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Stepped-wedge cluster randomised
controlled trials: a generic framework
including parallel and multiple-
level designs
Karla Hemming,*† Richard Lilford and Alan J. Girling

Stepped-wedge cluster randomised trials (SW-CRTs) are being used with increasing frequency in health service
evaluation. Conventionally, these studies are cross-sectional in design with equally spaced steps, with an equal
number of clusters randomised at each step and data collected at each and every step. Here we introduce several
variations on this design and consider implications for power.
One modification we consider is the incomplete cross-sectional SW-CRT, where the number of clusters varies at
each step or where at some steps, for example, implementation or transition periods, data are not collected. We
show that the parallel CRT with staggered but balanced randomisation can be considered a special case of the
incomplete SW-CRT. As too can the parallel CRT with baseline measures. And we extend these designs to allow
for multiple layers of clustering, for example, wards within a hospital. Building on results for complete designs,
power and detectable difference are derived using a Wald test and obtaining the variance–covariance matrix
of the treatment effect assuming a generalised linear mixed model. These variations are illustrated by several
real examples.
We recommend that whilst the impact of transition periods on power is likely to be small, where they are a feature
of the design they should be incorporated. We also show examples in which the power of a SW-CRT increases as
the intra-cluster correlation (ICC) increases and demonstrate that the impact of the ICC is likely to be smaller
in a SW-CRT compared with a parallel CRT, especially where there are multiple levels of clustering. Finally,
through this unified framework, the efficiency of the SW-CRT and the parallel CRT can be compared. © 2014
The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Stepped-wedge cluster randomised trials (SW-CRTs), in which clusters are sequentially randomised until
the point at which all clusters are exposed to the intervention, are being used with increasing frequency
in the evaluation of service delivery interventions [1, 2]. Like parallel cluster randomised trials (CRTs),
stepped-wedge cluster studies are used to avoid contamination or when the intervention needs to be
delivered, or evaluated, at the population level [3–5]. However, in addition, stepped-wedge studies are
thought to be appropriate where there is already a belief that the intervention is expected to be of benefit
and unlikely to do any harm, when evaluating a new service delivery intervention that will be imple-
mented irrespective of evidence for effectiveness, or when it will be logistically implausible to roll out
the intervention simultaneously to all clusters.

Power calculations are clearly established as important components in the design of any randomised
study. In the early history of CRTs, power calculations were reported to be either incorrectly or inade-
quately performed, presumably because of the additional complication of clustering [6]. With the onset
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of more applied research and increased methodological awareness of appropriate power calculations for
CRTs [7], recent CRTs are more likely to be adequately powered and to contain an appropriate power
calculation [8].

The literature on stepped-wedge studies is in its infancy. The earliest reports of published stepped-
wedge studies are recent [1,2], and just 25 were identified in a recent systematic review [2]. Furthermore,
of those SW-CRTs identified in the earlier systematic review, only 8 out of 15 had a clear power calcu-
lation included [2]. This suggests that, as was the case in the design of early CRTs, SW-CRTs might be
inappropriately powered.

Stepped-wedge cluster designs are a form of cluster trial, and analysis and design needs to take account
of this clustering. However, determination of sample size parameters (such as power and detectable dif-
ference) for stepped-wedge designs are not simple modifications of those for individually randomised
designs [9]. Whilst there is limited published work on power calculations in stepped-wedge studies, a
theoretical formula for power has been established in the seminal paper by Hussey and Hughes [9] and a
corresponding design effect established [10]. However, the stepped-wedge designs considered by Hussey
and Hughes, whilst a very useful addition to the literature, are for stepped-wedge designs where data are
obtained or collected for the analysis at each and every step (we call this a complete design).

As applied health researchers, we have been involved in the design of several SW-CRTs with incom-
plete designs; that is, at some steps, and for some clusters, data are not collected or not intended to
contribute to the analysis. Often these incomplete designs involve only the incompleteness brought about
by an implementation phase; that is, a phase during which the cluster transitions from the control to
intervention arm and so clusters during these periods can neither be considered to be a control nor fully
exposed to the intervention [11]. However, other designs have involved incompleteness other than imple-
mentation phases [12]. To the extent that relaxing the typical features of the SW-CRT and allowing
designs that are very incomplete, these designs can be viewed as including the conventional parallel CRT
and the parallel CRT with baseline measures (sometimes called an analysis of covariance (ANCOVA)
design in a cohort set-up), as a special case. We have also been involved in the design of SW-CRTs in
which there exist multiple layers of clustering, for example, wards within a hospital.

In this paper, we introduce some modifications to the conventional SW-CRTs by considering incom-
plete designs and designs with multiple layers of clustering. We suggest a framework for analysis and
from this derive a formula for estimating power. As a prelude, for completeness, we also summarise
briefly the corresponding power formula for conventional cluster studies and SW-CRTs with complete
design. Note that all of the studies considered here are cross-sectional in nature; that is, at each point in
time it is assumed that the sample included in the study are different from those at other points in time.

2. Variations on stepped-wedge study designs

In this paper, we consider several extensions to the conventional SW-CRT and illustrate these by example
in what follows. These are very pragmatic design variations that allow incorporation of design features
that are likely to occur in practice and will have implications for power and sample size. These design
variations are introduced here, and in the following sections we build on power formulae developed
by others to incorporate the variations considered. By putting all of the related designs within a single
framework, designers of studies will be much more able to see the impact of study design decisions on
power and efficiency.

2.1. The conventional complete stepped-wedge cluster randomised trials

There are a number of defining characteristics that are typically features of the SW-CRT. These include
a baseline collection period, where no clusters are exposed, and sequential random crossover to the
intervention, which cannot be reversed for all clusters.

The conventional stepped-wedge design thus assumes that at each of a fixed number of points in time
clusters will sequentially be randomised to the intervention and that at each point in time observations
will be captured to form the data for the analysis. We refer to this as a complete design. We are limiting
our consideration to cross-sectional designs, that is, designs in which the observations are collected on
different participants at each step. We are therefore not concerned with cohort designs, in which partic-
ipants are repeatedly followed up over time. Figure 1 illustrates a complete design with six time points
and clusters randomised to blocks. It is conventionally assumed that the clusters within each block are
independent and that the size of the blocks are the same. In Figure 1, cells with a “1” indicate that the
clusters within that block at that point in time are exposed to the intervention; and cells with a “0” indicate
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Figure 1. Illustration of a stepped-wedge study of complete design.

Figure 2. Illustration of a stepped-wedge study of incomplete design with one before and two after measurements.

Figure 3. Illustration of a stepped-wedge study of incomplete design with an implementation period.

Figure 4. Illustrative example of staggered, but parallel, CRT.

that clusters within that block at that point in time are not exposed to the intervention. So, for example,
there may be 20 clusters, with four randomised to cross from control to intervention at each of five steps
and with a single period of baseline data collection. We call this representation of the design of the study
a “design pattern matrix”.

2.2. The incomplete stepped-wedge cluster randomised trial

In practice, designs may not be so complete as those described previously. Figures 2 and 3 illustrate what
we have called the incomplete design. In the incomplete design, a cluster, or block of clusters, may be
either exposed to the intervention (denoted by “1"), not be exposed to the intervention (denoted by “0")
or not contribute to the analysis (denoted by “⋅"). Figure 2, for example, illustrates a design in which
clusters are randomised sequentially, but for each cluster only baseline observations and two follow-up
observations are made. In Figure 3, we illustrate a design in which data are collected throughout the study
period, except for the time in which the intervention is being implemented, sometimes called a transition
or implementation phase. An implementation phase represents a period in which the cluster transitions
from the control to intervention arm, and so clusters during these periods can neither be considered to be
a control nor fully exposed to the intervention.

2.3. The staggered parallel cluster randomised trials with baseline measures

One of the often cited reasons for conducting a SW-CRT is that it is impractical to roll out the intervention
in a large number of clusters simultaneously. An alternative to the SW-CRT is to conduct a variation of
the parallel CRT in which the roll-out (and thus randomisation) is staggered, but crucially the design is
balanced on time. An illustration of such a design is provided in Figure 4.
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In this parallel, but staggered, CRT, at three points in time, a number of clusters are randomised to
the intervention or control arm, with baseline and follow-up measures taken. Parallel CRTs with base-
line measures are sometimes referred to as ANCOVA designs, when they involve repeated measures on
the same individuals [13]. However, the design considered is under the set-up where there are different
individuals at baseline and follow-up. This design is a parallel CRT, staggered over time but with bal-
anced allocation to intervention and control arms, with a single before and single after measurement. An
alternative design would be one without baseline measures, so just a simple parallel CRT.

This design pattern does not include the typical features of a SW-CRT, as not all of the clusters cross
over to the intervention. However, this design (and likewise the simple parallel CRT) might also be visu-
alised using a design pattern matrix. We go on to show that, using the design pattern matrix as a schematic
representation of the study, parallel CRTs (with or without baseline data collection) can be viewed within
the same framework as the SW-CRT.

2.4. The stepped-wedge cluster randomised trial with multiple layers of clustering

Cluster trials are sometimes conducted in settings with multiple layers of clustering [14]. For example,
a CRT may be conducted across multiple hospitals and multiple wards within each hospital, or clusters
may represent geographical regions with several hospitals within each region, or classes may be grouped
within schools in studies investigating effectiveness of interventions in school settings. It is therefore
plausible that multiple layers of clustering may also occur within stepped-wedge studies. Such a design
is illustrated in Figure 5. In this example, there are three hospitals and three wards in each hospital. The
order in which the hospitals cross over to the intervention is randomised, with all wards within each
hospital crossing over at the same point in time (to avoid contamination). Other than this, the design
follows a conventional SW-CRT design with the addition of a transition period.

3. Background

3.1. Power for parallel cluster randomised trials

In a typical randomised controlled trial (RCT), the intervention effect can be expressed as the mean
difference in outcome between the two arms of the trial. The statistical significance of such a difference
can be assessed using a test statistic of the form T = 𝛿

S
where 𝛿 is the average difference in outcome as

observed in the trial and S is a sample estimate of its standard deviation. For large trials, T will follow a
normal distribution with unit standard deviation, at least approximately, and the difference can be declared
significant at the 100𝛼% level provided that

|||||𝛿S
||||| > z𝛼∕2, (1)

where z𝛼∕2 is the 100𝛼 upper percentage point of the standard normal distribution (= 1.96 for tests at
the 5% level). In practice, this procedure may not be optimal unless the trial is a large one, but it does
support a simple and effective approach to power and sample size calculations. In this approach, sampling
fluctuations in the estimate S are ignored, and S is replaced by its exact theoretical value, fully justifiable
if the trial is large.

Figure 5. Illustrative example of SW-CRT with two layers of clustering (wards within a hospital).
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3.1.1. Randomised controlled trials with equal-sized arms. One common situation arises when 2n indi-
viduals are randomised equally between two treatment arms. In this case, S approximates to 2𝜎√

n
where

𝜎 is the standard deviation of an individual patient outcome, assumed to be the same in each arm. If the
two arms have different standard deviations (which may arise, for example, if the outcome is binary), 𝜎
will represent a pooled standard deviation. In the binary case,

𝜎 =
√

p0(1 − p0) + p1(1 − p1)
2

, (2)

where p0 and p1 are the binary probabilities in the two arms of the trial. In any case, the statistic T

approximates to 𝛿

𝜎

√
n
2
, and the result is declared significant if

𝛿

𝜎

√
n
2
> z𝛼∕2 (3)

or

𝛿

𝜎

√
n
2
< −z𝛼∕2. (4)

The power of the procedure (replacing 𝛿 with 𝛿 the treatment effect to be detected) is just the sum of the
probabilities of these two events. Now suppose that the true intervention effect is positive, i.e. that 𝛿 > 0.
Then, in a large trial, it is unlikely that the second event will happen and so almost all the power derives
from the first possibility. (The situation is reversed when 𝛿 < 0, in which case the first possibility can be
disregarded). This leads to a standard approximation for the power, given by (1 − 𝛽) where 𝛽 is derived
from the following equation:

z𝛽 = |𝛿|
𝜎

√
n
2
− z𝛼∕2. (5)

This formula can be rearranged to determine the absolute value of the minimum detectable difference
(𝛿min) for fixed power and sample size:

|𝛿min| = 𝜎

√
2
n
(z𝛽 + z𝛼∕2). (6)

In a CRT the same formulae can be used, but the variance of the outcome (𝜎2) must first be inflated by a
design effect (DE). For clusters of equal size (m), the DE is given by the following:

DE = [1 + (m − 1)𝜌] , (7)

where 𝜌 is the ICC defined as the correlation between the outcomes for two individuals in the same
cluster or, equivalently, as the proportion of the variance attributable to variation between clusters. The
corresponding power formula is as follows:

z𝛽 = |𝛿|
𝜎
√

1 + (m − 1)𝜌

√
n
2
− z𝛼∕2. (8)

Note that if the outcome variance is given by 𝜎2 = 𝜏2 +𝜎2
w , where 𝜏2 is the variance of the cluster means

and 𝜎2
w is the variance within clusters, the ICC can be expressed as 𝜌 = 𝜏2

𝜏2+𝜎2
w

.
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4. Stepped wedge designs

4.1. Power for complete stepped-wedge designs

In a stepped-wedge design, each cluster receives the intervention eventually, but the clusters are ran-
domised to receive it at different times. In a complete cross-sectional design, the time at which the
intervention is received is different for each cluster, and (independent) observations are taken in every
cluster at all time epochs from the start of the study, when no clusters have received the intervention, until
the end when the last cluster to be randomised has received the intervention. In this design, the number
of time epochs is one more than the number of clusters. A model for this situation has been proposed by
Hussey and Hughes [9]:

yijs = Jjs𝛿 + 𝜃s + 𝛼j + eijs

𝛼j ∼ N
[
0, 𝜏2

]
eijs ∼ N

[
0, 𝜎2

w

]
,

(9)

where i indexes the individual (i = 1,… ,m), j indexes the cluster (j = 1,… , k) and s indexes the time
points (s = 1,… , k + 1), with fixed effects for time (𝜃s) and random cluster effects (𝛼j). Here yijs is the
outcome, 𝛿 is the intervention effect and Jjs is a binary variable that takes the value 1 if cluster j has been
exposed to the intervention by time s. It is assumed that there are exactly m observations in each cell of
the design, that is, for each time by cluster combination. This is a slight variation in our earlier notation
because the number of observations per cluster over time is now m(k + 1) and not m as in the earlier
paragraphs. Of note, this model is for a cross-sectional design only.

Hussey and Hughes propose to determine the power of this design by considering a Wald test for the
intervention effect 𝛿. If the variance components (𝜏2 and 𝜎2

w) are known (as is generally assumed in power
calculations), it is sufficient to consider the following model for the cell means:

ȳjs = Jjs𝛿 + 𝜃s + 𝛼j + ejs

𝛼j ∼ N
[
0, 𝜏2

]
ejs ∼ N

[
0,

𝜎2
w

m

]
.

(10)

The k(k+1) by k(k+1) variance–covariance matrix (V) of the cell means (ordered by time within cluster)
has a block-diagonal form with k identical (k+1) by (k+1)matrices (Vj) on the diagonal, each representing
a single cluster. The zero off-diagonal matrices reflect the fact that different clusters are independent of
one another; that is,

V =

⎛⎜⎜⎜⎜⎝
V1 0 · · · 0

0 Vj · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · Vk

⎞⎟⎟⎟⎟⎠
,

where each block Vj (of size k + 1 by k + 1) is of the following form:

Vj =

⎛⎜⎜⎜⎜⎜⎝

𝜎2
w

m
+ 𝜏2 𝜏2 · · · 𝜏2

𝜏2 𝜎2
w

m
+ 𝜏2 · · · 𝜏2

⋮ ⋮ ⋱ ⋮

𝜏2 𝜏2 · · · 𝜎2
w

m
+ 𝜏2

⎞⎟⎟⎟⎟⎟⎠
.

In this linear mixed model, there are k + 2 unknown linear parameters: the intervention effect, 𝛿, and the
time parameters 𝜃1,… , 𝜃s (where s = k + 1). The variance–covariance matrix for their estimated values
takes the form (X′V−1X)−1, where X is the k(k + 1) by (k + 2) design matrix that describes the model for
the cell means. For this complete stepped-wedge design, the power formula is as follows:
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z𝛽 = 𝛿√
X′V−1X[1, 1]

− z𝛼∕2, (11)

where the notation [1, 1] refers to the matrix cell in the first column and first row (assuming that the
design matrix is ordered by treatment indicator (J) and then time indicators).

4.2. Power for complete stepped-wedge designs with multiple layers of clustering

This approach can be extended to accommodate non-independent grouping within the clusters in a
stepped-wedge study. Let g represent the number of groups within each cluster. For example, we might
imagine that a SW-CRT will be conducted across k hospitals with g wards in each hospital. To accom-
modate this extra level of variation, an additional variance component can be introduced into the mixed
effects model so that

yijls = Jjs𝛿 + 𝜃s + 𝛼j + 𝛽jl + eijls

𝛼j ∼ N
[
0, 𝜏2

𝛼

] (12)

𝛽jl ∼ N
[
0, 𝜏2

𝛽

]
eijls ∼ N

[
0, 𝜎2

w

]
.

(13)

Here 𝛼j stands for the jth cluster (hospital) effect and 𝛽jl is an effect for the lth group (ward) within the jth
cluster, and again we assume a cross-sectional design. For power calculations, the variance components
are assumed known, and it is again sufficient to consider the model for the mean observation in each cell
of the design, that is, ward by group by time combination. Here there are k(k + 1)g cells. If the cells are
ordered by time within groups within clusters, the variance–covariance matrix (V) for the cell means is
again block diagonal, with identical diagonal blocks (Vj). In fact,

V =

⎛⎜⎜⎜⎜⎝
V1 0 · · · 0

0 Vj · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · Vk

⎞⎟⎟⎟⎟⎠
,

with Vj a g(k + 1) by g(k + 1) matrix of the form

Vj =

⎛⎜⎜⎜⎜⎝
U1 𝜏2

𝛼
Ik+1 … 𝜏2

𝛼
Ik+1

𝜏2
𝛼
Ik+1 Ul … 𝜏2

𝛼
Ik+1

⋮ ⋮ ⋱ ⋮

𝜏2
𝛼
Ik+1 𝜏2

𝛼
Ik+1 … Ug

⎞⎟⎟⎟⎟⎠
,

where Ik+1 is the identity matrix of order k + 1. The (k + 1) by (k + 1) matrix Ul refers to the variation of
cell means over time within the same group (ward) so that

Ul =

⎛⎜⎜⎜⎜⎜⎝

𝜎2
w

m
+ 𝜏2

𝛼
+ 𝜏2

𝛽
𝜏2
𝛼
+ 𝜏2

𝛽
· · · 𝜏2

𝛼
+ 𝜏2

𝛽

𝜏2
𝛼
+ 𝜏2

𝛽

𝜎2
w

m
+ 𝜏2

𝛼
+ 𝜏2

𝛽
· · · 𝜏2

𝛼
+ 𝜏2

𝛽

⋮ ⋮ ⋱ ⋮

𝜏2
𝛼
+ 𝜏2

𝛽
𝜏2
𝛼
+ 𝜏2

𝛽
· · · 𝜎2

w

m
+ 𝜏2

𝛼
+ 𝜏2

𝛽

⎞⎟⎟⎟⎟⎟⎠
.

The correlation structure in a study with a single layer of clustering is characterised by the ICC coefficient.
This may be defined either as the correlation between two observations in the same cluster or, equivalently,
as the proportion of the individual variance attributable to cluster membership. In a study with a single
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layer of clustering, the individual variance is written as 𝜎2 = 𝜏2 + 𝜎2
w, where 𝜏2 is the variance of the

cluster means and 𝜎2
w is the within-cluster variance (i.e. the conditional variance of an observation given

the cluster to which the individual belongs). Then the ICC is

𝜌 = 𝜏2

𝜏2 + 𝜎2
w

. (14)

In a study with two layers of clustering, we might think of having two ICCs. These might be paramaterised
in one of several ways [15]. Here, we define the first ICC as the correlation between two groups within
the same cluster (i.e. between two wards within the same hospital) and the second ICC as the correlation
between two observations within the same group (i.e. correlation between two observations within the
same ward). So the first ICC here is

𝜌𝛼 =
𝜏2
𝛼

𝜏2
𝛼
+ 𝜏2

𝛽

. (15)

And the second ICC is

𝜌𝛽 =
𝜏2
𝛽
+ 𝜏2

𝛼

𝜏2
𝛼
+ 𝜏2

𝛽
+ 𝜎2

w

. (16)

The total variation is now partitioned into within cluster, between group and between cluster:

𝜎2 = 𝜏2
𝛼
+ 𝜏2

𝛽
+ 𝜎2

w, (17)

so that

𝜏2 = 𝜏2
𝛼
+ 𝜏2

𝛽
. (18)

We also note, however, that in parallel CRTs with multiple layers of clustering, a conservative approach
to estimate the power is to treat the groups within clusters as one large cluster [16]. For example, in a
parallel CRT with clusters of hospitals and wards within hospitals, treating the hospitals as one large
cluster will provide a conservative estimate of power. Through an example, we investigate whether this
is also the case for SW-CRTs.

4.3. Power for incomplete stepped-wedge designs

The aforementioned formula can be modified for incomplete designs, simply by taking the appropriate
design matrix for the incomplete design and the appropriate block-diagonal matrix V . V will remain a
block-diagonal matrix and will contain the same number of blocks as clusters, but this time each block
will be of varying size depending on the number of observation time points taken for cluster j. At this
point we generalise the design to allow for s time points (in the complete design s = k + 1). So, for
example, if in one cluster there are no observations taken at one point in time, the size of the block matrix
Vj will be s−1 by s−1 rather than s by s. For example, for the very simple design of two clusters (k = 2)
and four time points (s = 4), with an implementation period, the design pattern matrix is as follows:

DesignPattern =
(

0 . 1 1

0 0 . 1

)
.

Simplifying notation temporarily and letting t represent time (there are four time points), c represent the
cluster (there are two clusters), and J represent exposure to the intervention, the corresponding design
matrix is as follows:
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X =

J t1 t2 t3 t4

c1 0 1 0 0 0

c1 1 0 0 1 0

c1 1 0 0 0 1

c2 0 1 0 0 0

c2 0 0 1 0 0

c2 1 0 0 0 1

V remains a block-diagonal matrix, with one block per cluster,

V =
(

Vj=1 0
0 Vj=2

)
and where Vj (j = 1, 2) is now of the dimension s − 1 = 3 by s − 1 = 3 and is of the form

Vj =
⎛⎜⎜⎜⎝

𝜎2
w

m
+ 𝜏2 𝜏2 𝜏2

𝜏2 𝜎2
w

m
+ 𝜏2 𝜏2

𝜏2 𝜏2 𝜎2
w

m
+ 𝜏2

⎞⎟⎟⎟⎠ .
4.4. Power for staggered parallel cluster randomised trials

When visualising the design of a study by its design pattern matrix, many study designs can be consid-
ered as a special case of this more general SW-CRT design. This includes the parallel CRT, the parallel
(cross-sectional) CRT with baseline measures (commonly called the ANCOVA design when the same
individuals are measured at baseline and follow-up [13]). And, as a special case, the parallel, staggered
but balanced, CRT (Figure 4). This means that the formula provided previously can be used to estimate
power under these designs, which may not conventionally be thought of as SW-CRTs.

However, others have shown that an alternative way of establishing power in the parallel CRT with
baseline measures is to consider the design as a conventional parallel CRT, adjusting for baseline mea-
sures [13]. Using their approach, the implications that adjustment for baseline measurements have on
sample size calculations can be formulated by estimating the correlation (r) between the baseline mea-
surements and the outcome (that is, between cluster means) and reducing the sample size by a factor r2.
For a given ICC, 𝜌, it can be shown that the correlation between cluster means, r, is as follows:

r = m𝜌

m𝜌 + 1 − 𝜌
, (19)

where m is the cell size (so there will be 2m measurements per cluster).
Under a cross-sectional design, this means the total sample size will be inflated by that under individual

randomisation by 2 ∗ [1 + (m − 1)𝜌](1 − r2) (using m as the cell size and multiplied by 2 to count the
pre-measurement and post-measurement). We compare this with the DE that would be obtained in the
parallel CRT, with 2m measurements per cluster (i.e. [1 + (2m − 1)𝜌]).

In Figure 6, we show the ratio of sample sizes required under a parallel CRT design and a parallel
CRT design with baseline measurements, both compared with the sample size required under individual
randomisation (i.e. design effects) for a range of cluster sizes. Whilst the design effect for a parallel CRT
has a clear linear relationship with the ICC, this is not the case for the design effect for a parallel CRT
with baseline measures.

This means that when planning a parallel CRT with baseline measures, power can either be estimated
by assuming that the trial is an incomplete SW-CRT or by using conventional power methods for a parallel
CRT and using the estimated ICC to determine the adjustment factor, r, for baseline measures. Both
methods lead to identical estimates of power.
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Figure 6. Design effects for parallel CRT (solid line) and before and after (dashed line) designs.

5. Examples

We illustrate these novel concepts by three examples. In the first example, a service delivery intervention
applied to the entire cluster, there is (as is perhaps more common) a single layer of clustering but an
incomplete design both to allow for an implementation phase and pragmatic limitations in the design
due to data collection limitations. In the second example (again service delivery and applied to the entire
cluster), there is a complete design pattern, but there is an additional layer of clustering (the unit of
randomisation is region, but within each region there are several hospitals). In the third example, the
intervention cannot be simultaneously delivered to all clusters, although it is not required to deliver the
intervention to all clusters, and so a staggered parallel CRT is considered.

All of the formulae necessary for the power calculations conducted were provided earlier. These formu-
lae, apart from the two-level extension, have been implemented in two Stata functions, one clustersampsi,
a sample size calculator for CRTs [17], and the other Stata programme, steppedwedge, a power calcu-
lator for SW-CRTs [18]. An extension of steppedwedge for two levels of clustering (i.e. wards within
hospitals) is available from the authors on request.

5.1. Example 1: a stepped-wedge cluster randomised trial with an implementation phase

A stepped-wedge design is to be used to evaluate whether the provision of a training scheme improves
the rates at which midwives perform membrane sweeping in post-term pregnancies. Membrane sweeping
is a simple and inexpensive procedure and has been shown to reduce the need for formal induction of
labour. The training scheme is to be implemented over a period of time by training midwives in groups
of community teams. The training scheme will be implemented irrespective of evidence of effectiveness,
but the two trusts involved have agreed to evaluate the intervention using a stepped-wedge design.

There are 10 community teams and so 10 clusters, with approximately 12 births occurring within
each team each week. Teams will be randomised to the order in which they receive the intervention
in a design that includes, for each cluster, a 12-week period of pre-implementation observational data,
a week transition period (during which the training will be delivered) and a 12-week period of post-
implementation data. In addition, to allow for holiday periods and other pragmatic reasons, whilst the roll-
out will usually be staggered by 1-week periods, these periods will sometimes be longer (2 or 3 weeks).
This uneven nature of the design has been built into the design pattern matrix. So for example, between
randomisation of clusters 8 and 9 rather than a 1-week step, the step is of length 2 weeks to accommodate
a known holiday period during which no training will be delivered (Figure 7). The design is therefore an
incomplete stepped-wedge design. It has been postulated that a clinically important difference to detect
in the proportion of women having a membrane sweep is between 40% and 50%. There is little literature
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Figure 7. The sweeping study, an illustrative example of stepped-wedge study of incomplete design (Example 1).

to guide likely values of the ICC, and so we investigated a range of values but present results here for a
single value only [19]. For a two-sided test and 5% significance level and assuming an ICC of 0.01, using
the design pattern matrix as illustrated in Figure 7, with 12 observations per cell (that is 12 women giving
birth per team per week) equating to a total of approximately 2880 observations, we compute that there
would be in the region of 78% power. Ignoring the implementation phases (assuming half of the clusters
were unexposed and half exposed) results in a slightly over-optimistic estimate of the power at about 84%.

5.2. Example 2: a stepped-wedge cluster randomised trial with multiple levels of clustering

The Enhanced Peri-Operative Care for High-risk patients (EPOCH) study proposes to conduct an eval-
uation of a series of educational interventions designed to reduce mortality in patients undergoing
emergency laparotomy. Part of the intervention involves group training, and so for pragmatic reasons
the intervention will be rolled out so that hospitals that are in the same region initiate the intervention
at the same point in time. That is, region will be the unit of randomisation, but within each region there
is clustering due to hospitals. Here we determine whether the trial would be more or less efficient (in
terms of total number of measurements required) under a stepped-wedge design and also whether the
stepped-wedge design would be more or less sensitive to the value of the ICC.

In parallel CRTs with multiple layers of clustering, a conservative approach to estimate the power is to
treat the clusters within clusters as one large cluster. Through an example, we demonstrate this here. We
then investigate the impact of this assumption for SW-CRTs. In this example, 𝜌𝛼 represents the correlation
between hospitals within the same region and 𝜌𝛽 represents the correlation between two observations
within the same hospital. As the unit of randomisation is the region, we consider sensitivity to three values
for 𝜌𝛽 (ignoring the clustering within clustering, 𝜌𝛽 would be the conventional ICC). For 𝜌𝛼 we consider
sensitivity across values 0 to 1. Fixing 𝜌𝛼 at 0 is equivalent to assuming that two hospitals within the
same region are completely independent (optimistic), and fixing 𝜌𝛼 at 1 is equivalent to assuming that
two hospitals within the same region are one entity (conservative).

It is anticipated that 96 hospitals will participate in the study, grouped into 16 regions (k = 16 clusters)
with each region containing six hospitals (g = 6 groups). The study will run over 17 time periods where
each period of time is approximately 1 month. It is expected that there will be approximately 18 emer-
gency laparotomies per month in each hospital (m = 18). The primary outcome is mortality, and current
mortality rates are estimated to be about 10%. Clinically important reductions in risk of death are pos-
tulated to be about a 2% absolute reduction. It is expected that there will be correlation within hospitals
and also within groups of hospitals (regions). We illustrate this example across a range of correlations.

This study might be conducted as a parallel CRT with an estimated group (hospital) size of 306 = (18 ∗
17) and cluster size (six hospitals) of 1836 = (306 ∗ 6), giving a total sample size of 29, 376 = (1836 ∗
16). Alternatively, the study might be conducted as a SW-CRT. Under a SW-CRT design, it is anticipated
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that there will be a baseline phase (lasting 1 month), in which no hospitals are exposed to the intervention,
and one period at the end of the study in which all hospitals will be exposed to the intervention. This is
a complete design with no transition periods, with 16 steps and 16 clusters. The cell size for each group
(hospital) would be 18, and the cell size for each cluster (region) would be (108 = 18 ∗ 6). Again, the
total sample size for this design would be 29, 376(= 16 ∗ 17 ∗ 108).

Consider first this example under the parallel CRT design with eight clusters randomised to the inter-
vention and eight to the control, and each of these clusters consists of six groups, each cluster of size
1836. Suppose initially we ignore the grouping within the clusters and assume that there is a single level
of clustering only; that is, there are eight clusters in each arm, each of size 1836. We then compare this
with the power we obtain by correctly acknowledging the two levels, that is, that there are eight clus-
ters, with six groups within each cluster, each of size 306. Figure 8 illustrates that for this example, a
parallel CRT, assuming there is just one large cluster (setting 𝜌𝛼 = 1) provides a conservative estimate
of power over the range of ICCs (𝜌𝛽) compared with the correct method of acknowledging the cluster-
ing within clustering (𝜌𝛼 < 1). However, whilst conservative, this estimate can be very un-optimistic or
highly sensitive on the value 𝜌𝛼 (the extent of the correlation between hospitals within the region).

Now, suppose instead of a parallel CRT we have a complete SW-CRT with 16 steps, 16 clusters within
which there are six groups. We first estimate power, as discussed previously, ignoring this grouping and
treating each group of six hospitals as one large cluster (cell size 108); that is, we assume a single level of
clustering (𝜌𝛼 = 1). Secondly, we rightly assume that each cluster is composed of six groups, each of cell
size 18. Figure 9 shows how power varies by 𝜌𝛼 and 𝜌𝛽 . Unlike in the parallel CRT example discussed
previously, assuming a single level of clustering in a SW-CRT is not highly sensitive to the extent of the
correlation between hospitals within the region (𝜌𝛼).

Figure 8. Influence of clustering within clustering in a parallel CRT.

Figure 9. Influence of clustering within clustering in a SW-CRT.

192

© 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 181–196



K. HEMMING, R. LILFORD AND A. J. GIRLING

This example also illustrates that the power under the CRT quickly diminishes as the ICCs increase,
whereas under the SW-CRT the power is less sensitive to the increase in ICC, a point to which we return
to in the next example. For this study, it is therefore the case that under a stepped-wedge design, the
power will be less sensitive to any mis-specification of the ICC, less sensitive to any mis-specification of
the two-level nesting structure (hospitals within regions) and more powerful (for the same sample size)
than the parallel cluster design.

5.3. Example 3: a staggered parallel cluster randomised trial

A staggered parallel CRT is the proposed design to evaluate the effectiveness of a multifaceted nutritional
intervention programme delivered through early years care settings, in children aged 2 to 3 years. It is
anticipated that funding will allow the intervention to be delivered across nine centres and nine control
centres (k = 18), each of size approximately 15 (m = 15). A sample of children will be measured at
baseline and another sample measured at follow-up, so that a total of 540 observations will be taken.

It is anticipated that the intervention can be rolled out in three centres simultaneously. Therefore,
centres will be recruited and randomised in blocks of six (three control and three intervention). Baseline
measures will be collected in all clusters. The design is illustrated in Figure 10.

The main outcome is number of fruit and vegetable portions eaten per day, and it is hoped that the
intervention will lead to an increase intake of about one portion (SD of 2.2). There is a dearth of infor-
mation on likely values of the ICC for this outcome, although for process outcomes ICCs are typically
higher, and so we consider a range between 0.05 and 0.5. For each ICC, using Equation (19), we also
provide the estimated correlation between the cluster means for the cell size of 15 (m).

Power may be computed assuming that the design is an incomplete SW study or equivalently by
assuming that the design is a parallel but staggered CRT with baseline measure. Under the parallel CRT

Figure 10. The nursery study, an illustrative example of a staggered but parallel cluster trial (Example 3)

Table I. Parallel CRT with
baseline measures.

ICC Correlation Power

0.05 0.44 0.891
0.1 0.63 0.870
0.15 0.73 0.869
0.2 0.79 0.877
0.3 0.87 0.905
0.4 0.91 0.937
0.5 0.94 0.967
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with baseline and follow-up measures, power calculations require an estimate of the correlation between
baseline and follow-up cluster means (derived from the ICC using formula in Equation (19)).

Table I shows that whilst power initially decreases with increasing ICC, perhaps un-intuitively, the
power then begins to increase with increasing ICC. This is consistent with the non-linear relationship
seen in Figure 6 between the design effects and the ICC.

6. Discussion

We have provided a unified framework for the design of CRTs, with or without baseline measures and
staggered or fixed randomisation in time. This unified framework includes as special cases the conven-
tional parallel CRT, the parallel CRT with baseline measures (known as the ANCOVA design when the
same individuals are measured at baseline and follow-up), staggered over time parallel CRTs and the
conventional SW-CRT in which all clusters are randomised sequentially to cross from the control to
intervention arm. However, in addition to this, this framework also includes designs that are less con-
ventional, for example, the SW-CRT with transition periods. These models also include extensions to
two levels of clustering, for example, wards within a hospital. Such a unified framework will allow more
straightforward comparisons of efficiency of the various designs.

Our examples have demonstrated that, unlike the conventional parallel CRT, power does not have
a linear relationship with the ICC. For small values of ICC, we observed the power to decrease with
increasing ICC. But for larger values of the ICC, power increased with increasing values of the ICC.
Furthermore, this result also holds true for the conventional parallel CRT with baseline and follow-up
measures. That is to say that in a conventional parallel CRT with baseline and follow-up values, above
some critical value power will actually increase with increasing ICC, a result that we do not believe is
widely appreciated but is probably explained by the relationship the ICC has with the correlation between
measurements.

In a CRT with multiple layers of clustering, illustrative examples here support the hypothesis that
treating the groups of clusters as one large cluster will result in a conservative estimate of power. However,
whilst conservative, this assumption is highly sensitive to the extent of the correlation between the clusters
within the cluster (i.e. wards within a hospital). However, in the example SW-CRT considered here, this is
not the case, and treating the groups within a cluster as one big cluster whilst also conservative is not very
dependent on the extent of the correlation between groups within the same cluster. Whilst we have not
formally proven this relationship, this is an intuitive finding, as SW-CRTs are known to be less sensitive
to the ICC than parallel CRTs, and so it is natural that the SW-CRT should be less sensitive to ignoring
any additional hierarchical structure within the design.

In the conventional SW-CRT, observations (i.e. data) are gathered from every cluster at each and every
step within the study. Any analysis using data from each and every step must consequently assume that
the cluster was either exposed to the intervention or was not exposed at each point in time. However, in
many intervention studies there will be a period of bedding in, during which the intervention becomes
embedded in practice, and during this transition period the cluster can neither be considered exposed to
the intervention nor not exposed. If data from such transition periods are not included in the formative
evaluation, then neither should they be counted in the power calculation. The formula presented here,
and examples, will allow designers of SW-CRTs to properly allow and build in transition periods into
SW-CRT study designs.

It is important to note that the formulae and examples considered here apply to cross-sectional designs
only. There are several important aspects to consider when extending the SW-CRT from the cross-
sectional design to the cohort design. Firstly, powering such studies will necessitate the incorporation of
the dependence between repeated measures on the same participants. Secondly, individual patient recruit-
ment becomes less appealing in SW-CRTs, because of the intensity of data collection (outcomes must
be measured at each and every point in time). And finally, whilst CRTs are an accepted method of study
design in situations where individual participants need to be recruited, it has also been demonstrated that
such designs can suffer from selection biases where recruitment of individuals takes place after the allo-
cation is known [20, 21]. Given that in SW-CRTs, with individual patient recruitment, concealment of
allocation is not possible (as in the case of CRTs), it is plausible that these selection biases might also be
prominent in SW-CRTs.

Whilst we did not consider extensions to cohort designs, the two-level models considered here, for
example, allowing for clustering within hospitals and within wards, could potentially be applied to
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repeated measures on the same individuals. In such cases, our two parameterisations for the ICCs would
represent the correlation between two individuals within the same cluster (𝜌𝛼) and the correlation between
two measurements in the same cluster (𝜌𝛽).

There is a dearth of literature on the theoretical and practical aspects of designing and analysing
SW-CRTs. When designing such studies two important and necessary considerations are power and the
potential for bias. We have extended power calculations for variations of the conventional SW-CRT,
considered the alternative of the staggered CRT, and extended the SW-CRT for an additional layer of
clustering. An important limitation of our work is the assumption of cross-sectional designs, but our two-
level extension should be able to accommodate designs in which participants are followed up over time.
Other potential limitations include lack of small sample correction, although we believe that designers
should be encouraged to not carry out studies with small numbers of clusters. Other issues to consider
are the impact of known variance assumptions in these calculations, which could be investigated through
simulation studies.

There are many other important aspects that remain to be considered. There is much debate over
whether the SW-CRT is an efficient and unbiased method of evaluation. Some have argued strongly
against the use of the SW-CRT [22], whilst others have argued that SW-CRTs might have a valuable place
in the hierarchy of evidence without which many interventions in service delivery might not be evalu-
ated [23–25]. There is also much debate over whether the SW-CRT is more efficient than the parallel
CRT [10,26–31]. Some have argued that it is more efficient [10], whilst others have argued that this will
depend on the ICC [17]. More research is urgently needed to resolve these issues.
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