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Abstract

Background: The recent completion of the swine genome sequencing project and development of a high density porcine
SNP array has made genome-wide association (GWA) studies feasible in pigs.

Methodology/Principal Findings: Using Illumina’s PorcineSNP60 BeadChip, we performed a pilot GWA study in 820
commercial female pigs phenotyped for backfat, loin muscle area, body conformation in addition to feet and leg (FL)
structural soundness traits. A total of 51,385 SNPs were jointly fitted using Bayesian techniques as random effects in a
mixture model that assumed a known large proportion (99.5%) of SNPs had zero effect. SNP annotations were implemented
through the Sus scrofa Build 9 available from pig Ensembl. We discovered a number of candidate chromosomal regions, and
some of them corresponded to QTL regions previously reported. We not only have identified some well-known candidate
genes for the traits of interest, such as MC4R (for backfat) and IGF2 (for loin muscle area), but also obtained novel promising
genes, including CHCHD3 (for backfat), BMP2 (for loin muscle area, body size and several FL structure traits), and some
HOXA family genes (for overall leg action). The candidate regions responsible for body conformation and FL structure
soundness did not overlap greatly which implied that these traits were controlled by different genes. Functional clustering
analyses classified the genes into categories related to bone and cartilage development, muscle growth and development
or the insulin pathway suggesting the traits are regulated by common pathways or gene networks that exert roles at
different spatial and temporal stages.

Conclusions/Significance: This study is one of the earliest GWA reports on important quantitative traits in pigs, and the
findings will contribute to the further biological function analysis of the identified candidate genes and potential utilization
of them in marker assisted selection.
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Introduction

The domestic pig has a long history of extensive natural and

artificial selection partly to meet human dietary needs [1]. In the

past, conventional artificial selection relying on phenotype and

pedigree information has been practiced for genetic improvement.

However, human population growth is increasing rapidly and

nutritional input from animal industries will be required to feed a

hungry world. Thus, to further increase the rate of genetic

improvement, understanding of the interplay between polygenic

and environmental factors controlling complex agriculturally

important production and disease-resistance traits is needed [2].

This information could be integrated in marker-assisted selection

(MAS) schemes to increase selection accuracy, shorten generation

interval, and accelerate genetic improvement.

Both candidate gene and QTL mapping strategies have been used

in domestic animals for the discovery of genetic markers suitable for

MAS [3]. To date, more than 5,500 QTL relevant to ,550

overlapping phenotypic traits have been deposited in pig QTLdb

(http://www.animalgenome.org/cgi-bin/QTLdb/SS/index). How-

ever, those approaches have limitations. Candidate gene selection

according to their putative physiological roles could be limited, and

may miss novel gene identification and / or pathways influencing the

traits. The regions of identified QTL are generally large and fine

mapping is required to find more closely linked markers or causative

variants suitable for marker-assisted selection. The consistency of

QTL mapping may be limited when it is based among resource

families developed from diverse founders [3]. However, the recently

completed genome sequencing projects in many species and newly

developed high density SNP arrays have made it possible to conduct

GWA and genomic selection studies for several species of food

producing animals, which has opened a new era for animal breeding

[4–7].

In contrast to studies in humans where association analyses have

the primary purpose of identifying markers for disease, the

applications of dense SNP arrays in livestock focus on genomic

selection (also termed genomic prediction or genomic evaluation),

in order to improve selection accuracy to accelerate genetic
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improvement for economically important performance traits in

breeding animals [8–10]. Assuming abundant availability of SNPs

scattered throughout the genome which can capture linkage

disequilibrium (LD) relationships with QTL, Meuwissen and

colleagues [8] proposed a novel genomic selection concept, i.e., to

predict an animal’s breeding values using information provided by

numerous SNPs across the entire genome. In this seminal work,

two Bayesian approaches (Bayes A and Bayes B) were developed to

predict genomic estimated breeding values (GEBV). In the years

following this paper, alternative statistical approaches for genomic

selection have been developed, derived from Bayesian models and

some other parametric methods including GBLUP and mixed

regression models [11–14]. This genomic selection methodology

can be feasibly adapted for a GWA study and in the context of

mixture models genomic regions and SNPs having high model

frequency (i.e., frequently included in the model for GEBV

prediction) can be identified as those likely linked to QTL

[8,13,15].

Most of the published GWA studies carried out in animals

involved Mendelian or disease related traits [16–20], although

some evaluated single marker mixed model associations for growth

traits [21,22]. Few GWA studies using Bayesian methods that

concurrently fit many or all SNPs have yet been reported.

Loin muscle depth or loin area and fat depth are good

predictors of carcass lean content and are two traits targeted in pig

breeding programs. Body conformation as well as feet and leg (FL)

structural soundness are relevant to growth, feed intake capability,

reproductive efficiency and sow longevity and are receiving more

attention in modern swine production where pigs are being raised

in confined production systems. It has been reported that

approximately 40% of breeding sows were culled because of FL

problems [23,24]. The objective of this study was to perform a

GWA study with the porcine 60K SNP BeadChip and to identify

candidate SNPs/genes and chromosomal regions associated with

growth, body composition, body conformation and FL structural

traits, that might be suitable for MAS and genomic selection. To

our knowledge, this is the first report from a GWA study on

economically important production traits in pigs. Furthermore, it

will contribute to a better understanding of the genetic control of

complex animal agriculture traits.

Results

Phenotype statistics
Detailed descriptions of exploratory analyses of all phenotypes

are in Tables S1 and S2. Apart from four traits in which the

preferred value is intermediate, such as top line, weak/upright

legs, front and rear legs turned in/out, population average values

of body conformation and FL structure traits were between 2.19

and 5.39. The means for uneven front/rear toes were approxi-

mately 2.2, indicating small inside toe conformation was not a

problem in the studied population. The number of animals with

front/rear legs turned out was rare, so only traits for front/rear

legs turned in were analyzed. Distribution analysis found that most

of the traits apparently follow or nearly follow normal distributions

(data not shown).

SNP chip data evaluation
The current Porcine 60K Beadchip has 64,232 SNPs [5], and

based on the current pig genome annotation, Sus scrofa (SSC) Build

9, a total of 55,446 of these SNPs have been mapped to a genomic

location. The average physical distance between any two

neighboring SNPs on the same chromosome was approximately

41.6 Kb, ranging from 35.2 Kb (SSC14) to 81.4 Kb (SSCX)

(Table S3). Based on the length of each chromosome in the

USDA-MARC v2 (A) linkage map (http://www.thearkdb.org), the

average genetic distance between SNPs on the chip is 0.046 cM,

ranging from 0.02 cM (SSC1) to 0.08 cM (SSCX) (Table S3).

The distribution characteristics of SNPs were analyzed and

among mapped loci, 15,338 are intragenic and are from 7,099

genes. The maximum number of SNPs from one gene is 33 and it

is the PARK2 gene located between 6.5 and 7.5 Mb on SSC1.

Only five genotyped animals had average genotype call rates

less than 80%, and were removed from further analysis.

Additionally, SNPs with no call (1,886) or call rates less than

90% (400) were discarded. A total of 51,385 SNPs passed these

quality control steps and were retained in the dataset.

GWA analysis
A population stratification analysis using IBS distance clustering

showed that gilts from the two lines present in the data could be

classified into one population, suggesting no significant genetic

difference existed between these two lines. Since pedigree

information indicated the lines had been separated, lines were

fitted as a fixed effect in the model for association analyses.

Based on the heritability of each trait (Table S2), appropriate

priors for the genetic and residual variances were obtained for

input into the Bayesian statistical models. Results from the

analyses including mean, posterior genetic and residual variances,

and the resultant proportion of variation accounted for by SNPs

are in Table S2. The genetic contribution to variation was

relatively high for some traits for instance, 10th rib backfat with

around 250 SNPs likely accounting for 54% of total genetic

variance (m = 0.995), loin muscle area with the same number of

SNPs accounting for 55%. While other traits, such as weak top line

and high top line, had relatively lower heritability estimates.

The putative candidate chromosomal regions were obtained by

finding those genomic locations comprising windows of 5

consecutive SNPs with the highest genetic variance. Significance

level was subsequently determined by bootstrap analyses under the

null hypothesis that these windows did not harbor QTL. The

model frequency statistic was used to find the most promising

SNPs within these regions. With the assumption that the

experiment had 50% power and a 99% null hypothesis of no

QTL in the SNP window, then the PFP (proportion of false

positives) from Fernando et al. [25] was 0.66 for p,0.01 and 0.16

for p,0.001. Therefore, we expected at least half of the reported

QTL to be real for all the traits studied in the present work.

Analyses for two backfat traits, the last rib backfat and 10th rib

backfat revealed that some of the genes underlying them were

different, even though their genetic correlation has been estimated

to be nearly 0.90 [26]. However, they did share several common

regions, including those containing MC4R on SSC1, ATP6V1H

and OPRK1 genes on SSC4, LDHD gene on SSC6, CHCHD3 gene

on SSC18 and ATP2B3 genes on SSCX. In total, 21 regions were

associated with last rib backfat (Figure S2), and genes in these

regions are listed in Table S4.

As for 10th rib backfat, 18 candidate regions contributing the

largest genetic variance were identified and they were distributed

along chromosomes 1, 2, 4, 6, 7, 11, 12, 16, 18 and X (Figure 1).

Surprisingly, one novel region was identified by the SNP

ALGA0118164 on SSC18, with a high model frequency of 0.63,

while others were under 0.25 (Figure S3). A larger population size will

be required to verify the significance of this SNP since it represents a

novel QTL region. Of these 18 peaks, 9 corresponded to QTL

regions associated with 10th rib backfat in previous reports (Table S5).

For example, the peak comprising four SNPs (INRA0004898,

ALGA0006599, ALGA0006623 and ASGA0005017) on SSC1 was

GWA Study in Pigs
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in a QTL region, where a known causative gene MC4R associated

with fat and growth rate is located [27]. The peak pertaining SNP

M1GA0005986 on SSC4 was close to a QTL region reported in the

first pig QTL mapping study [28]. The genes within the regions were

examined via pig Ensembl (http://www.ensembl.org/Sus_scrofa/

Info/Index), and are listed in Table S5, together with those involved

in fat development.

The SNP MC4R Asp298Asn along with any other SNP involved

in previous patents or patent applications were not included in the

chip so that no infringement would exist. However, the SNP

MC4R Asp298Asn was evaluated in this population in an earlier

study [29]. Genotypes of MC4R Asp298Asn were added to the

dataset, and fitted as a random effect in a Bayes C model,

achieving a model frequency of 0.08 (Figure 2a) with the average

effect of allele A being 2.74E-03, implying allele A (Asn298) was

associated with increased fat thickness, in agreement with Kim et al

[27]. When MC4R Asp298Asn was fitted as a fixed effect, the

model frequencies for other SNPs (INRA0004898, AL-

GA0006599, ALGA0006623 and ASGA0005017) dropped, sug-

gesting there may be interactions associated with backfat between

MC4R and other SNPs in the region.

Haplotype analysis was carried out on a 2.5 Mb region

containing the MC4R Asp298Asn SNP and four other significant

SNPs. The other SNPs were in different haplotype blocks, whereas

ALGA0006623 and Asp298Asn were from the same block

(Figure 2a). The five major haplotypes with occurrence frequency

great than 1% were assigned to each individual and these

covariates merged into the SNP dataset, and each haplotype

model frequency was obtained (Figure 2b). Compared to that of

single SNPs, the haplotype model frequency did not increase

much. It suggested that there may be other genes associated with

backfat besides MC4R in this region. Similar results have been

reported previously [30], and further studies are needed to identify

additional candidates.

Loin muscle area is related to muscle development, and 14

peaks were associated with this trait and the significance level of 13

of those candidate regions reached 0.05 (Figures 3 and S4). Eight

of 14 peaks corresponded to previously reported QTL regions for

LMA. The most significant SNP, INRA0052808 was within the

BMP2 gene on SSC17, and the next two most significant SNPs,

M1GA0002180 and M1GA0002244, were from the beginning of

SSC2, where the IGF2 gene is located. Furthermore, in the region

including ALGA0090171on SSC16, there were two potentially

interesting genes, FST and NDUFS4 (Table S6).

The genetic variance contributed by SNP windows were plotted

against genomic location for body size (body length, depth and

width) and body shape traits (correctness of top line, rib shape and

hip structure) and are shown in Figures S6a-e, with genes from the

candidate regions being listed in Table S7. There were a few

common candidate regions over these body conformation traits.

The BMP2 gene was associated with three body size traits, and

interestingly, one allele was associated with long body length,

shallow body and narrow body width (Table 1). The region at

270 Mb on SSC1 was also important for body size, where the

PAPPA gene was considered as a candidate gene.

For overall leg action, there were 14 candidate regions (Figures 4

and S5), which are from chromosomes 2, 3, 5, 6, 9, 13, 15, 16 and

18 (Table S8). The most significant region included SNPs

H3GA0046827 and H3GA0046828 on SSC16, where no coding

gene has been identified. In the candidate region on SSC2

surrounding MARC0022036, there was no gene with biological

significance for skeletal development and locomotion. On SSC18,

the region including HOX genes (HOXA1, HOXA2 and HOXA3)

was identified, and on SSC9, the region containing the TWIST1

and SP4 genes was detected.

However, for FL structural traits, which have relatively lower

heritabilities, multiple genes seem to be involved. The putative

candidate genes associated with traits were quite different, even for

similar traits such as front leg pastern and rear leg pastern

positions, and different traits at the same body position such as

front leg pastern and front leg turned in (Figure S7 and Table S9).

A clustering analysis for genes based on their functional annotation

Figure 1. Proportion of genetic variance explained by each window of 5 consecutive SNP markers across the genome for 10th rib
backfat, which was used to determine the candidate genome regions surrounding the significant SNPs. The X-axis is SNP marker
position in genome order, and the Y-axis represents genetic variance of 5-SNP window (the exact candidate regions, the most promising SNPs and P
values are shown in Table 1). Different colors represent SNPs on different chromosomes from SSC1 to X and unmapped markers.
doi:10.1371/journal.pone.0014726.g001
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demonstrated that they could be classified into different categories,

which related to the original traits. Some could be involved in

bone and cartilage development such as SOX9, LRCH1, BMP2,

COL4A3 and COL4A4, some might be related to muscle

development such as MYOD1, MUSK, MYH1, MYH2, MYL9,

MAP2K6 and MAP3K4, while others could be relevant to the

insulin pathway such as PDX1, PTPN1, CTGFL and WISP2. These

groups are all known to be associated with growth and

development.

Discussion

The GWA and genomic selection studies conducted to date are

beginning a promising era in animal breeding. To our knowledge,

this might be the earliest GWA report on economically important

growth and production traits in pigs. The primary results will

contribute to the dissection of molecular mechanisms regulating

important quantitative traits, identification of novel candidate

genes and networks, and functional analysis of promising genes.

It is likely that GWA studies will be increasingly important to

animal improvement. For disease related traits, a case-control

strategy that is well-known in human studies has been generally

utilized [16,19]. For quantitative traits, several different methods

have been explored [10,18,20]. In the present study a newly

developed approach for GWA analyses between SNPs and

quantitative traits was evaluated. In comparison to Bayes B, this

approach was less reliant on priors for the genetic and residual

variance, and computational time was reduced.

Population stratification is a confounding component that

affects association analyses. The animals in this study were from

two different genetic lines, which originated from the same breed

resources. A clustering analysis based upon IBS distance classified

them into one population. Nevertheless, the lines were fitted as a

fixed effect in the model for association analyses based on pedigree

information.

The Bayesian method used for association analyses in this study

has been demonstrated to have higher accuracy even with

different relationship scenarios between training and validation

populations [31,32]. It indicated that association results from the

two lines in this study were robust and could be suitable for MAS

and genomic selection in Large White and related pig populations.

A total of 18 candidate chromosomal regions were identified for

10th rib backfat, and half of them corresponded to previously

reported QTL regions. The most promising SNP ALGA0118164

was 13 kb upstream of the CHCHD3 (coiled-coil-helix-coiled-coil-

helix domain containing 3) gene, which is primarily expressed in

Figure 2. Haplotype analysis. a) The haplotype blocks of the region between 165.47–168.63 Mb on SSC1 where four SNPs (INRA0004898,
ALGA0006599, ALGA0006623 and ASGA0005017) with model frequency greater than 0.10 for 10th rib backfat and the MC4R gene (green color dot)
were located , and b) The plots of model frequency for each haplotype containing the SNPs ALGA0006623 (underlined) and MC4R Asp298Asn
(Italicized and underlined).
doi:10.1371/journal.pone.0014726.g002
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mitochondria. The Leptin gene is around 4 Mb downstream of this

gene, but the nearest SNP M1GA0023128 to Leptin was not in

strong LD with ALGA0118164 and it did not achieve high model

frequency (0.004). There are no reports about the association

between CHCHD3 and phenotypes related to obesity/diabetes in

humans and rodents. An investigation involving additional SNPs

within CHCHD3 and functional analysis using adipocyte lines is

warranted to verify the association of this gene with fat

development.

One important region was identified between 165.47–

168.63 Mb on SSC1, with around 20 coding genes annotated in

Sus scrofa Build 9, including MC4R, one of the important functional

Figure 3. Proportion of genetic variance explained by each window of 5 consecutive SNP markers across the genome for 10th rib
loin muscle area, which was used to determine the candidate genome regions surrounding the significant SNPs. The X-axis is SNP
marker position in genome order, and the Y-axis represents genetic variance of 5-SNP window (the exact candidate regions, the most promising SNPs
and P values are shown in Table S6). Different colors represent SNPs on different chromosomes from SSC1 to X and unmapped markers.
doi:10.1371/journal.pone.0014726.g003

Table 1. The SNPs within BMP2 genes associated with multiple traits, being estimated through a Bayesian procedure.

SNP Trait (Unit) Model frequency Marker effect Marker effect Delta P value

MARC0070553 Body length 0.274 0.028 0.104 ,0.001

Body depth 0.296 0.043 0.145 ,0.001

Body width 0.080 20.008 20.104 ,0.001

Front leg pastern 0.295 0.061 0.206 ,0.001

Rear leg pastern 0.019 0.001 0.071 ,0.001

Rib shape 0.235 0.036 0.152 ,0.001

Buck knee 0.129 0.020 0.156 ,0.001

Loin muscle area (cm2) 0.035 20.018 20.529 ,0.001

INRA0052808 Body length 0.299 0.033 0.110 ,0.001

Body depth 0.825 0.157 0.190 ,0.001

Body width 0.119 20.014 20.115 ,0.001

Front leg pastern 0.146 0.029 0.198 ,0.001

Rear leg pastern 0.074 0.008 0.111 ,0.001

Rib shape 0.154 0.023 0.149 ,0.001

Buck knee 0.034 0.004 0.124 ,0.001

Loin muscle area (cm2) 0.407 20.323 20.792 ,0.001

Marker effect defines the posterior mean of the covariate effect averaged across the post-burnin chain. Marker effect Delta defines the posterior mean effect for only
those chains that included the effect in the model, i.e., Marker Effect/ModelFreq. P values indicate the significant confidence of candidate regions containing the
analyzed SNPs, which were determined the genetic variance of 5-SNPs sliding window.
doi:10.1371/journal.pone.0014726.t001
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genes associated with backfat. In pigs, the SNP Asp298Asn was

found to be significantly associated with backfat and growth rate

[27], and the association with fat has been implicated in pigs with

diverse backgrounds. Four SNPs (INRA0004898, ALGA0006599,

ALGA0006623 and ASGA0005017) distributed in different

haplotype blocks were studied. The model frequency values

decreased for the other SNPs when any one of them was

considered as a fixed instead of random effect (data was not

shown). The genes BCL2 and CCBE1 are two of interest. In

addition, the candidate region harboring the SNP M1GA0005986

on SSC4 corresponded to a fat QTL location reported in the first

porcine QTL mapping study [28]. Berg et al. [33] characterized

this FAT1 QTL and refined its map position to a 3.3 cM interval

between the RXRG and SDHC genes. These two genes are located

at 89 Mb on SSC4 (Build 9), about 8 Mb from the region we

found. The actual FAT1 QTL effects caused by the identified

genes or others such as ATP6V1H and OPRK1 in this region should

be explored to identify the causative mutation.

There were 14 candidate regions associated with LMA, and eight

of them corresponded to QTL regions previously reported. The

most interesting SNP INRA0052808 was from the BMP2 gene on

SSC17. It is well known that BMP2 is involved in regulating early

myogenesis and could inhibit proliferation or induce presumptive

muscle cells to undergo apoptosis, thus inhibiting muscle develop-

ment. These results, combined with those discussed later in this

manuscript involving the association between BMP2 and body

dimensions help explain the role this gene has in controlling body

dimension and muscle development. A region on SSC2 including

the significant SNPs M1GA0002180 and M1GA0002244 is close to

the locus where the IGF2 gene is located. IGF2 has been considered

to be one of the major causative genes associated with muscle

development [34], and the G3072A mutation in intron 3 has been

proposed to cancel in vitro interaction with a nuclear factor and was

associated with a threefold increase in IGF2 messenger RNA

expression in postnatal muscle [35].

A total of 14 candidate regions were found to be associated with

overall leg action. On SSC18, one candidate region including a

cluster of HOX family genes including HOXA1, HOXA2 and

HOXA3 were identified. HOX genes encode a class of transcription

factors that contain an antennapedia (HOM gene) related

homeobox and are conserved throughout metazoan evolution in

vertebrates, and they exert essential roles on the morphogenesis of

skeletal structure along the antero-posterior axis [36]. On SSC6, a

region including the FHL3 gene was associated with leg action.

FHL3 negatively regulates myotube formation of C2C12 cells, and

it could form a complex with MyoD inhibiting its transcription

activity and control the expression of muscle specific genes such as

muscle creatine kinase and myogenin [37]. Additionally, one

region comprising three SNPs H3GA0027878, ALGA0054178

and ALGA0054186 on SSC9 was identified, and it contains the

TWIST1 and SP4 genes, which are of interest for their association

with leg action.

A number of candidate regions associated with body confor-

mation traits were identified, but common genomic regions

responsible for these traits appears to be rare. These results

suggested that the genetic mechanisms underlying body growth

and development are complicated, and the genes contributing to

the body plan are in various networks and they might be regulated

at different developmental stages, a fact known to biologists. The

BMP2 gene was associated with all three body size traits. The allele

T of SNP INRA0052808 located in BMP2 was associated with

long body length, shallow body depth and narrow body width, and

additionally it was associated with upright front/rear leg pastern

postures and smaller LMA (Table 1). The genetic correlation

between body length and body depth was positive while it was

negative between these two traits and body width, and body width

had a high favorable genetic correlation with LMA [26]. In

practical breeding programs, animals could be selected as breeding

stock based on the allele in BMP preferred by the breeder based

on structural requirement.

Figure 4. Proportion of genetic variance explained by each window of 5 consecutive SNP markers across the genome for overall leg
action, which was used to determine the candidate genome regions surrounding the significant SNPs. The X-axis is SNP marker position
in genome order, and the Y-axis represents genetic variance of 5-SNP window (the exact candidate regions, the most promising SNPs and P values
are shown in Table S8). Different colors represent SNPs on different chromosomes from SSC1 to X and unmapped markers.
doi:10.1371/journal.pone.0014726.g004
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There are a number of factors contributing to the FL structural

soundness of livestock. The development of the body skeleton and

muscle mass is an important factor determining body conforma-

tion, physical fitness and leg movement. In humans, the abnormal

development of the skeleton can lead to a series of disorders, such

as dwarfism, osteochondrosis, osteoporosis, osteopetrosis and

osteoarthritis, which affect normal action capability and even

result in lameness. Based on the functional clustering analyses we

conducted, approximately 30% of candidate genes associated with

FL could be classified into the categories of bone and cartilage

development, skeletal muscle development and the insulin

pathway. Some of the genes involved in bone and cartilage

development were SOX9, LRCH1, FBN2, COL4A3, and COL4A4.

The genes and transcription factors MYOD1, MuSK, MYH1,

MYH2, MYL9, MAP2K6 and MAP3K4 were found within

candidate regions. Skeletal muscles are attached by tendons across

joints, and muscle contraction drives the bones and joints. The

muscle and skeleton function together and thus provide for animal

movement as seen from a previous selection experiment [38,39].

MYOD1 is involved in muscle differentiation and can induce

fibroblasts to differentiate into myoblasts [40]. Mutations in the

MuSK gene may cause congenital myasthenic syndromes (CMS), a

type of hereditary disease characterized by muscles that fatigue

easily resulting in muscle weakness caused by neuromuscular

transmission dysfunction in humans [41]. MAP2K6 and MAP3K4

are two of the MAPK kinases that are involved in the p38

mitogen-activated protein kinase (MAPK) pathway. The p38

MAPKs regulate the transcriptional activities of MRFs and

function in the remodeling of chromatin at specific muscle-

regulatory regions, and it is one of the major intracellular signaling

pathways affecting myogenesis [42].

Both insulin and IGF1 are known to induce a wide variety of

growth and metabolic responses and play essential roles in

anabolic regulation of bone metabolism [43]. Several genes

involved in the insulin and IGF1 pathway were identified to be

associated with the FL traits in this study. PDX1 could regulate the

expression of pancreatic endocrine cell genes including insulin

through the interaction at A-T rich regions contained within the

promoter of these genes, and has a role in maintenance of the b-

cell phenotype [44]. Mutations in the PTPN1 promoter might

contribute to the development of T2D and related metabolic traits

[45]. CTGFL could promote the adhesion of osteoblast cells and

inhibit the binding of fibrinogen to integrin receptors, and may

play important roles in modulating bone turnover [46]. Associa-

tions of these genes with FL soundness traits need to be further

verified.

In this study, a number of candidate chromosomal regions

relevant to the analyzed traits were identified, and some were

consistent with previously reported QTL regions. These new SNP

chip results demonstrated that combining dense SNP arrays and

using the Bayes C approach is ideal for GWA studies on important

quantitative traits in domestic animals. Meanwhile, some issues are

worth discussing when the findings were compared with those of

conventional candidate gene studies [29]. Several promising

candidate genes such as PPARG, Leptin receptor (LEPR) and

IGFBPs (for backfat deposition), Myogenic regulatory factors

(MRFs) and Myostatin (MSTN) (for muscle growth), and CALCR,

OXTR and PTHR (for leg related traits), were not found to be

associated with the analyzed traits in these animals. In addition,

most of the traits - associated SNPs (TASs) were from novel genes

without obvious biological significance relevant to the analyzed

traits, and most of TASs were located in the intergenic regions or

introns of coding genes. Similarly, in GWA studies of the humans,

the TASs have not always been from the putative candidate genes

relevant to disorders or diseases [47]. It has been reported that

88% of TASs were intronic (45%) or intergenic (43%), 9% were

nonsynonymous, 2% were in a 59 or 39 untranslated regulatory

regions and 2% was synonymous [48]. In dairy cattle, the

suggested candidate genes underlying Johne’s disease such as

SLC11A1, IL23R and NOD2 were not found to be associated with

this disease [21]. In this study, we speculate that such discrepancies

may have resulted from one of the following explanations: i) The

TASs may be from genes that have not yet been annotated, or

linked to the unmapped SNPs, therefore, further annotations on

the current Sus scrofa Build 9 are necessary; ii) The sample size and

the genetic backgrounds of the studied populations may have

effects on association analyses, and additional pure breeds with

larger sample size will be of help for GWA implications; iii)

Although Bayesian methods are well suited for genomic selection

and the statistics such as window variance and model frequency

can be used to evaluate associations, the prediction accuracy of the

methods were between 40–60%. Therefore, the indicator for

association may not be the best one, and additional statistical

approaches for GWA study are needed; iv) The large (,40 Kb)

average interval and uneven SNPs distributions of the current

porcine 60 K BeadChip may be major limitations for haplotype

blocks analyses and fine mapping [49], and a higher density SNP

panel is worthy of being developed. Even with these limitations,

the SNP chip and results presented here offer new opportunities to

understanding the underlying genetic factors affecting these traits

of interest.

Materials and Methods

Ethics statement
Animal care guidelines were followed according to the

Institutional Animal Care and Use Committee (IACUC) at Iowa

State University (Approval ID: log#7-05-5927-S).

Animals and traits
A total of 820 gilts were included in the study, which were

commercial breeding stock sourced from Newsham Choice

Genetics (West Des Moines, IA, USA) between October 2005

and July 2006. The gilts belonged to two genetic lines and

included 412 Large White line pigs and 408 pigs from a Large

White6Landrace cross.

Body composition and structural soundness evaluations were

carried out on 14 dates, with females having an average body weight

of 124611 kg and age of 19067 days at appraisal time. Body

composition traits comprised ultrasonically measured loin muscle

area at the 10th rib, 10th rib backfat and last rib backfat. Ultrasonic

images were taken with a Pie Medical 200 (Classic Medical Supply,

Inc., Tequesta, FL) by a single technician certified by the National

Swine Improvement Federation. A total of 17 body structural

soundness traits were recorded including body conformation (body

length, depth and width, top line, rib shape and hip structure), front

feet and leg structure (legs turned, buck knees, pastern posture, foot

size and uneven toes), rear feet and leg structure (legs turned, weak/

upright legs, pastern posture, foot size and uneven toes) and overall

leg action, which is a general appraisal reflecting both structural

soundness and freedom of other defects affecting the gait and

locomotion. All of the structural soundness traits were indepen-

dently evaluated by two experienced scorers using nine-point scales,

where one and nine indicated the extreme phenotypes of the traits.

The intermediate score is the most favorable for four of the scoring

traits including top line, turned front legs, turned rear legs and

weak/upright rear legs. Scoring criterions and the descriptions of

scores are shown in Table S1 and Figure S1, respectively.
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SNP array genotyping
A very small amount of ear tissue was collected from gilts using

the TypiFixTM ear tag from Agrobiogen (Hilgertshausen, Ger-

many). The DNA was isolated from dry ear tissue using the DNeasy

96 Blood & Tissue Kit (Qiagen, Valencia, CA, USA). DNA

quantification was performed using a NanoDrop 1000 (Thermo

Fisher Scientific Inc., Wilmington, DE, USA). DNA samples were

submitted for genotyping with total DNA between 700–1000 ng,

260/280 ratio.1.50 and DNA concentration.20 ng/ul. The

genotyping was done by GeneSeek Inc. (Lincoln, NE, USA) using

the Porcine 60K BeadChip (Illumina, San Deigo, CA, USA) and

approved standard techniques outlined by the manufacturer.

Quality control (QC) was performed after we received the original

SNP genotyping data. The SNPs were filtered with call rate$80%,

Gentrain Score$50%, minor allele frequency (MAF)$0.05 and P

value of x2 test for Hardy-Weinberg equilibrium$16E26.

Phenotypic statistics
The statistical analyses for descriptive analyses including

population mean and normal distribution testing were performed

using the UNIVARIATE procedure of the SAS software package

(SAS Institute, release 9.2, Cary, NC, USA). Top line, turned front

leg, turned rear legs and weak/upright rear legs were each divided

into two traits prior to analyses because of intermediate optimum

of the original trait scoring (Table S2). In addition, these separated

traits (such as high top line and weak top line, front legs turned in

and front legs turned out) had different heritability and moderate

negative genetic corrections [33], implying that they are

influenced by different genetic factors.

Population stratification analysis
The animals in the study were from two genetic lines but

originated from Large White or Large White6Landrace inter-

breed crossing. Population stratification was examined using an

identical-by-state (IBS) distance clustering method in PLINK

program [50].

Bayesian methods for GWA analyzes
A new Bayesian method for genomic selection (Bayes C) has

been proposed [15], developed from the Bayes B and GBLUP

approaches [8]. The Bayes B approach is sensitive to the assumed

prior of the genetic variance, and accuracy of genomic prediction

could be affected if that value was given incorrectly. However,

Bayes C is more tolerant to prior genetic variance, and is described

here as follows:

y~Xbz
XK

j~1

Zjujdjze

where y is the vector of phenotypes of the analyzed traits, X is the

incidence matrix for fixed effects, b is the vector of fixed effects, K

is the number of SNPs in the dataset, Zj is the column vector

representing the SNP covariate at locus j, uj is the random

substitution effect for locus j, which conditional on s2
u, is assumed

normally distributed N(0, s2
u) when dj = 1, while uj = 0, when

dj = 0, dj is a random 0/1 variable indicating the absence (with

probability p) or presence (with probability 12p) of locus j in the

model, and e is the vector of random residual effects assumed

normally distributed N(0, s2
e). Thus, both Bayes B and Bayes C

are mixture models that assume a mixture of two distributions for

the SNP effects, with assumed mixture fraction p. In these

analyses, p was assumed to be 0.995. The variance s2
u (or s2

e) was

a priori assumed to be scaled inverse chi-square with vu = 4 (or

ve = 10) degree of freedom and scale parameters S2
u (or S2

e) [51].

Additionally, in Bayes C s2
u is common to all loci in the model in

contrast to the locus specific variance component in Bayes B.

SNP effects uj were estimated using the Monte-Carlo means of

the posterior distribution of these effects computed by a Gibbs

sampling strategy. For a locus j, samples for dj were obtained from

its conditional distribution given b, the effects at all other loci

included in the model and the two variance components s2
u and

s2
e. This conditional distribution can be written as

Pr(dj jy,b,u{j ,s
2
u,s

2
e)

~f (dj jy,b,u{j ,s
2
u,s2

e)=f (yjb,u{j ,s
2
u,s2

e)

~Pr(dj)f (yjdj ,b,u{j ,s
2
u,s2

e)=f (yjb,u{j ,s
2
u,s2

e)

where u-j is the vector of effects in the model other than at locus j.

The f(y| b, u-j , s2
u, s

2
e) was obtained as the sum of Pr(dj) f(y|dj,

b, u-j, s
2

u, s
2

e) computed for dj = 0 and for dj = 1 [51].

In each iteration of a Monte Carlo Markov Chain, every SNP

was subjected to a likelihood ratio test that determined the

probability that SNP would be included in the model given the

fixed effects and currently fitted markers, and that SNP was then

included in the model in that iteration with the calculated

probability. Evidence for an informative SNP was obtained by

accumulating the frequency across iterations of the chain that a

particular SNP was fitted in the model, we refer to this statistic as

model frequency. If consecutive SNPs are in high linkage

disequilibrium (LD) with the same QTL, then the effect of the

QTL and the SNP model frequency will be distributed across all

the SNPs in high LD with the QTL. For this reason model

frequency of individual SNP is not a good indicator of the presence

of QTL in genomic regions with high LD. Accordingly, two

alternative approaches were used to infer presence of QTL. First,

by accumulating the window model frequency whereby a genomic

window of typically 5 immediately consecutive SNPs was counted

as being included in the model when at least one of any of the

SNPs in that window were in the model that iteration. Second, a

QTL was inferred by computing a statistic representing the

relative contribution of variation in window breeding value

compared to variation in genomic breeding value. Window

breeding value was computed by multiplying the number of

Illumina B alleles that represent the SNP covariates for each

consecutive SNP in a window by their respective posterior means

for substitution effects. After computing these 5 SNP window

breeding values for all animals in the population the variance of

these breeding values was calculated. Windows that contributed

the highest genetic variance were considered to be the strongest

signals of association. Genomic breeding values are calculated

using the same approach as window breeding values but utilized

every SNP in the genome. These window approaches to identify

important genomic regions accounted for linkage disequilibrium

and better characterize QTL than individual SNP effects.

Several factors relevant to the traits, such as genetic line,

measurement date and scorer, were considered as fixed class

effects or covariates (e.g. body weight). The above procedures were

implemented using a web-based program, GenSel (http://bigs.

ansci.iastate.edu/bigsgui/login.html), developed by Fernando and

Garrick [15].

Bootstrap analysis
The calculation of the genetic variance accounted for by a 5

SNP window accounts for linkage disequilibrium between the 5
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neighboring SNPs and discriminates important chromosomal

effects from spurious effects of single SNPs. The chromosomal

regions or the clusters of SNPs in sliding windows with the greatest

contributions are also most likely to be associated with the

analyzed phenotypes, and are considered to represent the QTL at

that location. Using a similar approach with high density SNP chip

data, Sun et al [52] recently identified QTL with few false positives

for a complex pedigree containing QTLMAS 2010 data. That

study also reported that the present genomic approach is at least as

successful as other competing methods to identify QTL.

The significance level of the putative candidate genomic regions

was estimated using bootstrap analysis. Bootstrap samples were

produced using the posterior means of the 53,815 SNPs to

construct the distribution of the test statistic (genetic variance of a

SNP window) for each putative QTL. A bootstrap sample of the

vector y for replicate j (yj ) was created using the posterior means of

the fixed b̂b and SNP ûui effects, except that all those SNP contained

in the window that formed the QTL were excluded, and a vector

of simulated residuals were added, formed by sampling a vector of

independent standard normal deviations, ej one deviation for each

animal, scaled by the posterior mean of the residual standard

deviation ŝse, according to:

yj~Xb̂bz
Xi~51,385

i~1,i =[QTL

Ziûuizŝseej

These bootstrap samples are constructed according to the null

hypothesis of no QTL in the identified SNP window. Each

bootstrap sample was reanalyzed using the Bayes C model used for

the real data, and the genetic variance of the SNP window

corresponding to the QTL were accumulated across all the

bootstrap samples, for comparison to the test statistic represented

by the genetic variance of the SNP window identified in the

analysis of the real data. If just 1 bootstrap statistic from the 1,000

simulated exceeded the test statistic from the real data, the

comparison-wise p-value was determined to be 0.001,p,0.002.

In addition, multiple testing was taken in to account using the

probability of false positives (PFP) as in Fernando et al [25]. That

approach controls the probability of false positive conclusions

across all the tests undertaken, rather than the probability of

making one mistake over all tests as would be the interpretation of

an experiment-wise error correction.

Haplotype block and association analysis
Haplotype analysis was performed for the chromosomal regions

where multiple candidate SNPs were located. The haplotype

blocks were identified using Haploview (Ver 4.1) [53]. Haplotypes

were obtained for each animal using the PHASE computer

program (Ver. 2.1) [54], and for each individual, it carried 0, 1

and/or 2 copies of a certain haplotype. The association between

the haplotypes and the traits were estimated using GenSel [15] as

described above.

Gene ontology
For regions harboring the SNP with the highest model

frequency, gene search was performed via Sus Scrofa Build 9 of

pig Ensembl (http://www.ensembl.org/Sus_scrofa/Info/Index).

The QTL location for relevant traits and the physical positions of

microsatellite markers retrieved from ArkDB (http://www.

thearkdb.org) and PigQTL (http://www.animalgenome.org/

cgi-bin/QTLdb/SS/index) were integrated, to obtain connections

between QTL and candidate regions found from GWA studies.

Gene ontology analysis was performed to extract the functional

annotation clustering using an online site called DAVID (http://

david.abcc.ncifcrf.gov).

In addition, for those SNPs with high model frequency that

were unassigned to any genomic location, their joint LD with

SNPs of known location was calculated using r2 so that the possible

physical positions could be deduced from the SNPs with known

location that had the highest estimated r2 with the unassigned

SNP.

Supporting Information

Figure S1. The scoring criteria for body conformation, and feet

and leg structure soundness traits.

Found at: doi:10.1371/journal.pone.0014726.s001 (0.10 MB TIF)

Figure S2. Proportion of genetic variance explained by each

window of 5 consecutive SNP markers across the genome for last

rib backfat, which was used to determine the candidate genome

regions surrounding the significant SNPs. The X-axis is SNP

marker position in genome order, and the Y-axis represents

accumulative genetic variance of 5-SNP window (the exact

candidate regions, the most promising SNPs and P values are

shown in Table S4). Different colors represent SNPs on different

chromosomes from SSC1 to X and unmapped markers.

Found at: doi:10.1371/journal.pone.0014726.s002 (0.07 MB TIF)

Figure S3. The SNP model frequency plots for assessing

associations between markers and 10th rib backfat. The X-axis

is SNP marker position in genome order, and the Y-axis represents

model frequency (0.10 was considered as threshold for 10th rib

back fat here). Different colors represent SNPs on different

chromosomes from SSC1 to X and unmapped markers.

Found at: doi:10.1371/journal.pone.0014726.s003 (0.08 MB TIF)

Figure S4. The plots of model frequency of SNPs for assessing

the associations between the markers and 10th rib loin muscle

area. The X-axis is SNP marker position in genome order, and the

Y-axis represents model frequency (0.10 was considered as

threshold for 10th rib loin muscle area here). Different colors

represent SNPs on different chromosomes from SSC1 to X and

unmapped markers.

Found at: doi:10.1371/journal.pone.0014726.s004 (0.10 MB TIF)

Figure S5. The plots of model frequency of SNPs for assessing

the associations between the markers and overall leg action. The

X-axis is SNP marker position in genome order, and the Y-axis

represents model frequency (0.05 was considered as threshold for

overall leg action). Different colors represent SNPs on different

chromosomes from SSC1 to X and unmapped markers.

Found at: doi:10.1371/journal.pone.0014726.s005 (0.10 MB TIF)

Figure S6. Proportion of genetic variance explained by each

window of 5 SNP consecutive markers across the genome for body

conformation traits, which was used to determine the candidate

genome regions surrounding the significant SNPs. The body

conformation traits are a) body length; b) body depth; c) body

width; d) rib shape and e) Hip structure. The X-axis is SNP

marker position in genome order, and the Y-axis represents

accumulative genetic variance of 5-SNP window (the exact

candidate regions, the most promising SNPs and P values are

shown in Table S7). Different colors represent SNPs on different

chromosomes from SSC1 to X and unmapped markers.

Found at: doi:10.1371/journal.pone.0014726.s006 (1.65 MB TIF)

Figure S7. Proportion of genetic variance explained by each

window of 5 consecutive SNP markers across the genome for feet

and leg structure soundness traits, which was used to determine
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the candidate genome regions surrounding the significant SNPs.

The feet and leg structure soundness traits are a) front leg pastern;

b) rear leg pastern; c) front buck knee; d) front feet size; e) rear feet

size; f) front uneven toes and g) rear uneven toes. The X-axis is

SNP marker position in genome order, and the Y-axis represents

accumulative genetic variance of 5-SNP window (the exact

candidate regions, the most promising SNPs and P values are

shown in Table S9). Different colors represent SNPs on different

chromosomes from SSC1 to X and unmapped markers.

Found at: doi:10.1371/journal.pone.0014726.s007 (2.15 MB TIF)

Table S1. The description of the 17 analyzed traits of body

conformation, feet and leg structure and overall leg action.

Found at: doi:10.1371/journal.pone.0014726.s008 (0.04 MB

DOC)

Table S2. The overall statistics about population means,

estimated heritability and the genetic parameters of Bayes C

analyses for the traits.

Found at: doi:10.1371/journal.pone.0014726.s009 (0.05 MB

DOC)

Table S3. The overall statistics on average interval between

SNPs and SNP distribution of porcine 60K SNP array.

Found at: doi:10.1371/journal.pone.0014726.s010 (0.05 MB

DOC)

Table S4. The detail information about candidate regions and

the most significant SNPs associated with last rib backfat.

Found at: doi:10.1371/journal.pone.0014726.s011 (0.05 MB

DOC)

Table S5. The detail information about the putative candidate

regions and the most significant SNPs associated with 10th rib

backfat.

Found at: doi:10.1371/journal.pone.0014726.s012 (0.05 MB

DOC)

Table S6. The detail information about the putative candidate

regions and the most significant SNPs associated with 10th rib loin

muscle area.

Found at: doi:10.1371/journal.pone.0014726.s013 (0.05 MB

DOC)

Table S7. The detail information about candidate regions and

the most significant SNPs associated with body conformation

traits.

Found at: doi:10.1371/journal.pone.0014726.s014 (0.09 MB

DOC)

Table S8. The detail information about the putative candidate

regions and the most significant SNPs associated with overall leg

action.

Found at: doi:10.1371/journal.pone.0014726.s015 (0.05 MB

DOC)

Table S9. The detail information about candidate regions and

the most significant SNPs associated with feet and leg structural

soundness traits.

Found at: doi:10.1371/journal.pone.0014726.s016 (0.19 MB

DOC)

Acknowledgments

The authors thank Drs. Jack Dekkers and Rohan Fernando for valuable

suggestions on data analyses, and thank Drs. Zhiliang Hu and Tinghua

Huang for help with SNP chip annotations. The efforts of Drs. Benny

Mote, Timo Serenius and Marja Nikkilä in trait scoring and data recording
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