertension-associated vascular changes are characterized by
reduced nitric oxide production, increased generation of
reactive oxygen species (ROS) (oxidative stress), activation of
transcription factors, induction of “aging” genes, stimulation
of proinflammatory and profibrotic signalling pathways,
reduced collagen turnover, calcification, vascular smooth
muscle cell proliferation, and ECM remodelling. These pro-
cesses contribute to increased fibrosis, which is further pro-
moted by prohypertensive vasoactive agents, such as
angiotensin II (Ang II), endothelin-1 (ET-1), and aldosterone,
which stimulate profibrotic signalling cascades, including p38
mitogen-activated protein kinases (p38 MAPK) and the
transforming growth factor-b (TGF-b)/SMAD pathway.
Activation of galectin-3 and dysregulation of MMPs and
TIMPs are involved in ECM remodelling and further enhance
vascular fibrosis. Many of these events are upregulated with
advancing age and in human and experimental hypertension.
We review the vascular phenotype in physiological aging and
in hypertension, focusing particularly on arterial stiffness and
fibrosis.
Aging-Associated Vascular Alterations
With aging, the vasculature undergoes functional, struc-

tural, and mechanical changes characterized by endothelial
dysfunction, thickening (remodelling) of the vascular wall,
and increased stiffening, respectively (Fig. 1). These changes
result in a reduced capacity of arteries to adapt to tissue de-
mands and accordingly may lead to ischemic injury. Preclin-
ical and clinical studies have clearly demonstrated that with
aging, there is impaired endothelium-dependent vaso-
relaxation with associated increased permeability and vascular
inflammation.
Epidemiologic, cross-sectional, clinical, and postmortem
studies in healthy individuals of variable ages have clearly
demonstrated that intimal wall thickening and dilatation are
noticeable structural changes that occur in conduit arteries
with advanced age. Findings from noninvasive vascular phe-
notyping studies in healthy individuals have demonstrated
that intima-media thickness increases 2- to 3-fold between 20
and 90 years of age.4 Studies in aging nonhuman primates also
showed a relationship between intimal thickness in the
thoracic aorta and aging.5 Exact factors causing progressive
intimal thickening with aging in otherwise healthy individuals
remain elusive, but a number of distinctive changes at the
cellular and morphologic levels have been identified, including
fracture of elastin fibres within the tunica media, increased
collagen deposition, cellular senescence, and dysregulated cell
proliferation. Associated with these events is remodelling of
the ECM, which is an essential component of the connective
tissue surrounding the vascular wall.

The ECM is composed of basic structural elements
(collagen and elastin) and more specialized proteins including
fibronectin and proteoglycans. The ECM is a dynamic
structure and its components are continuously being turned
over through highly regulated systems involving activation of
MMPs and TIMPs. Dysregulation of these processes, together
with alterations in profibrotic and proinflammatory signalling
pathways, likely contribute to aging-associated vascular
structural changes.
The Vascular Phenotype in Hypertension
Resembles Aging-Associated Vascular
Remodelling

The overall vascular phenotype of an individual at any 1
time depends not only on “aging” but also on a combination
of multiple interacting factors, such as genetic factors, diet,
smoking, diabetes, dyslipidemia, oxidative stress, and
obesity.6,7 Moreover, in the presence of prohypertensive fac-
tors, there is acceleration of aging-associated vascular changes
that leads to exaggerated vascular injury and arterial stiffening.
In susceptible individuals, the interplay between aging and
hypertension leads to “early vascular aging” and arterial



Figure 1. The vascular phenotype in aging and hypertension. With aging and during the development of hypertension, the endothelium, vascular
wall, and adventitia undergo functional and structural changes. Endothelial function is impaired and the vascular media is thickened. The adventitial
extracellular matrix undergoes remodelling, with increased collagen deposition, reduced elastin content, and increased proinflammatory cells.
These processes contribute to vascular fibrosis and stiffening. ECM, extracellular matrix; MMP, matrix metalloproteinases; TIMPs, tissue inhibitory
metalloproteinases; VSMC, vascular smooth muscle cell.
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stiffness, in which the vascular phenotype in young hyper-
tensive individuals resembles that of elderly otherwise healthy
individuals (Fig. 1).
Arterial Stiffness
Normally, conduit arteries distend to accommodate large

pressure ejections from the heart during systole to facilitate
perfusion to tissues during diastole. This is determined in
large part by the elasticity, distensibility, and compliance of
the arterial system. Loss of elasticity and increased stiffness
demand greater force to accommodate blood flow, leading to
increased systolic blood pressure, increased cardiac work load,
and consequent cardiac hypertrophy and risk of cardiovascular
events. Aortic stiffness also affects the microcirculation and
vice versa.7,8 Aortic wall stiffening causes increased pulse wave
velocity (PWV) and premature reflected waves with elevated
central hemodynamic load leading to damage of peripheral
small arteries.9 Remodelling of small arteries in turn leads to
increased peripheral vascular and pulse wave reflection, which
can further contribute to aortic stiffness.10 Arterial stiffness
can be assessed by measuring PWV, pulse wave analysis,
ambulatory arterial stiffness (using 24-hour ambulatory blood
pressure monitoring) and evaluating endothelial function
(flow-mediated dilation). PWV is the most commonly used
approach and measures the speed of the pressure pulse from
the heart as it is propagated through the arteries; it is calcu-
lated by dividing the distance travelled by the time taken to
travel the defined distance. Stiffer arteries result in a more
rapid travel time and hence a higher PWV. Various ap-
proaches can be used to measure PWV, including applanation
tonometry, oscillometry, Doppler echocardiography, and
magnetic resonance imaging. Although the measurement of
PWV is considered to be the most simple, noninvasive,
robust, and reproducible method to determine arterial
stiffness,11 it is not yet used in routine clinical practice.
Carotid-femoral PWV is a direct measure of aortic stiffness
and is now considered the gold standard for its evaluation in
clinical and epidemiologic studies.12

Arterial stiffness is a natural consequence of advancing age
and is accelerated in hypertension. It is also an independent
predictive risk factor for cardiovascular events and, as such,
aortic PWV is now recognized as an important biomarker in
the determination of cardiovascular risk. Arterial stiffness has a
bidirectional causal relationship with blood pressure, because
high blood pressure causes arterial wall injury, which pro-
motes stiffening, whereas arterial stiffening itself is the major
cause of increased systolic blood pressure, especially in the
elderly,8,13 Multiple interacting factors at the systemic (blood
pressure, hemodynamics), vascular (vascular contraction/dila-
tation, ECM remodelling), cellular (cytoskeletal organization,
inflammatory responses), and molecular (oxidative stress,
intracellular signalling, mechanotransduction) levels
contribute to arterial stiffness in aging and hypertension.
Dysregulation of endothelial cells, vascular smooth muscle
cells, and adaptive immune responses has also been implicated
in arterial aging and vascular damage in hypertension. A
detailed discussion of all these mechanisms is beyond the
scope of this review and is addressed elsewhere this issue of the
Canadian Journal of Cardiology.14 Here we focus on some
molecular and cellular events that contribute to vascular
fibrosis and ECM remodelling.
The ECM and Vascular Fibrosis in Aging and
Hypertension

The ECM is an essential component of the connective
tissue that surrounds cells. In addition to maintaining cellular
and vascular integrity, it plays a fundamental role in cell sig-
nalling and regulation of cell-cell interactions. The ECM
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comprises multiple structural proteins, including collagens,
elastin, fibronectin, and proteoglycans. Composition of the
ECM varies from organ to organ, with collagen types I and III
representing the predominant isoforms in the vascular
ECM.15 The absolute and relative quantities of collagen and
elastin determine biomechanical properties of vessels, in which
an elastin deficiency/collagen excess leads to vascular fibrosis
and increased stiffness.4,15 In healthy individuals, collagen
deposition and turnover are tightly regulated, and the ratio of
collagen to elastin remains relatively constant. However, an
imbalance in these processes leads to excessive ECM protein
deposition, particularly collagen and fibronectin, contributing
to vascular fibrosis and stiffening in aging and during the
development of hypertension.15 Collagens are particularly
important in these processes because they are the most
abundant and stiffest of the ECM proteins. Increased collagen
content and destruction of the elastin fiber network together
with a proinflammatory microenvironment contribute to
ECM remodelling and increased intima-media thickening and
vascular stiffness in small and large arteries in human and
experimental hypertension.

Contributing to the profibrotic process is trans-
glutaminase (TG2), which is secreted into the ECM, where
it catalyzes formation of ε-(g-glutamyl)lysine isopeptide, in
a Ca2þ-dependent manner.16 TG2 acts as an extracellular
scaffold protein as well as a cross-linking enzyme.
Numerous ECM proteins are TG2 substrates, such as
fibronectin, collagen, and laminin.16 Under physiological
conditions, TG2 regulates fibroblast activity and ECM or-
ganization, with little protein cross-linking. However, in
pathologic conditions, increased TG2/ECM protein cross-
linking and altered TG2 activity cause increased rigidity
and stiffening of the vascular wall, processes that may
contribute to remodelling in aging and cardiovascular dis-
ease. Recent evidence indicates altered TG2 activity and
functionality in large arteries of hypertensive rats.17 TG2
dysregulation has also been implicated in small-vessel
changes and inward remodelling in hypertension.18

Fundamental to many of the processes underlying ECM
reorganization and fibrosis in aging and hypertension is
activation of MMPs and TIMPs.
MMPs and TIMPs
ECM proteins, including collagen and elastin, are

regulated by MMPs, a family of endopeptidases, which are
activated by many factors associated with aging and hy-
pertension, such as proinflammatory signalling molecules
(cytokines, interleukins), growth factors, vasoactive agents
(Ang II, ET-1, aldosterone) and ROS. MMP activity is
controlled at 3 levels: gene transcription, proenzyme acti-
vation, and activity inhibition.18 Signalling pathways
involved in regulating MMP transcription include p38
MAPK, which can enhance or repress MMP expression in a
cell typeedependent manner (Fig. 2). Commonly, MMPs
are activated in the pericellular space by other MMPs,
including membrane-type MMPs and MMP-3, or by serine
proteases like plasmin and chymase. Activated MMPs
degrade collagen, elastin, and other ECM proteins, result-
ing in a modified ECM, often associated with a proin-
flammatory microenvironment that triggers a shift of
endothelial and vascular smooth muscle cells to a more
secretory, migratory, proliferative, and senescent pheno-
type, which contributes to fibrosis, calcification, endothelial
dysfunction, and increased intima-media thickness, further
impacting on vascular remodelling and arterial stiffness.

The effect that MMPs have on vascular fibrosis in hy-
pertension is not completely elucidated, with both inhibi-
tory and stimulatory modulation observed.19 This probably
relates to activation of different MMP isoforms and down-
stream signalling pathways. For instance, MMP-1 over-
expression attenuates fibrosis,20 whereas MMP-9 activation
potentiates fibrosis and DNA damage.21 MMP2 activation
leads to stimulation of TGF-b1 signalling; increased
vascular smooth muscle cell production of collagens I, II,
and III; and increased fibronectin secretion, processes that
lead to collagen accumulation in the vascular wall. Although
activation of vascular MMP2 and MMP9 in hypertension is
associated with collagen accumulation, activation of MMP8
and MMP13 is associated with collagen degradation, pro-
cesses especially important in arterial wall plaque and plaque
rupture.22,23 MMP2/MMP9 activation through TGF-b1/
SMAD signalling also induces activation of myofibroblasts
and increased infiltration of monocytes/macrophages, lead-
ing to oxidative stress, inflammation, and vascular wall
injury. Vascular MMP2 and MMP9 are activated by
numerous prohypertensive factors, including Ang II, ET-1,
and salt, as well as mechanical and physical factors, such as
shear stress and pressure. MMP2, MMP7, MMP9, and
MMP14 are upregulated by aging. MMP2 activation is
increased in aged rat aorta, leading to increased TGF-b1 and
SMAD activation.24 Young rats infused with Ang II exhibit
increased MMP2 activation with intima-media thickness
and vascular fibrosis changes that are typical in old untreated
rats.24 The importance of MMPs in vascular fibrosis in
aging and hypertension is further evidenced by MMP in-
hibitors, such as PD166793, which blunted age-associated
vascular fibrosis and remodelling in experimental
models.25,26

MMPs are normally inhibited by endogenous inhibitors
called TIMPs, of which there are multiple isoforms. Alterations
in the balance between ECM MMPs and TIMPs may
contribute to the profibrotic phenotype in aging and hyper-
tension.19,24 The 4 TIMP isoformsdTIMP1, TIMP2, TIMP3,
and TIMP4dare responsible for the inhibition of> 20MMPs,
and the relationship between MMPs and TIMPs changes with
age. For instance, increased MMP2 expression and activity is
observed in vessels of old rats and nonhuman primates compared
with young counterparts.5,27 Furthermore, TIMPs are down-
regulated in aged animals with heart failure but not in young
animals.28
Molecular and Cellular Mechanisms of Vascular
Fibrosis in Aging and Hypertension

TGF-b/SMAD signalling

The TGF-b superfamily consists of > 40 members that
share common sequence elements and structural motifs and
includes TGF-b, bone morphogenetic protein, activin,
inhibin, and growth differentiation factors.29-32 Disruption of
the TGF-b pathway has been implicated in arterial aging and



Figure 2. Vascular signalling mediating extracellular matrix (ECM) remodelling, fibrosis, and arterial stiffening in aging and hypertension. Prohy-
pertensive factors and physiological aging promote ECM remodelling through activation of transforming growth factor-b (TGF-b) and subsequently,
mitogen-activated protein kinase (MAPK) and SMAD pathways, reactive oxygen species (ROS) production, leading to matrix metalloproteinase
(MMP) and connective tissue growth factor (CTGF) activation and upregulation of galectin-3. Subsequently, collagen, fibronectin, and proteoglycan
deposition is increased, leading to fibrosis and increased arterial stiffness. PAI, plasminogen activator inhibitor.
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vascular fibrosis.29-32 Three isoforms (TGF-b1, TGF-b2, and
TGF-b3) exist; TGF-b1 is most frequently upregulated in
ECM remodelling and fibrosis and is consequently regarded as
an important regulator of the ECM. In the vascular system,
TGF-b1 is expressed in endothelial cells, vascular smooth
muscle cells, myofibroblasts, and adventitial macrophages.
Activation of vascular TGF-b1, and its downstream signalling
effector SMAD, increases the synthesis of ECM proteins such
as fibronectin, collagen, and plasminogen activator inhibitor-1
(PAI-1).33,34 TGF-b reduces collagenase production and
stimulates expression of TIMPS, resulting in excessive matrix
accumulation, in part resulting from inhibition of ECM
degradation.35 TGF-b signalling predominantly occurs
through the cytoplasmic proteins, SMADs, which translocate
to the nucleus and act as transcription factors. The SMAD
family comprises receptor-activated SMADs (SMAD2,
SMAD3, SMAD5, and SMAD8), inhibitory SMADs
(SMAD6, SMAD 7) and common-partner SMADs
(SMAD4). SMAD2 and SMAD3 are specific mediators of
TGFb/activin pathways, whereas SMAD7 inhibits both BMP
and TGF-b/activin signalling. SMAD activation results in
increased transcription of many genes involved in ECM for-
mation, including fibronectin, procollagens, PAI-1, and
connective tissue growth factor (CTGF).32 In vascular smooth
muscle cells, overexpression of SMAD7 inhibits TGF-be
induced fibronectin, collagen, and CTGF production.36

Important non-SMAD pathways implicated in TGF-b profi-
brotic signalling include extracellular signal-regulated kinase
(ERK), c-Jun N-terminal kinase (JNK), p38 MAPK, and
phosphoinositide 3-kinase/Akt.37 SMAD translocation to the
nucleus can be modulated by Ras-activated ERK1/2. ERK
inhibition reduces TGF-bestimulated SMAD phosphoryla-
tion as well as collagen production, suggesting that ERK
activation is necessary for an optimal response to TGF-b1.36

Activation of TGF-b1 and receptor-mediated signalling are
increased in the aortic wall with aging and during develop-
ment of hypertension.24 Important in the context of these
conditions, Ang II,38,39 mechanical stress,34,40 ET-1,36and
ROS41 are all elevated and are known to mediate TGF-b
activation, with resultant vascular fibrosis. Additionally,
MMPs (particularly MMP2 and MMP9) enhance release of
TGF-b1, whereas TGF-b1 stimulates TIMP, resulting in
inhibition of ECM degradation, which further induces ECM
accumulation and vascular remodelling and fibrosis. Ang II
can activate the SMAD pathway independent of TGF-b1,
with implications for fibrosis.36,42
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Plasminogen activator inhibitor-1

Plasminogen activator inhibitor-1 (PAI-1) is a member of
the serine protease inhibitor (serpin) gene family and func-
tions as an inhibitor of the serine proteases, urokinase-type
plasminogen activator (uPA), and tissue-type plasminogen
activator (tPA). PAI-1 inhibits fibrinolysis and hence regulates
dissolution of fibrin and inhibits degradation of the ECM by
reducing plasmin generation. PAI-1 normally maintains tissue
homeostasis through regulating the activities of uPA, tPA,
plasmin, and MMPs. In pathophysiological conditions, PAI-1
upregulation contributes to accumulation of ECM proteins
and tissue fibrosis by preventing tissue proteolytic activity and
reducing collagen degradation. Together with increased TGF-
b1 activity, PAI-1 activity and expression are increased in
experimental models of aging and in aged individuals.43,44

PAI-1 is upregulated in aging-associated pathologic condi-
tions, including hypertension.45 Increased PAI-1 is also
recognized as a biomarker of cellular senescence in aging and
hypertension.46

Connective tissue growth factor

CTGF is a 38-kDa cysteine-rich secreted potent profi-
brotic factor implicated in fibroblast proliferation, cellular
adhesion, and ECM synthesis. CTGF expression in the
vasculature is enhanced by several stimuli, including TGF-b1,
tumor necrosis factor-a, and mechanical stress.47 Ang IIe
induced vascular fibrosis is mediated by CTGF, and vascular
smooth muscle cells treated with CTGF antisense oligonu-
cleotides are protected against agonist-induced ECM protein
expression.36,48 CTGF may play an important role in arterial
aging and vascular fibrosis; a number of experimental models
have demonstrated increased levels of CTGF and associated
vascular fibrosis with increasing age.49,50

Galectin-3

Galectin-3 (LGALS3) is a 29- to 35-kDa carbohydrate-
binding lectin expressed on the cell surface of many cell
types, including fibroblasts and endothelial and inflammatory
cells. It is secreted mainly by activated macrophages, and it is
ligand activated by oligosaccharides. Galectin-3 is also acti-
vated by other ligands, including glycosylated matrix proteins
such as laminin, collagen, elastin, fibronectin, and integrin.
The cellular actions of galectin-3 lead to cell proliferation,
adhesion, and fibrosis. Galectin-3 has been shown to play an
important role in fibrosis and tissue remodelling. In heart
failure, plasma galectin-3 levels are increased.51 In the recent
Prevention of Renal and Vascular End-Stage Disease
(PREVEND) study in which plasma galectin-3 levels were
measured in 7968 individuals, plasma levels correlated
positively with increasing age and cardiovascular risk factors,
including hypertension.52 Because of its role in fibrosis,
galectin-3 is now considered by many to be an important
biomarker of cardiovascular fibrosis. The precise mechanisms
through which galectin-3 influences ECM remodelling and
fibrosis are still unclear, although activation of the Janus
kinase (JAK)/signal transducer and activator of transcription
(STAT) and protein kinase C (PKC) pathways,53,54 as well as
oxidative stress and inflammation, have been suggested. In
addition, galectin-3 may directly increase production of
ECM proteins. In rat vascular smooth muscle cells, over-
expression of galectin-3 enhanced aldosterone-induced
collagen 1 synthesis, whereas spironolactone or modified
citrus pectin (galectin-3 inhibitor) reversed these effects.55

Galectin-3 inhibition also attenuated cardiovascular fibrosis
and left ventricular dysfunction in a mouse model of heart
failure.56
The Role of Prohypertensive Vasoactive Factors
in Vascular Aging and Fibrosis

Many vasoactive factors activate profibrotic pathways,
including Ang II, ET-1, and aldosterone (Figs. 2 and 3).
Downstream signalling involves activation of redox-sensitive
genes and transcription factors, early growth response factor-1,
and activation of TGF-b1, MMPs, galectin-3, and MAP
kinases.57-61 The aging vasculature is characterized by increased
levels of Ang II,5 angiotensin-converting enzyme,17,31,61

mineralocorticoid receptors,62 and endothelin-converting
enzyme-1.63,64 As such, increased levels of these factors, their
receptors, and downstream targets could represent an important
event during aging that leads to vascular stiffness.

Ang II signalling and vascular fibrosis

The renin-angiotensin-aldosterone system plays a central
role in structural and mechanical changes in the vasculature.
Ang II acts through activation of 2 receptorsdAT1 and
AT2din which AT1 plays a major role in the production of
ECM proteins.65-68 This is highlighted by studies demon-
strating that antagonism of Ang II receptors results in
decreased fibrosis.69,70 The precise signalling events involved
in Ang II-induced vascular fibrosis are incompletely deter-
mined; however, in mesangial cells, TGF-b1 activity is
increased by Ang II, an effect not observed when activator
protein 1 binding sites or PKC- and p38 MAPKedependent
pathways are inhibited.65 In addition, galectin-3 seems to be
associated with Ang IIeinduced fibrosis, and its expression is
related to the severity of renal dysfunction in aging; mice
subjected to Ang II infusion develop cardiac fibrosis,71 an
effect not observed in galectin-3 knockout animals. Further-
more, cultured fibroblasts exposed to galectin-3 have reduced
collagen production and deposition.60 Ang IIeinduced acti-
vation of p38 MAPK is also associated with the development
and progression of fibrosis, commonly observed in aging and
hypertension.72-74 It has been suggested that Ang II induces
activity of MMPs and TIMPs and upregulation of CTGF
during aging.75-80

Aldosterone and vascular fibrosis

Accumulating evidence implicates aldosterone as an
important pathophysiological mediator in cardiovascular
remodelling by promoting vascular hypertrophy, fibrosis,
inflammation, and oxidative stress.81-83 Evidence from ani-
mal models and clinical trials of heart failure and hyper-
tension demonstrate that chronic blockade of
mineralocorticoid receptors, through which aldosterone sig-
nals, reduces cardiovascular fibrosis. In rats, aldosterone
infusion increases aortic media cross-sectional area associated
with elevated collagen levels, particularly increased collagen I
synthesis.84,85



Figure 3. Influence of prohypertensive factors and aging in the development of vascular fibrosis and arterial stiffening. The renin-angiotensin-
aldosterone system, acting through angiotensin receptor type 1 (AT1R) and mineralocorticoid receptor (MR), and endothelin-1 (ET-1) acting
through endothelin receptor (ETR) activate matrix metalloproteinase (MMPs), connective tissue growth factor (CTGF), and transforming growth
factor-b (TGF-b) signalling, resulting in inflammation, oxidative stress, and fibrosis, leading to increased arterial stiffness. This process is also
induced by ET-1 signalling through ETR, aldosterone signalling through MR, and aging. ACE, angiotensin converting enzyme.
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In the context of aging, aldosterone levels have been shown
to decline in older age.86,87 This is associated with increased
expression of mineralocorticoid receptors in intact vessels, as
well as in cultured vascular smooth muscle cells, and has been
shown to correlate with markers of vascular fibrosis.62

Whether increased signalling through mineralocorticoid re-
ceptors plays a role in vascular fibrosis associated with aging
has yet to be confirmed.

ET-1 and vascular fibrosis

ET-1 is a secreted peptide produced primarily in endo-
thelial cells after conversion of preproendothelin to pro-
endothelin and subsequently to mature endothelin, which has
potent vasoconstrictor activity. The vascular actions of ET-1
are mediated by 2 distinct endothelin receptor subtypes: the
ETA and ETB receptors located on both vascular smooth
muscle and endothelial cells. In addition to well-established
hypertrophic and mitogenic properties, ET-1 can modulate
ECM remodelling by stimulating fibroblast-induced collagen
synthesis. ET-1 stimulates synthesis of collagen through both
ETA and ETB receptor subtypes.88,89 Reduced cardiac and
renal MMP activity and expression has been reported after
administration of ETA receptor antagonists.90-92 Similarly,
treatment with an endothelin antagonist normalizes expres-
sion of the collagen I gene and leads to the regression of renal
vascular fibrosis and improved survival.93

Numerous findings have reported elevated ET-1 levels
in healthy older adult humans.94,95 In cultured aortic
endothelial cells, ET-1 synthesis is greater in cells obtained
from older donors vs young adult donors.96 In Wistar-
Kyoto (WKY) rats, aging is associated with a 3.6-fold
elevation in kidney ET-1 protein expression in the kid-
ney. In rodent models, dual ETA/ETB receptor antagonism
had no effect on the age-associated increase in aortic MMP-
2 activity in WKY rats but markedly reduced pro and
active MMP-2 activity in aged hypertensive rats, demon-
strating that ET-1 may represent an important mediator of
vascular stiffness in aging in the presence of other vascular
diseases.63
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Conclusions
With aging, the vasculature undergoes structural and func-

tional changes characterized by arterial remodelling, vascular
fibrosis, and stiffening, which are processes that are evident in
aging and hypertension. Arterial stiffening is common, occurring
in > 60% of individuals older than 70 years and is a major
independent predictor for serious cardiovascular events.
Accordingly, there is a need to understand the fundamental
processes that cause vascular stiffness so that mechanism-based
therapeutic strategies can be developed to ameliorate or pre-
vent processes of “vascular aging” in hypertension and associated
cardiovascular diseases. Arterial stiffening is caused primarily by
excessive fibrosis from excessive accumulation of vascular
collagen and degradation of elastin. It is a dynamic phenome-
non, which initially is an adaptive repair response that is
reversible. However, the fibrogenic process is progressive, lead-
ing to further worsening of arterial stiffness and fibrosis that
gradually extends into the neighbouring interstitial space,
causing tissue and organ damage. A number of noninvasive
methods are currently available to evaluate large-artery stiffness
in the clinical setting, including carotid-femoral PWV. Increased
PWV in aging and hypertension reflects increased arterial stiff-
ness and is emerging as a biomarker for cardiovascular risk
stratification. Perhaps over the next decade, PWV assessment
may become a routine investigation in the clinical tool kit to
better predict hypertension and cardiovascular disease.
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