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Abstract

Background: The analytical validation of sensitive, accurate and standardized Real-Time PCR methods for Trypanosoma cruzi
quantification is crucial to provide a reliable laboratory tool for diagnosis of recent infections as well as for monitoring
treatment efficacy.

Methods/Principal Findings: We have standardized and validated a multiplex Real-Time quantitative PCR assay (qPCR)
based on TaqMan technology, aiming to quantify T. cruzi satellite DNA as well as an internal amplification control (IAC) in a
single-tube reaction. IAC amplification allows rule out false negative PCR results due to inhibitory substances or loss of DNA
during sample processing. The assay has a limit of detection (LOD) of 0.70 parasite equivalents/mL and a limit of
quantification (LOQ) of 1.53 parasite equivalents/mL starting from non-boiled Guanidine EDTA blood spiked with T. cruzi CL-
Brener stock. The method was evaluated with blood samples collected from Chagas disease patients experiencing different
clinical stages and epidemiological scenarios: 1- Sixteen Venezuelan patients from an outbreak of oral transmission, 2- Sixty
three Bolivian patients suffering chronic Chagas disease, 3- Thirty four Argentinean cases with chronic Chagas disease, 4-
Twenty seven newborns to seropositive mothers, 5- A seronegative receptor who got infected after transplantation with a
cadaveric kidney explanted from an infected subject.

Conclusions/Significance: The performing parameters of this assay encourage its application to early assessment of T. cruzi
infection in cases in which serological methods are not informative, such as recent infections by oral contamination or
congenital transmission or after transplantation with organs from seropositive donors, as well as for monitoring Chagas
disease patients under etiological treatment.
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Introduction

Chagas disease, caused by the protozoan parasite Trypanosoma

cruzi (T. cruzi), remains a major public health concern in 21

endemic countries of America, with an estimated prevalence of 8

million infected people [1].

The human disease occurs in two stages: an acute stage, which

occurs shortly after an initial infection, and a chronic stage that

develops over many years. Out of individuals at the chronic stage,

60–80% will never develop symptoms, while the remaining 20–

40% will develop life-threatening heart and/or digestive disorders

during their lifetime [1,2].

Individuals from different endemic regions are infected with

distinct parasite populations, recently classified into six Discrete

Typing Units (DTUs), designated as T. cruzi I (TcI) to T. cruzi VI

(TcVI) [3], initially defined as ‘‘sets of stocks that are genetically

more related to each other than to any other stock and that are

identifiable by common genetic, molecular or immunological
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markers’’ [4]. These DTUs are differently distributed in the

endemic regions and transmission cycles and probably are

differently involved in the clinical manifestations and severity of

the disease [5,6]. TcI is the major cause of Chagas disease in

northern South America and Central America and prevails in wild

cycles throughout the continent [6], whereas TcII, TcV and TcVI

are predominant in the southern cone [7–10]. Moreover, remark-

able intra-DTU variability has been observed within TcI, hence five

groups of genotypes (TcIa to TcIe) have been proposed [11–16].

Current chemotherapies are more effective in recent infections

than in chronic disease [17], being the serological conversion to

negative the accepted criteria for cure, which usually occurs years

after treatment, hampering the execution of clinical trials using

novel drugs in chronically infected adult cohorts [18]. On the

other hand, parasitological response to treatment is usually

monitored by means of Strout, hemoculture or xenodiagnosis,

which lack of sensitivity in the chronic phase [19].

In this context, the development of sensitive and accurate

quantitative PCR (qPCR) strategies for T. cruzi quantification is

crucial to provide a surrogate marker to assess treatment efficacy.

A few real-time PCR strategies have been developed for detection

of T. cruzi in Chagas disease patients [20–22]. Our group

developed a SYBR-Green based qPCR strategy which used an

internal amplification control (IAC) that was added to each blood

sample prior to DNA extraction [22]. Although this meant an

improvement in qPCR for Chagas disease, amplification of T. cruzi

and IAC targets had to be done in separate tubes. Accordingly, we

developed and standardized a multiplex qPCR strategy based on

TaqMan technology, aiming to quantify both T. cruzi and IAC

DNAs in a single-tube multiplex reaction. This work presents the

analytical validation and evaluation of this qPCR test in blood

samples from Chagas disease patients under diverse clinical and

epidemiological scenarios.

Methods

Ethics statement
The study was approved by the ethical committees of the

participating institutions, namely, Comité de Bioética de la

Provincia de Jujuy (CPBJ) and Comité de Bioética de la ANLIS

‘‘Dr Carlos G. Malbrán’’, Ministerio de Salud, Argentina; Comité

de Bioética de la Facultad de Medicina, Universidad Mayor de

San Simón, Cochabamba, Bolivia; Comité de Bioética del

Instituto de Medicina Tropical, Universidad Central de Vene-

zuela, Caracas, Venezuela; following the principles expressed in

the Declaration of Helsinki. Written informed consents were

obtained from the adult patients and from parents/guardians on

behalf of all newborns and children participants.

Spiked blood samples
Seronegative human blood samples were spiked with cultured

epimastigotes of Sylvio X10 and CL-Brener stocks (TcI and TcVI,

respectively) and mixed with one volume of Guanidine Hi-

drochloride 6M, EDTA 0.2 M buffer, pH 8.00 (GE).

Internal amplification control
A pZErO-2 recombinant plasmid containing an inserted

sequence of Arabidopsis thaliana aquaporin was used as an

heterologous extrinsic IAC [22]. The recombinant was gently

provided by Dr Jorge Muschietti and coworkers (INGEBI-

CONICET, Argentina). It was used to transform Escherichia coli

bacteria in the presence of kanamicine to obtain plasmidic DNA

after column extraction. For PCR purposes, the recombinant

plasmid was linearized using the restriction enzyme Pst1.

Patients and clinical specimens
The assay was evaluated in different groups of patients, as

follows:

Group 1 (G1): Sixteen Venezuelan patients detected during the

study of an outbreak of oral transmission of T. cruzi in an urban

school in the Municipality of Chacao, Caracas, Venezuela [23].

All 16 patients were symptomatic, presenting facial edema, long

lasting high fever and decay. Serological studies were positive on

the basis of ELISA-IgM, ELISA-IgG, indirect hemagglutination

test and lytic antibodies. The patients were treated with

Benznidazole for one week plus three months with Nifurtimox

and followed-up during two years after treatment. The qPCR

assay was carried out at time of diagnosis, and 24 and 48 months

after the end of treatment. Culture isolates obtained from one of

these patients were genotyped as TcId (Diaz Bello Z et al.,

unpublished data). Five mL of peripheral blood samples were

obtained for the analysis and immediately mixed with an equal

volume of GE buffer, boiled during 15 min. and conserved at

220uC.

Group 2 (G2): Sixty three chronic Chagas disease patients from

Bolivia (Chagas Epidemiological Network, Dr Faustino Torrico

and DNDi, Dr Isabela Ribeiro). Ten mL of peripheral blood

samples were obtained for the analysis and immediately mixed

with an equal volume of GE and conserved at 4uC.

Group 3 (G3): Thirty four patients with chronic Chagas disease

from Argentina admitted to a clinical trial entitled TRAENA

(‘‘Tratamiento en adultos’’, Dr Adelina Riarte, unpublished data).

Ten mL of peripheral blood samples were obtained and

immediately mixed with an equal volume of GE, boiled during

15 min. and conserved at 4uC.

Group 4 (G4): Twenty seven out of 74 newborns to seropositive

mothers delivered at Hospital Pablo Soria, San Salvador de Jujuy,

Argentina from September 2011 to March 2012, were analyzed by

qPCR. This province has been declared free of vectorial

transmission [24]. Serodiagnosis of pregnant women was done

by means of conventional serological methods. Newborns were

tested by the microhematocrite test [25] and positive cases were

Author Summary

Chagas disease, caused by the parasite Trypanosoma cruzi, is
endemic in several Latin American countries and still
represents a major neglected tropical threat. It is transmit-
ted to humans by blood-sucking triatomine bugs, congen-
ital transmission, blood transfusion, organ transplantation
and by consuming food and juice contaminated with the
parasite. Tools for accurate diagnosis and surrogate markers
of parasitological response to treatment remain key needs
in the field. This study focused on the evaluation of a novel
quantitative PCR assay for the diagnosis and follow-up of
patients with Chagas disease, on the basis of international
guidelines for analytical validation of molecular diagnostic
methods. The method allows the simultaneous amplifica-
tion of parasite satellite DNA sequence and a heterologous
internal amplification control that permits rule out false
negative results due to inhibitory substances or loss of DNA
during sample processing. It was evaluated in peripheral
blood samples from acute and chronic patients as well as in
umbilical cord blood samples from newborns to seropos-
itive mothers. The performing characteristics of this assay
position it as a promising candidate for application to
clinical trials and kit developments.

Multiplex Real-Time PCR to Quantify T. cruzi DNA
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treated with Benznidazole. Three out of the 74 newborns (4.0%)

were positive by the microhematocrite method.

In eight newborns, 5 mL of umbilical cord blood was collected

at delivery, in other 15 cases 1 mL of peripheral blood was

withdrawn, and in four ones both umbilical and peripheral blood

were collected. The umbilical cord was clamped, the segment was

cleaned with a broad-range antiseptic product (Povidone-iodine,

Phoenix Lab; Argentina) and 5 mL of blood was withdrawn from

the end closer to the placenta. Samples were collected in tubes

containing an equal volume of GE, boiled during 15 min. and

stored at 4uC for DNA purification and PCR analysis.

Group 5 (G5): One seronegative patient (42 years old, man) that

received on emergency a kidney transplant from a seropositive

cadaveric donor followed up by Dr Roberta Lattes at the ‘‘

Instituto de Nefrologı́a Buenos Aires’’. Infection by T. cruzi was

diagnosed by serological methods and Strout 121 days after

transplantation and Benznidazole treatment was implemented

during 60 days. Samples were treated with an equal volume of GE,

boiled during 15 min. and stored at 4uC for DNA purification and

PCR analysis.

DNA extraction
Blood samples treated with GE (GEB) from G1, G2, G3 and G5

were processed using the High Pure PCR Template Preparation

kit (Roche Diagnostics Corp., Indiana, USA): Five mL of linearized

IAC (40 pg/mL) were added to 100 mL of binding solution in a

clean tube and 300 mL of GEB (G2) or 200 or 300 mL of boiled

GEB (G1 and G3/G5, respectively) were added and the mix was

homogenized. This quantity of IAC was chosen because it renders

a Ct value around 20, which is in the middle of the linear range of

IAC amplification, as reported [22].

The solution was further mixed with 40 mL of proteinase K by

vortexing during 15 sec., spinned down and incubated at 70uC for

10 min. in a dry thermo-block. After spin down, 100 mL of

isopropanol were added, vortexed during 15 sec. and spinned

down. Each sample was loaded into an extraction column placed

into a 2 mL microtube. The content was centrifuged at 8000 rpm

during 1 min. The extraction column was placed into a new

collection tube. Inhibitors removing solution (500 mL) was added

to each column and centrifuged as described before. The column

was placed into a new tube. Washing solution (500 mL) was added

to the column and centrifuged as described before. The column

was placed into a new tube and the washing step was repeated.

The column was placed into a 1.5 mL microtube and centrifuged

at maximum speed for 10 sec. One hundred mL of pre-heated

elution buffer were added to the column and centrifuged as

previously described. The eluate was stored at 220uC for qPCR

analysis. In order to build the standard curves for quantification of

parasitic loads in G1, G2, G3 and G5 patients’ specimens, DNA

from spiked blood was prepared in the same way as reported for

the clinical samples.

Three hundred mL of boiled GEB samples from G4 newborns

were processed using the QIAamp DNA Mini Kit, after addition

of 5 mL of linearized IAC (40 pg/mL) to the lysis buffer and

processed as recommended by the manufacturer (Qiagen, USA).

DNA from spiked blood used to build the respective standard

curve for quantification was extracted as described for G4 samples.

Multiplex real-time PCR standardization
On the basis of a previously reported TaqMan procedure for

detection of T. cruzi satellite DNA [21] that showed high sensitivity

and specificity in an international PCR study [26], we assayed the

same T. cruzi primers and probe and designed a set of primers and

probe for the IAC target (Table 1). The melting temperatures of

IAC Fw and IAC Rv primers are similar to those of Cruzi 1 and

Cruzi 2 primers (61.2uC, 60.9uC, 58.4uC and 59.5uC, respectively)

using Oligo Calculator version 3.26 at http://www.basic.

northwestern.edu/biotools/oligocalc.html.

The qPCR reactions were carried out with 5 mL of re-

suspended DNA, using FastStart Universal Probe Master Mix

(Roche Diagnostics GmbHCorp, Mannheim, Germany) in a final

volume of 20 mL. Optimal cycling conditions were a first step of

10 min. at 95uC followed by 40 cycles at 95uC for 15 sec. and

58uC for 1 min. The amplifications were carried out in a Rotor-

Gene 6000 (Corbett, UK) or in an Applied Biosystems (ABI 7500,

USA) device. Standard curves were constructed with 1/10 and 1/

2 serial dilutions of total DNA obtained from a GEB sample spiked

with 105 par. eq./mL of blood. TcI and TcVI based standard

curves were used to quantify parasitic loads in G1 and in G2–G5

samples, respectively.

In order to evaluate the influence of the concentrations of IAC

template, primers and probe in the efficiency of T. cruzi DNA

amplification in the multiplex format, DNA extracts from samples

carrying 0.5 to 750 par. eq./mL as well as samples without T. cruzi

were amplified by both simplex qPCR (only T. cruzi primers and

probe) and multiplex qPCR formats.

In order to assess the influence of T. cruzi load on the efficiency

of IAC amplification in the multiplex format, T. cruzi DNA

samples obtained to build the CL-Brener standard curve were

amplified and the IAC was quantified. For this, a standard curve

was built with DNA obtained from 300 mL of GEB spiked with 50

to 800 pg of linear IAC on duplicate as well as the PCR assay from

each DNA lysate.

Multiplex real-time PCR assay analytical performance
Terms. On the basis of the MICROVAL protocol [27],

several key terms were defined in this study as follows: i) Selectivity is

defined as a measure of the degree of response from target and

non-target microorganisms and comprises inclusivity and exclu-

sivity. Inclusivity is the ability of an alternative method (Real Time

PCR in this case) to detect the target pathogen from different

strains (Discrete Typing Units in this case), and Exclusivity is the

lack of response from closely related but non-target strains (other

Tripanosomatides in this case); ii)

Anticipated reportable range. A set of values of measur-

ands for which the error of a measuring instrument is intended to

lie within specified limits; iii) Limit of detection (LOD): the smallest

amount that the method can reliably detect to determine presence

or absence of an analyte; iv) Precision: Closeness of agreement

between independent test/measurement results obtained under

stipulated conditions; v) Limit of quantification (LOQ): The smallest

amount the method can reliably measure quantitatively.

Inclusivity. The assay was evaluated with genomic DNA

obtained from a panel of T. cruzi stocks belonging to the six

different DTUs in concentrations ranging from 0.0625 to 10 fg/

mL tested on duplicates: TcI [stocks K98 (spliced leader intergenic

region based genotype TcIa), G (genotype TcId) and SE 9V

(genotype TcIe)], [13–16]; TcII (stock Tu18), TcIII (stock M5361),

TcIV (stock CanIII), TcV (stock PAH265) and TcVI (stock CL-

Brener) [3].

Stocks K98 and CL Brener were grown at INGEBI. Strains

PAH265, Tu18, CanIII and M5631 were kindly provided by Dr

Patricio Diosque (INPE, Universidad Nacional de Salta, Argen-

tina). The isolate SE 9V was kindly provided by Dr Aldo Solari

(Fac. Medicina, Universidad de Chile, Santiago de Chile, Chile)

and G was provided by Dr Jose Franco Da Silveira (EPM, Sao

Paulo, Brazil).

Multiplex Real-Time PCR to Quantify T. cruzi DNA
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Exclusivity. Serial dilutions of Trypanosoma rangeli and Leish-

mania major, Leishmania mexicana and Leishmania amazonensis purified

DNA ranging from 1 to 1000 pg/mL were assayed on duplicates.

T. rangeli DNA was kindly provided by Dr Juan David Ramirez

and Dr Felipe Guhl (CIMPAT, Universidad de los Andres,

Colombia) and Leishmania sp. DNA by Dr Paula Marcet (CDC,

Atlanta, USA).

Anticipated reportable range. Cultured Sylvio X10 (TcId)

and CL-Brener (TcVI) parasites were spiked into 10 mL of non-

infected human blood, immediately mixed with an equal volume

of GE, to obtain a panel of GEB samples spanning 105 to 0.0625

par. eq./mL of blood. After DNA purification, each dilution was

amplified on triplicate. Assigned versus measured values were

converted to log10 par. eq./10 mL of blood and plotted for linear

regression analysis.

Limit of detection. The LOD was calculated as the lowest

parasitic load that gives $95% of PCR positive results, according

to the NCCLS guidelines [28]. Due to the fact that many

published T. cruzi PCR procedures used boiled GEB samples [26],

the LOD was characterized from two panels of GEB samples

spiked with the CL-Brener stock; one panel was boiled during

15 min. before preparing serial dilutions and the other one was

diluted without prior boiling. For both panels, eight replicates

from GEB dilutions containing 0.125, 0.25, 0.5 and 1 par. eq./mL

of blood were purified and amplified during 5 consecutive days.

The LOD was determined by Probit regression analysis (Probit

Minitab 15 software, USA).

Precision. Precision experiments were performed with spiked

GEB samples at concentrations of 0.5, 10 and 103 par. eq./mL

(0.69, 2 and 4 log10 par. eq./10 mL), assayed on duplicates during

20 consecutive experiments, one run per day, according to the

NCCLS document EP5-A2 [29]. The estimates of within-device or

within-laboratory precision standard deviations (St) were calculat-

ed using the formula St = [B2+(N21)/N*Sr
2]1/2, being B the

standard deviation of the daily means and Sr the estimate of

repeatability standard deviation (within-run precision).

Limit of quantification. The LOQ was derived from a 20%

threshold value for the coefficient of variation (CV) of measure-

ments obtained in the precision experiments, following the

recommendations of NCCLS document EP17-A [28]. Assuming

an exponential decrease in CV, a curve for the relationship

between CV and log10 par. eq./10 mL was fitted using SigmaPlot

version 10.0 for Windows (SPSS, Chicago, IL).

Quality controls for analysis of clinical specimens
A negative control and two positive controls containing different

concentrations of T. cruzi DNA were included in every run:

namely a high-positive control and a low-positive control near the

lower limit of detection, as recommended [30].

Statistics
The Tukey’s criterion (boxplots) [31] was used to detect samples

with outlier Ct values of IAC (Cts.75th percentile+1.56inter-

quartile distance of median Ct), which would indicate inhibition or

material loss in samples from a same experiment/clinical group

with n.10.

The bilateral t test was done to compare the IAC recovery

between a) boiled and not boiled spiked GEB samples, b) umbilical

and peripheral blood samples in G4 newborns, c) peripheral blood

samples from G2 and G3 chronic cases after elimination of outlier

samples, and d) samples processed using QIAamp versus Roche

DNA extraction kits.

Values of p,0.05 were considered as significative. The software

InfoStat 2012 (Infostat/Students version 2.0. Infostat/FCA

Group. Córdoba’s National University; Ed. Brujas, Córdoba,

Argentina) was used for the analysis. Satterwait’s correction was

applied in cases of non-homogeneous variances.

Results

Standardization of the multiplex real-time PCR assay
We compared the qPCR positivity in 1 fg and 10 fg of purified

DNA samples from cultured parasites of reference stock CL-

Brener and in a panel of GEB samples from 18 chronic Chagas

disease patients from Cochabamba, Bolivia using four different

commercial Master Mixes developed for real-time PCR: namely

TaqMan Fast Advanced Master Mix (Invitrogen, USA), FastStart

Universal Probe Master Mix (Roche Diagnostics GmbHCorp,

Mannheim, Germany), TaqMan Universal PCR Master Mix

(Applied Biosystems, USA) and Multiplex PCR Kit, (Qiagen,

USA). Each Master Mix was challenged with different combina-

tions of Cruzi 1 and Cruzi 2 primers (0.25, 0.5, 0.75 and 1 mM)

and Cruzi 3 TaqMan probe (50, 100, 200 and 400 nM)

concentrations. A first experiment using purified T. cruzi DNA,

allowed discarding TaqMan Fast Advanced Master Mix (Invitro-

gen) because it was incapable of detecting 10 fg of T. cruzi DNA.

The remaining 3 Master Mixes were evaluated using 5 mL of DNA

lysates obtained from the mentioned panel of GEB samples, out of

which the FastStart Universal Probe Master Mix (Roche) gave 12

PCR positive results (66.67%), the Multiplex PCR Kit (Qiagen)

gave 7 PCR positive results (38.89%, also positive with Fast-Start

Universal Probe Master Mix) and the TaqMan Universal PCR

Master Mix (Applied Biosystems) gave 3 PCR positive results

(16.67%, also positive with the other Master Mixes). Accordingly,

subsequent optimization and validation of the multiplex assay was

carried out using FastStart Universal Probe Master Mix and the

concentrations of primers and probes described in Table 1.

In multiplexed assays, IAC amplification must be limited to

avoid competition with subsequent T. cruzi DNA amplification.

Table 1. Sequences and concentrations of primers and probes used for the Multiplex Taqman qPCR assay.

Target Oligonucleotide Sequence Final Concentration (mM)

T. cruzi satellite DNA Cruzi 1 59-ASTCGGCTGATCGTTTTCGA-3 0.75

Cruzi 2 59 -AATTCCTCCAAGCAGCGGATA-3 0.75

Cruzi 3 59 -Fam-CACACACTGGACACCAA-NFQ-MGB-39 0.05

IAC IAC Fw 59 -ACCGTCATGGAACAGCACGTA-39 0.1

IAC Rv 59 -CTCCCGCAACAAACCCTATAAAT-39 0.1

IAC Tq 59 -VIC-AGCATCTGTTCTTGAAGGT-NFQ-MGB-39 0.05

IAC: Internal amplification control. S: C/G.
doi:10.1371/journal.pntd.0002000.t001

Multiplex Real-Time PCR to Quantify T. cruzi DNA
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Thus, we evaluated different concentrations of IAC Fw and Rv

primers (0.06, 0.08, 0.1, 0.2 and 0.5 mM) and IAC TaqMan probe

(50, 100, 200 and 400 nM) to obtain a limiting IAC amplification

with high efficiency. Higher analytical sensitivity was achieved

working with 0.75 mM T. cruzi primers, 0.1 mM IAC primers and

50 nM of T. cruzi and IAC TaqMan probes, using the FastStart

Universal Probe Master Mix (Roche Diagnostics GmbHCorp,

Mannheim, Germany). Similar Ct values for a panel of T. cruzi

DNA concentrations were obtained when qPCR was carried out

in simplex or multiplex formats, indicating that IAC template as

well as IAC primers and probe did not interfere with the efficiency

of parasite DNA amplification (data not shown). Moreover, T.

cruzi DNA samples spanning 0.25 par. eq./mL to 105 par. eq./mL

did not interfere in the efficiency of IAC amplification, indicating

no inhibition of the IAC in the presence of the tested parasite loads

(data not shown).

Internal amplification control
Amplification of IAC standard curve had an efficiency of 91.7%

(y = 23.539x+19.831, R2 = 0.994; Figure S1). Besides, no signif-

icant differences in IAC amplification were obtained from 22

replicates of boiled and not boiled spiked GEB samples, giving

mean Ct values of 19.13 (IC95% [19.07–19.19]) and 19.04 (IC95%

[18.92–19.16]), respectively (p = 0.2204).

Analytical performance of the multiplex real-time PCR
assay

Selectivity. The Multiplex qPCR assay was challenged with

parasite stocks belonging to the six DTUs. It detected 0.0625 fg/

mL DNA from stocks representing TcIa, TcII, TcIII, TcV and

TcVI; 0.25 fg/mL of DNA from TcId and TcIV stocks and 1 fg/

mL of TcIe stock (Table 2).

The qPCR assay was challenged with serial dilutions of purified

DNA from T. rangeli and L. amazonensis, L. major and L. mexicana

stocks, ranging from 1 to 1000 pg/mL (Table 3). No amplification

was observed from Leishmania sp. DNA but one of both replicates

containing 10 and 100 pg/mL of T. rangeli DNA was qPCR

positive, as well as both replicates from the highest tested

concentration (Table 3).

Anticipated reportable range. The reportable range was

calculated using spiked GEB samples containing serial dilutions of

Silvio X10 (TcI) and CL Brener (TcVI) cultured epimastigotes. A

linearity experiment was performed with a panel of 10 spiked GEB

dilutions per parasite stock, spanning 105 to 0.0625 par. eq./mL

blood and tested in triplicate. Linear regression analysis gave

the equation y = 1.013x+0.058 (R2 = 0.992) for TcI, and

y = 1.001x+0.005 (R2 = 0.998) for TcVI. Thus, the reportable

range was between 1 and 6 log10 par. eq./10 mL for the TcI stock

and between 0.25 and 6 log10 par. eq./10 mL for the TcVI stock

(Figure 1).Limit of detection. Probit regression analysis showed

LODs of 0.4619 (IC95% [0.3645–0.6390]) and 0.6979 par. eq./mL

(IC95% [0.5396–1.012]) for boiled and non-boiled blood samples,

respectively (p = 0.044).

Precision. The estimates of precision were calculated for

0.69, 2 and 4 log10 par. eq./10 mL of non-boiled GEB spiked with

CL-Brener, equivalent to 0.5, 10 and 103 par. eq./mL,

respectively. Each dilution was assayed on duplicate during 20

consecutive days, one run per day (Table S1). The coefficients of

variation of the precision estimates were 46.6, 6.00 and 1.72%, for

0.69, 2 and 4 log10 par. eq./10 mL, respectively (Table 4).

Limit of quantification. The LOQ was derived from a 20%

threshold value of the CVs obtained in the precision experiments.

Linear least squares regression for the equation y = y0+a6e2bx

resulted in the best fit (R2 = 1.0) for the variables y0 = 1.61,

a = 157.75 and b = 1.814. Figure 2 displays the fitted curve and the

derivation of LOQ20%CV. Based upon the derived equation, the

absolute LOQ20%CV was estimated as 1.185 log10 par. eq./10 mL,

which corresponds to 1.531 CL Brener par. eq./mL of non-boiled

GEB.

Quantification of parasitic loads in Chagas disease
patients

The Multiplex qPCR test was carried out on blood samples

from different groups of patients, namely Venezuelan patients

infected by the oral route (G1, n = 16), chronic Chagas disease

patients from Bolivia (G2, n = 63) and Argentina (G3, n = 34) and

newborns to seropositive women (G4, n = 27); in the latter group,

Table 2. Inclusivity assay for T. cruzi DTUs.

DTUs (Mean Ct)

Conc. (fg/mL) TcIa TcId TcIe TcII TcIII TcIV TcV TcVI

0.0625 31.74 Undet. Undet. 32.74a 28.69 Undet. 31.15 32.02a

0.125 31.03a Undet. Undet. 32.46 27.64 Undet. 31.17 35.32

0.25 30.62 38.06a Undet. 30.42 27.14 37.21a 30.06 33.74

1 29.14 31.46 32.89a 28.88 24.33 32.32 28.25 30.02

10 26.22 28.13 31.98 25.13 23.98 29.76 25.88 27.93

Results are shown as mean Ct obtained from duplicates of each DNA concentration.
aOnly one replicate was detected. TcIa: K98; TcId: G; TcIe: SE9V; TcII: Tu18; TcIII: M5361; TcIV: CanIII; TcV: PAH265; TcVI: CL Brener. Ct: threshold cycle; Undet.: not
detectable.
doi:10.1371/journal.pntd.0002000.t002

Table 3. Exclusivity assay with other Trypanosomatids.

Trypanosomatid (Mean Ct)

Conc. (pg/mL) T. rangeli L. major L. mexicana L. amazonensis

1 Undet. Undet. Undet. Undet.

10 36.29a Undet. Undet. Undet.

100 32.96a Undet. Undet. Undet.

1000 30.65 Undet. Undet. Undet.

Results are shown as mean Ct obtained from duplicates of each DNA
concentration.
aOnly one replicate was detected. Ct: threshold cycle; Undet.: not detectable.
doi:10.1371/journal.pntd.0002000.t003
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peripheral blood as well as cord blood samples were tested (Table 5

and Figure 3).

The proportion of qPCR positive results was 87.5% in G1, and

60.3 to 76.5% in G2 and G3, respectively (Table 5). In G4, only 3

out of the 27 newborns to seropositive mothers were qPCR

positive, two cases were detected from the umbilical cord blood

sample (case 1: T. cruzi Ct: 21.14, 3.84 log10 par. eq./10 mL, IAC

Ct: 18.10 and case 2: T. cruzi Ct: 20.27, 4.07 log10 par. eq./10 mL,

IAC Ct: 18.05) whereas the third one was detected from the

peripheral blood sample (case 3, T. cruzi Ct: 27.51, 2.14 log10 par.

eq./10 mL, IAC Ct: 19.42). These three cases were diagnosed as

congenitally infected by means of the microhematocrite assay, thus,

concordance between qPCR and microhematocrite was 100%.

The parasitic loads were heterogeneous in the studied popula-

tions, being highest in G4 and lowest in G2, in which only three

out of the 38 qPCR positive samples were quantifiable (1.25, 1.44

and 1.45 log10 par. eq./10 mL blood), indicating in the majority of

G2 patients very low parasitic loads, below the LOQ of the assay

(Figure 3). On the other hand, the individual with highest parasitic

load belonged to G1, presenting 5.23 log10 par. eq./10 mL blood,

compatible with an acute infection (Figure 3).

In order to validate the above mentioned T. cruzi qPCR results

on each clinical group on the basis of IAC recovery, the Tukey’s

criterion was applied to each group of tested specimens, allowing

detection of outliers (Table 6). No outliers were obtained, except

for a single blood sample from G2 (PCC 311, IAC Ct 19.20,

Table 6).

Moreover, given that some groups of clinical specimens were

processed using different DNA extraction kits, we compared the

IAC recovery between samples extracted using the QIAamp DNA

Mini Kit (Qiagen) with those using the High Pure PCR Template

Preparation kit (Roche) (mean IAC-PCR Cts 19.60 vs 18.35,

respectively, p,0,0001), showing higher recovery using the latter

kit.

Monitoring of acute infections and etiological treatment
Figure 4A depicts parasitic loads obtained from peripheral

blood samples collected from three patients of G1 at time of

diagnosis and after etiological treatment. The tested cases

presented T. cruzi loads higher than 3 log10 par. eq./10 mL of

blood at time of diagnosis, becoming undetectable one year after

treatment. However, two years after treatment, the qPCR

Figure 1. Anticipated reportable range and linearity of qPCR method. Multiplex TaqMan qPCR strategy was carried out with spiked GEB
samples containing parasite stocks belonging to TcI and TcVI in ten concentrations spanning 106 to 0.625 par. eq./10 mL, tested in triplicate.
Assigned values were plotted on the x axis versus measured values (converted to log10) on the y axis using SigmaPlot 10.0 for Windows (SPSS,
Chicago, IL). Linear regression analysis rendered the equation y = 1.013x+0.058 (R2 = 0.992) for TcI, and y = 1.001x+0.005 (R2 = 0.998) for TcVI.
doi:10.1371/journal.pntd.0002000.g001

Table 4. Estimation of Precision of the qPCR assay.

Precision estimate 0.69 log10 par. eq./10 mL 2 log10 par. eq./10 mL 4 log10 par. eq./10 mL

Sr 0.616 0.177 0.086

B 0.338 0.088 0.049

N 2 2 2

Media 1.183 2.549 4.516

St 0.551 0.153 0.078

CV% 46.60 6.00 1.72

Sr: estimate of repeatability standard deviation (within-run precision); B: standard deviation of the daily means; N: number of replicate analyses per run; St: estimate of
within-device or within-laboratory precision standard deviations (St = [B2+(N21)/N*Sr

2]1/2); CV: coefficient of variation; log10 par. eq./10 mL: logarithmic values of
parasite equivalents in 10 mL of blood.
doi:10.1371/journal.pntd.0002000.t004
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rendered positive results, though with low parasitic loads,

indicating that the patients were already in a chronic form

because of the treatment failure.

Figure 4B shows parasitic loads from a 42 year-old seronegative

man who received kidney transplantation from a seropositive

cadaveric donor and became infected. Acute infection by T. cruzi

was detected 93 days after transplantation by means of qPCR,

however it was diagnosed by conventional parasitological (Strout)

and serological tests only 121 days after transplantation. Upon

conventional diagnosis, treatment with Benznidazole was initiated.

Parasitic loads diminished and were non-detectable in the sample

collected 159 days after transplantation, persisting non-detectable

at least 228 days after transplantation.

Discussion

Analytical performance of the qPCR assay
In 2007, an international collaborative study to evaluate current

PCR procedures for detection of T. cruzi infection was initiated

[26]. A high variability was observed among laboratories and

methods that used similar DNA extraction procedures and

identical primer sequences, confirming that the lack of standard-

ization led to poor reproducibility, precluding the possibility to

compare findings among different laboratories. Furthermore,

some methods showed an important reduction of the analytical

sensitivity when spiked blood samples were tested in comparison to

purified parasite DNA, suggesting that the DNA purification step

was crucial for the PCR yield. Since most procedures lacked

internal amplification controls, discrimination between true and

false negative results could often not be assessed. Indeed, PCR

cannot be given diagnostic status, before it includes an internal

amplification control [32]. Homologous extrinsic controls, as well

as heterologous intrinsic and extrinsic controls have been proposed

as IACs [30]. The former may give rise to competitive reactions

with the target. Heterologous intrinsic controls are often referred

as ‘‘housekeeping genes’’ and are conserved fragments of the host’s

genome that are present naturally in patient specimens in low copy

number. These controls are amplified with a different set of

primers in the same or a separate reaction vessel. Commonly used

intrinsic controls include the genes encoding beta-globin, beta-

actin, RNAse P, among others. Depending on the marker chosen

and the specimen type, intrinsic controls can be used to establish

the presence of cellular material in a clinical specimen. A concern

when using intrinsic controls is that the number of human gene

copies may be much higher than the target infectious organism

copy number and thus have an amplification advantage and not

accurately test for inhibition [30]. Furthermore, when analysing

blood samples, patients with different blood cell counts will render

heterogenic values of the control precluding the possibility to

evaluate the yield of DNA extraction, as well as to accurately

quantify the target sequence relative to the sample volume. Finally,

heterologous extrinsic controls are non-host-derived controls that

require primers and probes different from the target. They are

added to the sample before DNA preparation and dually serve as

extraction and amplification controls. In this context, the latter

type of IAC has been used in our multiplex qPCR approach.

In this work, to validate T. cruzi qPCR results, the Tukey’s

boxplot method was carried out using the Ct values of IAC

products from all samples tested in every PCR run, in order to

detect outlier values of IAC-PCR [32] that would indicate poor

DNA yield or inhibition, leading to sub-estimate the parasitic load

or to give a false negative result.

Although satellite DNAs belong to the fast-evolving portion of

eukaryotic genomes, it has been shown that over 100 satellite units

of nine T. cruzi strains from different DTUs display almost 100%

of nucleotide identity. No DTU-specific consensus motifs have

been identified, inferring species-wide conservation [33]. The

method was inclusive for all DTUs, though variations in analytical

sensitivity were found among parasite stocks belonging to different

DTUs, reflecting disparities in gene dosage of their satellite repeats

[22,34,35]. Interestingly, the qPCR analytical sensitivity was

variable among different TcI genotypes too [13,16], indicating for

the first time, heterogeneity in satellite copy numbers within this

DTU. In this scenario, trueness of parasitic load measurements

should be more accurate if standard curves are built using a strain

belonging to the same DTU/genotype of the patient under follow-

up. However, this may be unfeasible in clinical practice, because

direct typing of parasite DTUs or genotypes from clinical samples

is difficult, in particular in chronic Chagas disease patients

[9,10,13,36]. Nevertheless, since it has been observed that

bloodstream parasite genotypes are persistent during chronic

infection [37] or reactivation [36], any parasite stock could be

useful as a standard as long as it is included through the whole

monitoring of a certain patient or cohort.

T. rangeli and T. cruzi are found in the same mammalian hosts,

sharing triatomine vectors and a significant portion of their

antigenic coat, hence T. rangeli infections and/or mixed infections

by both species may confound the diagnosis. However, T. cruzi

harbors satellite sequences at a much higher dosage than T. rangeli

[38]. Moreover, leishmanial infections may lead to serological

cross-reaction with T. cruzi. The qPCR test was also selective for T.

cruzi DNA; it did not amplify DNAs from Leishmania sp. and

amplified T. rangeli DNA only at high concentrations (Table 3).

Application to clinical specimens
Analysis of GEB samples from different groups of individuals,

allowed identification of different degrees of qPCR positivity as

well as parasitic loads. Among the 16 orally infected cases from

G1, 14 were positive in the qPCR test (87.5%) and baseline

parasitic loads ranged between 1.69 and 5.23 log10 par. eq./

10 mL blood, which is compatible with acute infections. Quan-

titative PCR monitoring is reported for three cases (Figure 4A).

Figure 2. Estimation of the Limit of quantification of qPCR
method. The LOQ was derived from a 20% threshold value for the
coefficient of variation (CV) of measurements obtained in the precision
experiments reported in Table 4. Linear least squares curve fit for
relationship between CV and parasite concentration (log10 par. eq./
10 mL) using SigmaPlot 10.0 for Windows (SPSS, Chicago, IL). The
derivation of LOQ20%CV is illustrated by dotted lines.
doi:10.1371/journal.pntd.0002000.g002
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This analysis allowed detection of treatment failure two years after

the conclusion of treatment. However, at that time parasitic loads

were lower than at baseline analysis, which is compatible with the

evolution of the infection to the chronic phase. These patients have

received a second treatment and are currently under follow-up (Dr

Belkisyole Alarcón de Noya, unpublished data).

In chronic Chagas disease cases parasitic loads were low,

especially in G2, which was conformed by adult patients from

Bolivia. Indeed, many of them gave detectable but non-

quantifiable qPCR results (Figure 3). The T. cruzi qPCR result

of the sample giving an outlier IAC-PCR value (Table 6) was

positive (Ct: 32.77, 0.69 log10 par. eq./10 mL blood) yet below the

LOQ. Then, if a more accurate parasitic load is needed, the DNA

extraction and amplification of the same GEB sample should be

repeated and the result re-analyzed.

Samples from G3 presented higher degree of PCR positivity

and parasitic loads than G2. One difference between both groups

is that G3 GEB specimens were boiled before DNA extraction. In

fact, many PCR methods using GEB samples incorporated a

boiling step before DNA extraction [26]. This was originally

designed to enhance sensitivity of procedures based on minicircle

DNA amplification [39]. Indeed, incubating samples during

15 minutes favoured fragmentation of minicircle concatemers

and distribution of individual minicircles throughout all sample

volume, allowing processing of small aliquots (100 mL) with

satisfactory sensitivity [39]. In this context, experiments to

determine the LOD of the multiplex qPCR assay were carried

out from both boiled and non-boiled spiked samples, obtaining

slightly higher sensitivity using boiled GEB (0.46 vs 0.70 par. eq./

mL, respectively; p = 0.044). So, we can not discard that higher

PCR positivity and higher parasitic loads found in G3 chronic

cases were partially influenced by the boiling step. However, as the

boiling procedure might enhance the risk of cross-contamination

among samples, leading to false positive results, we decided to

continue the analytical validation of the qPCR using non-boiled

spiked samples. Finally, the lower qPCR positivity and parasitic

burden of G2 specimens could also be an intrinsic feature of the

study population, such as the host genetic background and

immunologic status which in turn may play a role in control of

parasitic replication. Another factor could be related to the strains

involved, though in both countries TcV appears to be the

predominant DTU [10,20,40].

Among G4 newborns to seropositive mothers, we detected three

positive cases, both by qPCR and microhematocrite, which

allowed early diagnosis of congenital infection and subsequent

treatment with Benznidazole. Thus, clinical sensitivity of qPCR

respect to microhematocrite was 100%. The final diagnosis of

cases with negative findings by microhematocrite and qPCR will

be assessed by means of serological tests at 9 months of age,

allowing determination of the qPCR sensitivity respect to final

diagnosis. Interestingly, mothers of G4 infected newborns were

also qPCR positive (unpublished data), in agreement with the

Table 5. Parasitic loads in Chagas disease clinical groups.

(log10 par. eq./10 mL)

Group Procedence Characteristics Total qPCR pos (%) Median Per 25 Per 75

G1 Venezuela Oral Infection 16 14 (87.5%) 3.60 2.73 3.93

G2 Cochabamba Chronic CD 63 38 (60.3%) 1.44 1.44 1.44

G3 Argentina Chronic CD 34 26 (76.5%) 2.20 1.87 2.94

G4 North Argentina Cong CD Newborns 3a 3 (100%) 3.84 2.99 3.95

CD: Chagas disease; Cong: Congenital; Pos: Positivity; Per: Percentile; par. eq./10 mL: parasite equivalents in 10 mL of blood.
aThree out of 27 newborns to seropositive mothers were diagnosed as congenitally infected by means of conventional diagnosis.
doi:10.1371/journal.pntd.0002000.t005

Figure 3. Distribution of parasitic loads in different patients’
groups. Detectable qPCR findings obtained from peripheral blood
samples of Chagas disease patients: G1, orally-acquired infected
patients from Chacao, Venezuela (n = 14); G2, chronic Chagas disease
patients from Cochabamba, Bolivia (n = 38); G3, chronic Chagas disease
patients from endemic regions of Argentina (n = 26); G4, congenitally
infected newborns to seropositive women (n = 3). LOQ: Limit of
quantification. N: Quantifiable samples above LOQ, #: Detectable
samples below LOQ (1.185 log10 par. eq./10 mL).
doi:10.1371/journal.pntd.0002000.g003

Table 6. Estimation of IAC amplification in blood specimens
from different clinical groups.

IAC G1 G2 G3 G4 G4

Amplification n = 16 n = 63 n = 35 Nb UCB Nb PB

n = 12 n = 19

Median Ct 19.31 18.20 18.72 19.97 19.24

75th percentile 20.11 18.43 19.01 21.00 19.86

25th percentile 18.37 18.01 18.44 19.10 18.88

Threshold Ct for outlier
values

22.72 19.05a 19.86 23.86 21.32

Media Ct 19.24 18.15 18.70 20.22 19.20

aSample PCC 331: qPCR positive, 0.69 log10 par. eq./mL, IAC Ct 19.20.
Nb: Newborn; UCB, umbilical cord blood; PB: peripheral blood.
doi:10.1371/journal.pntd.0002000.t006
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reported correlation between maternal parasitemia and risk of

vertical transmission [37,41].

Cord blood has proven useful for early detection of congenital

T. cruzi infection, with the advantage of being a non-invasive

specimen without volume restrictions [42,43]. The IAC recovery

from G4 peripheral and umbilical cord blood samples showed no

significant differences (p = 0,0589). Bern and coworkers observed

that qPCR carried out from cord blood samples increased

sensitivity for early diagnosis of congenital infection in comparison

with conventional parasitological examination [43]. However, risk

of contamination with parasite DNA from maternal blood may

exist; accordingly the cord must be washed prior to sampling.

Standard operative procedures for umbilical cord blood collection

are still needed.

The qPCR method was also useful for earlier diagnosis of post-

transplant infection in a seronegative receptor of a cadaveric organ

explanted from an infected subject. This may allow prompt

treatment before the appearance of clinical signs and symptoms of

acute disease.

In this work, we have presented multiplex TaqMan qPCR-

based results using blood specimens treated with GE, following the

criteria used in an international collaborative study [26]. However,

in a recent work, TaqMan qPCR strategies targeted to the satellite

sequence as well as to minicircle DNA were also satisfactory when

tested in fresh-EDTA blood samples and in buffy-coat prepara-

tions [44]. Further evaluation of our multiplex qPCR test in

different type of biological specimens and conservation conditions

will allow its validation for different clinical, experimental and eco-

epidemiological settings.

When compared to SYBR Green qPCR strategies [22], the

multiplex qPCR assay presents the advantages that it permits

simultaneous detection of target DNA and the internal control,

allowing identification of reduction in parasitic load or negative

findings due to inhibitors or DNA loss; moreover, the TaqMan

strategy decreases the likelihood of obtaining false positive results,

due to the specificity of TaqMan probes and the multiplex format

is less expensive and cumbersome, since only one PCR reaction

per sample is needed. It is expected that the use of this qPCR

strategy in clinical trials will demonstrate the potential of parasitic

loads as surrogate markers of treatment efficacy. Demonstration of

cure is up-to-date based on persistent seronegative results after

treatment implementation, which in chronic Chagas disease

usually takes many years to occur. Especially in these patients,

fluctuancy of parasitic loads along lifetime determines that

undetectable bloodstream qPCR results can not be taken as

indicative of cure. On the contrary, persistence of positive qPCR

findings is indeed indicative of treatment failure. In addition, this

methodology can offer early diagnosis of infection in cases in

which serological methods are not informative, such as transmis-

sion by the oral, congenital, transfusional routes or after

transplantation with organs from seropositive donors or in events

of Chagas disease reactivation due to immunosuppression.

Supporting Information

Figure S1 Amplification performance of the IAC in the
Multiplex Real Time PCR assay. Negative GEB samples

were spiked with 50 to 800 pg of the linearized IAC plasmid (final

concentration after DNA extraction: 0.5 to 8 pg/ml) and DNA

extraction was performed in duplicate as well as the PCR assay

from each DNA lysate. A. IAC amplification plots obtained using

an Applied Biosystems (ABI 7500) device. B. Standard curve and

efficiency of IAC amplification.

(TIF)

Table S1 Estimation of Precision of the qPCR assay.
Precision experiment was carried out on spiked GEB samples with

5, 100 and 10000 par. eq./10 mL, assayed on duplicates during 20

consecutive days, one run per day. Ct: threshold cycle; par. eq./

10 mL: parasite equivalents in 10 mL of blood.

(DOC)

Figure 4. Follow-up of T. cruzi infected patients using qPCR. A. Follow-up of orally infected cases from Chacao, Caracas, Venezuela. Years pos-
treatment (ys pos-T) are represented in the x-axis. Parasite equivalents (par. eq.) were estimated using a Silvio X-10 (TcI) calibration curve. Case 1- Pre-
T: 5.23 log10 par. eq./10 mL; 2 ys pos-T: 1.88 log10 par. eq./10 mL. Case 2- Pre-T: 3.78 log10 par. eq./10 mL; 2 ys pos-T: 1.83 log10 par. eq./10 mL. Case
3- Pre-T: 2.94 log10 par. eq./10 mL; 2 ys pos-T: 1.88 log10 par. eq./10 mL. B. A 42 year-old seronegative man received kidney transplantation from a
seropositive cadaveric donor. Progression of parasitic load after transplantation is shown as well as post-treatment follow-up. The quantification was
estimated using a Cl-Brener (TcVI) calibration curve. Days pos-Transplantation (Tx) are represented in the x-axis. The number of par. eq./10 mL of
blood is represented in the y-axis, in a log-scale. Arrow marks initiation of Benznidazole treatment. ND: not detectable. The line indicates LOQ (1.185
log10 par. eq./10 mL) derived from analysis of CL-Brener (TcVI) spiked samples. Discontinued line: parasitic loads in Chacao patients were estimated
with Silvio X-10 (TcI) calibration curves.
doi:10.1371/journal.pntd.0002000.g004
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