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1. Introduction

The immune system, comprising various 
proteins, immune cells, and tissues, is 
complex and important for host defense.[1] 
Immune cells, including innate immune 
cells [e.g., macrophages, neutrophils, nat-
ural killer (NK) cells, and dendritic cells 
(DC)] and adaptive immune cells (e.g., B 
and T cells), are important components 
of the immune system. Dysfunctions of 
immune cells such as abnormal distribu-
tions of abundance and type as well as 
abnormal development and functions are 
always associated with diseases, including 
cancers.[2,3] Thus, investigating immune 
cell distribution in individuals could pro-
vide important insights into immune 
status, disease progression, and prognosis, 
as well as therapy (particularly in cancer 
immunotherapy).[4]

Tumor-infiltrating immune cells are 
considered to be primary immune signa-
tures and are strongly associated with the 
clinical outcomes of immunotherapies.[5] 
T cells play pivotal roles in cancer initia-

tion, progression, and therapy (particularly immunotherapy)[6] 
and are composed of two major groups: CD4+ T cells and CD8+ 
T cells with each including numerous functional subpopula-
tions (or subsets). The CD4+ T-cell subsets, such as T helper 
cells (e.g., Th1, Th2, Th17, and Tfh) and regulatory T cells (e.g., 
nTreg, iTreg, and Tr1), primarily display helper and/or regula-
tory activities on other immune cells.[7] The CD8+ T-cell subsets, 
cytotoxic T cells (Tc) and mucosal-associated invariant T cells 
(MAIT), function in killing target cells. Importantly, the abun-
dance of T-cell subsets, particularly that of tumor-infiltrating T 
cells, could influence clinical curative effects and prognosis.[8] 
In addition, strategies used for adjusting the proportion of T-cell 
subsets have demonstrated profound efficacy in cancer immu-
notherapies. For example, increasing the ratio between effector 
T cell and Treg cell subsets could enhance the antitumor effects 
of anti-CTLA-4 therapy against melanoma.[9] Thus, investigating 
the landscape of immune cells, particularly T cells, can help us 
better understand the interplay between the immune system 
and diseases and provide important clues for improving the 
efficacy of immunotherapy in precision medicine.[10]

The distribution and abundance of immune cells, particularly T-cell subsets, 
play pivotal roles in cancer immunology and therapy. T cells have many 
subsets with specific function and current methods are limited in estimating 
them, thus, a method for predicting comprehensive T-cell subsets is 
urgently needed in cancer immunology research. Here, Immune Cell 
Abundance Identifier (ImmuCellAI), a gene set signature-based method, is 
introduced for precisely estimating the abundance of 24 immune cell  
types including 18 T-cell subsets, from gene expression data. Performance 
evaluation on both the sequencing data with flow cytometry results 
and public expression data indicate that ImmuCellAI can estimate the 
abundance of immune cells with superior accuracy to other methods 
especially on many T-cell subsets. Application of ImmuCellAI to 
immunotherapy datasets reveals that the abundance of dendritic cells, 
cytotoxic T, and gamma delta T cells is significantly higher both in 
comparisons of on-treatment versus pre-treatment and responders versus 
non-responders. Meanwhile, an ImmuCellAI result-based model is built for 
predicting the immunotherapy response with high accuracy (area under 
curve 0.80–0.91). These results demonstrate the powerful and unique 
function of ImmuCellAI in tumor immune infiltration estimation and 
immunotherapy response prediction.

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, 
Weinheim. This is an open access article under the terms of the Creative 
Commons Attribution License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited.
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High-throughput technologies, including microarrays and 
RNA sequencing (RNA-Seq), produce large-scale transcriptome 
data and provide opportunities for estimating the abundance of 
immune cells using gene expression profiles. Several methods, 
including xCell,[11] CIBERSORT,[12] EPIC,[13] TIMER,[14] MCP-
counter,[15] and DeconRNASeq[16] have been developed for 
enumerating immune cells from bulk transcriptome data of 
tumor samples, whereas a rare method has been designed for 
estimating the abundance of numerous T-cell subsets, such 
as iTreg, Tc, and exhausted T cells (Tex). As such, there is an 
urgent need to develop a method focusing on abundance pre-
diction of T-cell subsets and other important immune cells in 
immuno-oncology and immunotherapy studies.

In this study, we developed Immune Cell Abundance Identi-
fier (ImmuCellAI), a method to robustly and precisely estimate 
the abundance of 24 immune cell types (including 18 T-cell sub-
sets) from transcriptome data. ImmuCellAI was applicable to 
both microarray and RNA-Seq expression profiles from various 
resources (e.g., tumor, adjacent or normal tissue, and peripheral 
blood). Furthermore, we applied ImmuCellAI to cancer immu-
notherapy and The Cancer Genome Atlas (TCGA) pan-cancer 
data to explore the influence of immune cells on the efficacy of 
immunotherapy and clinical progression of patients with cancer.

2. Results

2.1. Algorithmic Overview of the ImmuCellAI Method

ImmuCellAI was designed to estimate the abundance of 18 T-cell 
subsets [CD4+, CD8+, CD4+ naïve, CD8+ naïve, central memory 
T (Tcm), effector memory T (Tem), Tr1, iTreg, nTreg, Th1, Th2, 
Th17, Tfh, Tc, MAIT, Tex, gamma delta T (γδ T), and natural 
killer T (NKT) cells] and six other important immune cells 
(B cells, macrophages, monocytes, neutrophils, DC, and NK 
cells) (Figure 1a). A brief illustration of the core algorithm of 
ImmuCellAI is represented in Figure 1b, and its detailed algo-
rithm is described in the Experimental Section. Briefly, we 
curated a specific gene set from publications as gene signature 
(Table S1, Supporting Information) and obtained the reference 
expression profile from the Gene Expression Omnibus (GEO) 
database for each cell type (Table S2, Supporting Information). 
Then, we calculated the total expression deviation of the gene 
signature in the input expression profile in comparison with 
the reference expression profiles of the 24 immune cell types. 
We assigned the deviation to corresponding immune cell type 
based on the enrichment score of its gene signature, which was 
calculated using the single sample gene set enrichment anal-
ysis (ssGSEA) algorithm.[17] To correct the bias due to shared 
genes in the gene signatures of different immune cell types, a 
compensation matrix was introduced and least square regres-
sion was implemented to measure the weight of shared genes 
on these immune cells and to re-estimate their abundance 
(Figure 1b). ImmuCellAI was suitable for application to both 
RNA-Seq and microarray expression data from blood or tissue 
samples. To better utilize ImmuCellAI, we designed a user-
friendly web server, which is freely available at http://bioinfo.
life.hust.edu.cn/web/ImmuCellAI/, for estimating the abun-
dance of 24 immune cell types from gene expression profiles.

2.2. Performance of ImmuCellAI in RNA-Seq and Microarray 
Datasets

To evaluate the performance of ImmuCellAI, we applied it 
to multiple RNA-Seq and microarray expression datasets, 
performed benchmark tests, and compared the results with 
other five methods (xCell,[11] CIBERSORT,[12] EPIC,[13] MCP-
counter,[15] and TIMER[14]). Pearson correlation between the 
abundance estimated by flow cytometry and in silico method 
was used to assess the performance of each method in esti-
mating the abundance of individual immune cell type, whereas 
the correlation deviation for all cell types was calculated to 
systematically evaluate the overall prediction power of each 
method (details are discussed in the Experimental Section).

First, we enumerated the amount of immune cell types 
available in each of the six analytical methods, among which 
ImmuCellAI proved capable of predicting more T cell subsets 
than other methods (Figure 2a). Then, we used six RNA-Seq 
datasets as benchmark resources for evaluating the perfor-
mance of ImmuCellAI (Figure 2b,c) on RNA-Seq data. Three 
of them were simulated and integrated from single-cell 
sequencing data of liver cancer (GSE98638),[18] lung cancer 
(GSE99254),[19] and melanoma (GSE72056),[20] their immune 
cell proportions were calculated from single cell barcode infor-
mation (Tables S5–S7, Supporting Information). One dataset 
was taken from the lymph nodes of four patients with mela-
noma included in the EPIC[13] project and their flow cytometry 
result was also obtained. Furthermore, because of the limited 
number of T-cell subsets in currently available data, to evaluate 
the performance of ImmuCellAI in estimating the abundance 
of unique T-cell subsets, we generated two datasets using flow 
cytometry analysis for all 24 immune cell types (Table S6, Sup-
porting Information) and sequenced their RNA (BIG Data 
Center ids: CRA001839 and CRA001840). One of these datasets 
contained five samples from healthy donors and the other con-
tained seven samples from patients with acute myelocytic leu-
kemia. Based on the results, the abundance of most immune 
cells estimated by ImmuCellAI showed a higher positive cor-
relation with the counting results of flow cytometry than that 
estimated by the other methods, particularly for T-cell subsets. 
These results suggested that ImmuCellAI is able to robustly 
and accurately estimate the abundance of 24 immune cell types 
in RNA-Seq datasets (Figure 2b,c; Figures S1a,b and S2a, Sup-
porting Information).

Meanwhile, we used two microarray datasets (GSE65135[12] 
and GSE65133[12] from GEO), which were disaggregated 
lymph node biopsy samples from patients with follicular lym-
phoma and peripheral blood samples from individuals vacci-
nated for influenza with immune cell fractions determined by 
flow cytometry. The abundance of each cell type measured by 
ImmuCellAI showed overall high positive correlations with the 
flow cytometry results in both datasets (Figure 2d; Figure S2b, 
Supporting Information). In addition, ImmuCellAI showed 
the least correlation deviation in both RNA-Seq and micro-
array datasets (Figure 2e). The performance evaluation results 
indicated that ImmuCellAI has the best performance in both 
microarray and RNA-Seq data with stable and high precision 
in terms of estimation of abundance of the 24 immune cell 
types.

Adv. Sci. 2020, 7, 1902880
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2.3. Case Study of ImmuCellAI Application for Cancer  
Immunotherapy Response Prediction

To investigate the impact of immune cell abundance on 
cancer immunotherapy, we applied ImmuCellAI to a dataset, 
GSE91061,[21] which comprised 58 melanoma samples from 

a clinical trial on anti-PD1 therapy. We analyzed the results 
using two comparisons: responders versus non-responders and 
on-treatment versus pre-treatment. The abundance of three 
immune cells including Tc, γδ T, and DC cells significantly 
increased with anti-PD1 treatment (Figure 3a; Mann–Whitney 
U-test, p < 0.05). Besides, Tc, γδ T, and DC cells also significantly 

Adv. Sci. 2020, 7, 1902880

Figure 1. Immune cell types estimated by ImmuCellAI and the workflow of ImmuCellAI. a) Immune cell subsets enumerated by ImmuCellAI. Genes 
on the line to cell types are the examples of their marker genes. b) The pipeline of the ImmuCellAI algorithm. The three red boxes are the three main 
steps of ImmuCellAI algorithm. The reference expression profiles of the immune cells were obtained from GEO, and marker genes per immune cell 
type were obtained from the literature and analytical methods. For each queried sample, the enrichment score of total expression deviation of the signal 
gene sets was calculated and assigned to each immune cell type by the ssGSEA algorithm. The compensation matrix and least square regression were 
implemented to correct the bias caused by the shared marker genes among different immune cell types.
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Figure 2. Performance comparison of ImmuCellAI and other methods. a) Immune cell types can be estimated and platforms applicable in Immu-
CellAI and other five methods. b) Prediction accuracy of ImmuCellAI and other methods for our sequenced blood samples from healthy donors and 
AML patients. The rows correspond to methods and the columns indicate the Pearson coefficient for the corresponding cell in the pie graph. Cell 
types not available in the corresponding methods are marked with a black “× .” The “–” in the circle denotes the correlation analysis result was “NA.”  
c,d) Performance of ImmuCellAI and other methods on public RNA-Seq datasets (c) and microarray datasets (d). e) Correlation deviation of each 
method, which took sample size and overall accuracy into consideration to measure the global performance of each tool. “×” means that TIMER was 
not suitable for estimating the cell fraction of the two microarray datasets (PBMC: GSE65133 and FL: GSE65136).
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infiltrated more in responders compared with non-responders 
at the on-treatment time point (Figure 3b; Mann–Whitney U-
test, p < 0.05). The results suggested that ImmuCellAI can 
provide important insights on the dynamic immune cell infil-
tration during immunotherapy and offer valuable indicator for 
immunotherapy response during the treatment.

Next, we built a prediction model for immune checkpoint 
blockade (ICB) therapy response based on the immune cell 
abundance estimated by ImmuCellAI. Five anti-PD1 or anti-
CTLA4 therapy datasets (GSE91061,[21] GSE78220,[22] and 
GSE115821,[23] ERP107734,[24] and SRP011540[25]) with a total 
of 176 patients were involved in the process. The former three 
datasets from GEO were used for training and testing in a sup-
port vector machine model based on the abundance of immune 
cells, and the last two cohorts from dbGAP were used for fur-
ther validation (details in methods). By taking the predicted 
abundance of 22 immune cells (B cell, CD4+ naïve, CD8+ naïve, 
Tcm, Tc, DC, γδ T, Tem, Tex, iTreg, macrophage, MAIT, mono-
cyte, neutrophil, NK, NKT, nTreg, Tfh, Th1, Th17, Th2, and Tr1) 
as features, the model achieved relatively high accuracy in pre-
dicting immunotherapy response in the test data (area under 
curve (AUC) 0.91) and other two validation cohorts (AUC 0.84 
and 0.80, Figure 3c). And T-cell subsets made great contribu-
tion in the model by using only the abundance of T-cell subsets 
as features achieved AUC of 0.77–0.85 (Figure 3d). Further-
more, using the abundance of immune cell subsets available in 
both ImmuCellAI and xCell as features, the model with abun-
dance predicted by ImmuCellAI performed better than xCell 
in all three cohorts (Figure 3e,f). Overall, the abundance of 
immune cells measured by ImmuCellAI was highly predictive 

of immune therapy sensitivity (Figure 3c–f), suggesting that 
ImmuCellAI can serve as an ideal method for immunotherapy 
studies. We implemented the model for immune therapy 
response prediction as a functional module on the ImmuCellAI 
server.

2.4. Case Study of ImmuCellAI Application to TCGA Pan-Cancer 
Data for Predicting the Infiltration of Immune Cells and Patient 
Survival

Increasing evidence has demonstrated that immune cells are 
critical in cancer progression, and the infiltration of different 
T-cell subsets could dramatically influence the treatment 
strategy and prognosis.[26] In this study, to demonstrate the 
application of ImmuCellAI to cancer research, we analyzed 
17 cancer types in TCGA with gene expression data of both 
the tumor and adjacent tissues to survey the infiltration differ-
ence of immune cells. Partial correlation analysis was imple-
mented to reduce false correlation, which may be caused by 
other factors, such as age and gender (Figure S3, Supporting 
Information). The results indicated that the abundance of many 
immune cell types was significantly different (false discovery 
rate (FDR) < 0.1) between samples from tumor and adjacent 
tissue in most cancers, particularly for Tc, NK, NKT, Th2, iTreg, 
nTreg, and DC (Figure 4a). The iTreg, nTreg, Tr1, and mono-
cyte cells were markedly enriched in the nidus of most cancer 
types, which is consistent with their immunosuppressive prop-
erties (Figure 4a). In contrast, several antitumor cells, such as 
γδ T, MAIT, NK, NKT, and Th2 cells, showed higher infiltration 
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Figure 3. Case study of the application of ImmuCellAI on immunotherapy. a,b) The significant abundance differences of three types of immune cells 
in before (Pre) and during (On) anti-PD1 treatment (a), and responders (R) and non-responders (NR) at on-treatment (anti-PD1) time point (b).  
c,d) The receiver operating characteristic (ROC) curve of the immunotherapy response prediction model using ImmuCellAI estimated abundance of  
22 immune cells (c) or 15 T-cell subsets (d) as features in the test and validation cohorts. e,f) Performance of prediction model using the abundance of 
immune cells available in both xCell and ImmuCellAI estimated by ImmuCellAI (e) or xCell (f) as features in the test and validation cohorts. “Cohort 1” 
contains 53 samples (eight responders and 45 non-responders, random sampling from GSE91061, GSE78220 and GSE115821). “Cohort 2” contains 41 
samples (seven responders and 33 non-responders, SRP011540). “Cohort 3” contains 45 samples (12 responders and 33 non-responders, ERP107734).
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in adjacent tissues of most cancers, indicating that the tumor 
microenvironment may prohibit their access to the nidus.

Furthermore, we investigated the effects of the immune cell 
infiltration on patient survival by controlling other factors (i.e., 
age, gender, and stage) using cox regression analysis. In a nut-
shell, the infiltration of most immune cell types significantly 
affected the overall survival of patients in different cancers 
(Figure 4b). The infiltration of most immune cells had oppo-
site effects on survival in brain lower grade glioma and uveal 

melanoma compared with that in other cancers (Figure 4b). 
Furthermore, skin cutaneous melanoma (SKCM) had the most 
immune cell types (12/24) significantly associated with patient 
survival (FDR < 0.1; Figure 4b; Figure S4, Supporting Informa-
tion). The infiltration of T-cell subsets (e.g., γδ T cells, Th1, Th2, 
and iTreg) had positive effects on long-term survival in patients 
with SKCM, whereas patients with high infiltration of CD8+ 
naïve and neutrophils were associated with worse outcomes 
(Figure 4b; Figure S4, Supporting Information). Although the 

Adv. Sci. 2020, 7, 1902880

Figure 4. Analysis of the infiltration of immune cells in TCGA data by ImmuCellAI. a) A landscape of the comparison of the infiltration of immune 
cells between the tumor and adjacent tissues. The orange blocks indicate that cells infiltrated more in the nidus tissue and green blocks indicate the 
opposite. Statistical significance was evaluated using Wilcoxon’s rank sum test with an FDR of 0.10. b) Association of tumor-infiltrating immune cells 
with patient survival. For each cancer type, multivariate Cox regression was performed, with covariates including the abundance of immune cell, patient 
age at diagnosis, gender, and clinical stage. c) Kaplan–Meier curves of cancers by the combination of multiple immune cell types. Statistical significance 
and hazard ratios were calculated using multivariate Cox regression.
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infiltration of a single immune cell type in some cancer types 
was not related with patient survival, the infiltration of a com-
bination of multiple immune cell types was significantly associ-
ated with survival (multivariate Cox regression, p < 0.05), such 
as Tc + Th17 in adrenocortical carcinoma (ACC), Tc + Tcm in 
ACC, Tc + Tem in mesothelioma, γδ T + Tcm in cervical and 
endocervical cancers, MAIT + Th1 in diffuse large B-cell lym-
phoma, and NKT + Th1 in uterine carcinosarcoma (Figure 4c). 
In addition, the infiltration of immune cells was correlated with 
microsatellite instability (MSI) after partial correlation analysis 
was performed to reduce false correlation caused by other fea-
tures, such as age and gender (Figure S5a,b, Supporting Infor-
mation). In colon adenocarcinoma (COAD) and stomach ade-
nocarcinoma (STAD), patients with high-MSI cancer (MSI-H) 
showed a significantly higher infiltration of antitumor and 
tumor helper cells, such as Tc, γδ T, NK, and DC (Figure S6a, 
Supporting Information), but a significantly lower infiltration 
of tumor suppressor cells (Tr1 and neutrophils) and CD8 naïve 
cells (Figure S6b, Supporting Information). These results may 
partially explain the better outcomes of patients with MSI-H 
colorectal cancer undergoing immunotherapy.[27] Furthermore, 
we observed that some immune cell types showed stage-related 
profiles in cancers. For example, the infiltration of Tex, Th1, 
iTreg, and CD8+ T cells gradually increased with the develop-
ment of kidney renal clear cell carcinoma (Figure S7, Sup-
porting Information).

3. Discussions

Increasing evidence suggests that immune cells play critical 
roles in carcinogenesis and progression, and a proper propor-
tion of T-cell subsets could contribute to long-term clinical ben-
efits of anticancer treatments.[28] Investigating the abundance 
of immune cell types could help to have a more comprehensive 
understanding of the immune status of patients and could thus 
benefit disease therapy.[29] In this study, we developed Immu-
CellAI, a highly accurate method of estimating the abundance 
of immune cells, particularly T-cell subsets, from transcriptome 
data. The case study application results on immunotherapy and 
pan-cancer data suggest that ImmuCellAI is a very useful tool 
in cancer immunology.

ImmuCellAI focuses on immune cell prediction from 
expression profiles of array or RNA-seq data and is able to 
enumerate the abundance of 18 T-cell subsets (Figure 1a). 
Although there are several methods available for immune cell 
abundance estimation, most of them have intrinsic limita-
tions. The 4 immune cell focused tools (CIBERSORT, EPIC, 
TIMER, and MCP-counter) can only predict two to four sub-
sets of T cells and only CIBERSORT can be used on both array 
and RNA-Seq data (Figure 1a). xCell was designed for immune 
and stroma cells including 10 T-cell subsets, while it cannot 
retrieve the abundance of some important T-cell subsets (iTreg, 
Tc, and exhausted T cells etc., which were proved playing vital 
roles in the immune system and immunotherapy[30–32]) and 
does not show robust accuracy in some cases (e.g., Figure 2b). 
Compared with those alive tools, the unique function of Immu-
CellAI is that it can accurately estimate the abundance of com-
prehensive T-cell subsets, which is particularly important in 

cancer therapy. For those immune cells that could be identified 
by other methods, our comparison results showed that Immu-
CellAI had the highest consistency with flow cytometry results 
for most cells (Figure 2b–e). Because there are very limited 
T-cell subsets with both flow cytometry data and RNA-Seq data, 
we produced two datasets using flow cytometry analysis for all 
24 immune cell types and sequenced their RNA. The results 
confirmed that ImmuCellAI has the best performance in terms 
of accurately identifying these T-cell subsets, which is an advan-
tage of this method.

Tumor-infiltrating T cells could serve as a prognostic factor 
and predictor of therapeutic efficacy.[33] In our result, the abun-
dance of Tc, γδ T, and DC cells were significantly increased in 
both comparisons of on-treatment versus pre-treatment and 
responders versus non-responders (Figure 3a,b). DC cells are 
antigen-presenting cells (APC) that are essential for the activa-
tion of immune responses, which have the potential to turn 
immunologically “cold” tumors into “hot” tumors.[34] Tc cells play 
key roles in the tumor cell killing process,[35] and γδ T cells also 
function in the antigen recognition and tumor killing process.[36] 
To extend these results, taking the abundance of 22 immune 
cells of pre-treatment samples into account, an immunotherapy 
model was proposed and reached high accuracy (AUC 0.80–0.91) 
(Figure 3c). The model using abundance of 22 immune cells 
predicted by ImmuCellAI was implemented for immunotherapy 
response prediction on the ImmuCellAI server. This is the 
second user-friendly web server for immunotherapy response 
prediction, except for the TIDE.[37] Comparing with the reported 
accuracy of TIDE, our ImmuCellAI has a little bit higher accu-
racy. In addition, to date, most studies have focused on the infil-
tration of CD8+ T cells as a predictive biomarker for response 
to ICB therapy.[38] Our study indicated that integrating many 
immune cells, particularly different T-cell subsets, could serve as 
a biomarker for better therapy response prediction (Figure 3c). 
Thus, the systematic evaluation of immune cell abundance 
could be an effective approach for predicting immunotherapy 
response and improving the effects of cancer immunotherapy.[39] 
Some of the results of the infiltration of immune cells in TCGA 
cancer data were consistent with those of previous reports, for 
example, the infiltration of Tc cells is more often observed in 
kidney cancer but less so in colorectal cancer.[40] These results 
indicate the powerful and unique function of ImmuCellAI on 
cancer immunology and immunotherapy research.

Although ImmuCellAI had the best performance in com-
parison with other methods, it still has several limitations that 
need to be addressed. First, ImmuCellAI could only estimate 
the relative abundance of immune cells based on the deviation 
of gene signatures. It could not provide the absolute amount 
of each immune cell type. Moreover, ImmuCellAI did not con-
sider the spatiotemporal localization of immune cells and the 
abundance of cancer cells. In addition, the sample size used 
in the immunotherapy case study was relatively small, and the 
performance of our model needs to be tested in larger cohorts. 
Other immune cell subsets, besides the T cells used in our 
method, also need to be tested in future studies.

In summary, this study presented an accurate and reliable tool 
ImmuCellAI to dissect T-cell properties and explore the infiltra-
tion of immune cells in cancer. The best advantage of Immu-
CellAI is its ability to accurately estimate the abundance of 18 

Adv. Sci. 2020, 7, 1902880
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T-cell subsets, which is its unique function. Besides, ImmuCellAI 
can be applied to predict the patient response of  ICB therapy. 
The results of ImmuCellAI provided valuable prognostic predic-
tors and comprehensive resources to elucidate cancer-immune 
interactions, which could facilitate applications of cancer immu-
notherapy and precision medicine.

4. Experimental Section
The Main Algorithm of ImmuCellAI: The main algorithm of 

ImmuCellAI, presented in Figure 1b, includes three main steps:  
1) reference expression matrix (RT) and marker gene preparation,  
2) enrichment score calculation, and 3) compensation matrix correction.

Reference Expression Matrix and Marker Gene Preparation: The 
datasets of the expression profiles of 24 immune cell types (Figure 1a) 
were downloaded from the GEO database. In total, 415 datasets from 
26 studies were manually curated to build RT of the immune cell types 
(Table S2, Supporting Information). Gene expression data were obtained 
from CEL files according to the frozen robust multiarray analysis 
protocol with batch effect correction.[41] Each line of the matrix denotes 
the expression of a gene in the 24 immune cell types. The median value 
was used if there were multiple samples of a cell type.

Furthermore, a gene signature per cell type was developed by 
integrating the marker genes obtained from the literature and other 
analytical methods, such as CIBERSORT and xCell; thus, a total of 
2547 genes were collected (denoted as Ga, Table S1, Supporting 
Information). Next, a robust marker gene set per immune cell type was 
selected using in silico simulated data by taking advantage of the TCGA 
data, which was based on the work of Li et al.[14] For each cancer type in 
the TCGA data, the expression of Ga in the samples (log2 transferred) 
and immune cell reference profiles were used to simulate the immune 
cell infiltrated tumor samples with known fractions. To control the 
mixing ratios of immune cell components for maintaining the correlative 
structure of real data, the gene–gene covariance matrix Σa was first 
calculated for all genes in Ga using tumor expression data. Then,  
24 numbers (f1–f24) were randomly sampled from Uniform (0,1) and μa 
(length n) was calculated, which was the average of gene expression in the 
reference profiles of the 24 immune cell types weighted by f1–f24. Next, a 
vector of length n was sampled from the multivariate normal distribution 
with mean μa and covariance Σa. For each cancer type, the same number 
of samples was simulated as its sample size in the TCGA data.

Then, for all collected marker genes in Ga, the average correlation 
between gene expression in simulated samples with cell fractions was 
calculated using Pearson correlation for all cancers, and genes with an 
average correlation of r ≥ 0.6 were selected (denoted as G1). Next, for each 
marker gene per immune cell, the standard correlation deviation among 
the cell with other cells was calculated, and genes with standard deviation 
larger than 1.5 were selected (denoted as G2). The deviation between 
CD4+ T and CD4+ T-cell subsets (such as CD4+ naïve and Th1) as well as 
that between CD8+ T and CD8+ T-cell subsets was not calculated. Finally, a 
robust marker gene set per immune cell type was obtained by intersecting 
G1 with G2 (denoted as Gf), which included 344 marker genes of the 
24 immune cell types (Table S1, Supporting Information). In addition, a 
sparse matrix (ST) was constructed for these marker genes in which “1” 
means that the gene is a marker gene in the corresponding cell type.

Enrichment Score Calculation: For a user-uploaded expression dataset, 
ImmuCellAI first calculates the expression deviation of all marker genes 
compared with RT. Here two different approaches were implemented to 
deal with the microarray and RNA-Seq datasets.

= …  =, , , , 3441 2 3,D X X X X nn  (1)
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=

X *
1

24
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RTi i
i  

(2)

( )=
+ −







,

2 1 ,
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m Microarray

log m RNA Seq
 

(3)

where vector D denotes the relative deviation of marker genes and STi 
is the vector in ST for marker genes of cell type i. RTi is the reference 
marker gene expression in cell type i, whereas S indicates the gene 
expression in the user-provided dataset.

The ssGSEA algorithm in the GSVA package[42] was used to estimate 
the abundance of immune cell types. The ssGSEA enrichment score 
for deviation vector D of the gene signature of each immune cell type 
(named ES) was used to indicate the relative abundance of immune cell 
types in the user-provided dataset. A higher enrichment score indicates 
a higher abundance of the immune cell type in the mixture sample than 
that of other cell types.

Compensation Matrix Correction: Some immune cell types may share 
a part of common marker genes, which will cause bias in the estimation 
of abundance of these immune cell types. Thus, ImmuCellAI used 
a compensation matrix and least square regression method based 
on the work of Aran et al.[11] to fix this issue. After the estimation 
of abundance of the detected immune cell types in a dataset, the 
weights of common marker genes for these immune cell types were 
reassigned with the following steps: 1) A N * N contribution matrix 
was produced by calculating the mutual contributions of marker genes 
in RT using ssGSEA. 2) Each column of the contribution matrix was 
divided by a diagonal value and weighted by the proportion of non-
diagonal elements, and a compensation matrix was obtained (named 
C). 3) To reduce redundancy and overestimation of compensation 
between detected immune cell types, ImmuCellAI discarded the 
compensational calibration between the parental immune cell type 
and its subsets (e.g., CD4+ T and Th1 cells), and limited the total 
compensation level at 0.5 for the non-diagonal cell types. (4)) The 
least square method was used to calibrate the enrichment score based 
on the compensation matrix C.

− ≥C*I ES ,with 0I  (4)

where the parameter ES is the ssGSEA enrichment score of detected 
immune cell types and C is the compensation matrix. Finally, after 
calibration, we deemed the abundance of 24 immune cell types (named 
I) to be high confidence.

Benchmark Dataset Preparation: Our Datasets for the 24 Immune Cell 
Types: Heparinized blood samples from seven patients with leukemia 
and five healthy adult volunteers (Table S3, Supporting Information) 
were collected from Wuhan Central Hospital, China. Fresh blood 
samples were treated with Pharm Lyse (BD Biosciences, San Jose, CA, 
USA) to remove erythrocytes. Cells from each sample were used in 
parallel experiments of flow cytometry and RNA extraction. This study 
was approved by the ethics committee of Tongji Medical College, 
Huazhong University of Science and Technology, and followed the 
Declaration of Helsinki principles. The informed consent was obtained 
from all volunteers. The proportions of the 24 immune cell types used in 
the study were examined by flow cytometry using the combined markers 
listed in Table S3, Supporting Information, and antibodies listed in 
Table S4, Supporting Information. All antibodies were purchased from 
BD Biosciences, except those used against TCR-Vβ2 and TCR-Va7.2 
(Miltenyi Biotec, Bergisch Gladbach, Germany).

The total RNA extracted from the cells of all 12 samples was used 
for RNA sequencing (RNA-Seq) (PE150) via the Illumina HiSeqTM4000 
platform by Haplox (Jiangxi, China). RNA-Seq reads were mapped to 
Ensembl v81 (GRCH38) and processed using the HISAT2-StringTie-
ballgown pipeline. Fragments per kilobase per million mapped reads 
were used to calculate gene expression levels.

Other Public Datasets: The microarray datasets and corresponding flow 
cytometry results were obtained from GEO (accession nos. GSE65135 
and GSE65133), which included 14 disaggregated lymph node biopsie 
samples from patients with follicular lymphoma and 20 peripheral blood 
samples from individuals vaccinated for influenza, respectively.
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Besides, RNA-Seq expression profile of samples from melanoma 
patients and their corresponding flow cytometry of four immune cell 
types (B, CD4+ T, CD8+ T, and NK) result were collected from EPIC 
publication.[13] Because of the scarcity of bulk RNA-Seq datasets 
containing both gene expression profiles and flow cytometry counts for 
different immune cell types, particularly for T-cell subsets, we simulated 
two bulk RNA-Seq datasets by integrating the expression profiles of 
seven cell types (CD4+ naïve, CD8+ naïve, MAIT, Tcm, Tex, Treg, Th) 
from single-cell RNA sequencing data. The transcripts per million (TPM) 
normalized expression of liver and lung cancers from two Nature papers 
were collected from GEO (GSE98638[18] and GSE99254[19]). Based on the 
work of Max et al.,[43] single-cell expression was normalized as follows:

( )= + 12exp log exp  (5)

for each single-cell dataset, the TPM values were transformed to
To ensure cross-sample comparability, the expression of all single-

cell samples from the same dataset were normalized to the average 
expression of 3686 housekeeping genes[44] as follows:

′ = *exp exp HK
HKi i

i  
(6)

where expi represents the gene expression profile of sample i, HKi 
denotes the average gene expression of all housekeeping genes in 
sample i, and HK  is the average expression of all housekeeping genes in 
all samples. Besides, a single-cell sequencing dataset from 19 patients 
with melanoma was collected from GEO (accession GSE72056), which is 
the normalized expression matrix as described above by Tirosh et al.[20] 
and contains the single-cell RNA-Seq of B cells, T cells, macrophages, 
NK cells, and three other nonimmune cell types. Because CD8+ and 
CD4+ T cells can be easily distinguished by CD4, CD8A, and CD8B 
expression, we divided T cells into CD8+ T cells, CD4+ T cells, and others. 
Then, the bulk expression of each sample was identified by aggregating 
normalized expression from all cell barcodes for each patient sample. 
The cell ratio per cell type in a sample was calculated by the cell number 
of a specific cell type divided by the total number of cells (Tables S5–S7, 
Supporting Information).

Performance Assessment of ImmuCellAI: The performance of 
ImmuCellAI was evaluated using both microarray and RNA-Seq 
datasets and compared with that of five other methods (CIBERSORT, 
EPIC, MCP-counter, TIMER, and xCell). For a given immune cell type, 
the accuracy and sensitivity of each method were measured using the 
Pearson correlation between the results of in silico method and flow 
cytometry counting in samples (named ri). In addition, we introduced the 
correlation deviation to measure the global performance of each method, 
which took the sample size and overall accuracy into consideration.

n
r

i

n

i∑ ( )= −
=

Correlation deviation
1

1
1

2

 

(7)

where n is the amount of immune cell types detected in samples and ri 
is the Pearson correlation of immune cell type i.

Case Study of Immune Therapy and Prediction Model Building: Five 
immune checkpoint therapy datasets, including those from anti-PD1- 
or anti-CTLA4-treated patients with melanoma or gastric cancer, were 
collected from the GEO database (GSE91061,[21] GSE78220,[22] and 
GSE115821[23]) and dbGAP (ERP107734[24] and SRP011540[25]). The 
abundance of infiltrating immune cells was calculated by ImmuCellAI 
and used to build the response prediction model.

The immunotherapy response prediction model was built using 
support vector machine with the radial basis function kernel. The training 
features were the abundance of immune cell types. The sequential 
backward feature selection algorithm was used to minimize the feature 
number and improve the performance. At first, three GEO datasets 
composed of 91 pre-treatment samples (response: complete response 
and partial response, n = 27, non-response: stable disease and progressive 
disease, n = 64) were used to train and test the model. The undersampling 

method was used to fit the unbalanced sample size between responders 
and non-responders with 38 samples in the training and validation cohort 
(19 responders and 19 non-responders, fivefold cross validation) and 53 
samples in the test cohort (eight responders and 45 non-responders). 
Then, the other two cohorts from dbGAP (ERP107734: 12 responders 
and 33 non-responders; SRP011540: seven responders and 33 non-
responders) were used to further validate the model. The area under curve 
(AUC) was used to measure the model performance.

The gene expression profiles of TCGA samples and the clinical 
information were downloaded from Broad GDAC Firehose (https://
gdac.broadinstitute.org/).

Statistical Analysis: Basic statistical analyses, such as Wilcoxon rank 
sum test and Pearson correlation, were performed using R language. The 
correlations between clinical indicators and the abundance of immune 
cell types were evaluated using partial correlation analysis in the R 
package “ppcor.” Multivariate Cox regression, log-rank test, and Kaplan–
Meier in R package “survival” were used to assess the relationships 
between the abundance of immune cell types and survival time. The p 
values for each test were calibrated using FDR, and the FDR threshold 
was 0.1 in case studies. All results supported the current study and were 
deposited into the ImmuCellAI website (http://bioinfo.life.hust.edu.cn/
web/ImmuCellAI/).

Data and Materials Availability: The sequence data sets reported in 
this paper have been deposited in the National Genomics Data Center 
with Accession Nos. CRA001839 and CRA001840.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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